

Inpatient knee pain after hip fracture surgery affects gait speed in older adults - a retrospective chart-referenced study

Journal:	Geriatrics & Gerontology International
Manuscript ID	GGI-0182-2021.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Kaizu, Yoichi; Hidaka Hospital, Rehabilitation Center; Gunma University Graduate School of Health Sciences, Rehabilitation Sciences Miyata, Kazuhiro; Ibaraki Prefectural University of Health Science Arii, Hironori; Gunma University Graduate School of Medicine Yamaji, Takehiko; Gunma University Graduate School of Health Sciences, Rehabilitation Sciences
Keywords:	Bone / Musculo-Skeletal < Geriatric Medicine < Clinical Medicine, Rehabilitation Medicine / Physical Therapy < Clinical Medicine, Orthop(a)edics < Clinical Medicine
Optional Keywords:	aged, hip fractures, knee joint, pain, walking speed

	1
1	<u>Title Page</u>
2	<u>Title:</u>
3	Inpatient knee pain after hip fracture surgery affects gait speed in older adults - a
4	retrospective chart-referenced study
5	<u>Authors</u> :
6	Corresponding author: Yoichi Kaizu ^{1,2} , RPT, M.Sc. (Address: 886 Nakao-machi,
7	Takasaki, Gunma 370-0001, Japan; Phone: +81 27-362-2005; FAX: +81 27-362-0217;
8	E-mail: kaiduyoichi@yahoo.co.jp)
9	Kazuhiro Miyata ³ , RPT, Ph.D. (E-mail: miyatak@ipu.ac.jp)
10	Hironori Arii ⁴ , M.D. (E-mail: hiro-arii@gunma-u.ac.jp)
11	Takehiko Yamaji ² , RPT, Ph.D. (E-mail: tyamaji@gunma-u.ac.jp)
12	Affiliations:
13	1. Department of Rehabilitation Center, Hidaka Hospital, Takasaki, Gunma, Japan
14	2. Department of Rehabilitation Sciences, Gunma University Graduate School of
15	Health Sciences, Maebashi, Gunma, Japan
16	3. Department of Physical Therapy, Ibaraki Prefectural University of Health Science,
17	Ami-Machi, Ibaraki, Japan
18	4. Department of Rehabilitation Medicine, Gunma University Graduate School of

19 Medicine, Maebashi, Gunma, Japan

for per perien

2	

3		
4 5 6	21	Abstract [245 words]
7 8 9	22	Aim: Post-hip fracture knee pain (PHFKP) develops in 28–37.4% of patients with hip
10 11 12	23	fracture and contributes to prolonged hospitalization. Although reduced balance and gait
13 14 15	24	speed contribute to falls, the effects of PHFKP remain unclear. This study aimed to
16 17 18	25	clarify whether PHFKP is a factor in balance and gait speed.
19 20 21	26	Methods: We retrospectively reviewed the medical records of patients after hip
22 23 24	27	fracture. Development of PHFKP, basic information, and physical function were
25 26 27	28	examined. Berg balance scale (BBS) and maximum walking speed (MWS) were
28 29 30	29	collected at discharge. These parameters were compared with the presence or absence of
31 32 33	30	PHFKP. In addition, multiple analyses were conducted with BBS and MWS as
34 35 36	31	dependent variables and PHFKP as one of the independent variables.
37 38 39	32	Results: Of the 146 patients enrolled, 43 (29.5%) developed PHFKP, and 37.2% of
40 41 42	33	patients with PHFKP showed residual symptoms at discharge. Intensity of PHFKP was
43 44 45	34	mostly mild to moderate. The PHFKP group showed extended length of stay (+13.3
46 47 48	35	days) and a tendency toward more discharges to facilities compared to the control
49 50 51	36	group. Knee extension range of motion limitation, knee extensor strength, and BBS did
52 53 54	37	not differ between groups, while MWS was significantly lower in the PHFKP group
55 56 57	38	(0.85±0.32m/s vs. 1.07±0.39m/s). Multiple analyses showed that development of
58 59		

4 5 6	39	PHFKP was not associated with BBS, but was associated with declined MWS
7 8 9	40	(standardized beta = $-0.202, P = 0.005$).
10 11 12	41	Conclusions: PHFKP was identified as an independent factor in gait speed decline.
13 14 15	42	PHFKP patients should be monitored for reduced gait speed during rehabilitation.
16 17 18 19	43	
20 21 22	44	Key words
22 23 24	45	aged, hip fracture, knee joint, pain, walking speed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		
55 56 57 58 59 60		

1

2	
3	
4	
5	
6 7	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
15	
16 17	
17	
18	
19	
20	
21	
20 21 22 23	
22	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

63

60

Text	[2,683	words	in	total	for	abstract	and	text]	
------	--------	-------	----	-------	-----	----------	-----	-------	--

47 Introduction

Hip fractures occur more frequently in old and very old individuals, with 75% of 48 these injuries occurring among individuals \geq 75 years old.¹ The absolute number of hip 49 fractures is thus strongly influenced by observed demographic changes. With a 50 significant increase in the number of older adults worldwide predicted by 2050,² the 51 problems caused by hip fracture are likely to become increasingly important. This 52 problem is of particular prominence in Asia,³ and 45% of hip fractures are expected to 53 54 occur in Asia by 2050, increasing from 1.12 million in 2018 to 2.56 million (2.28 times).⁴ Hip fracture patients require post-injury rehabilitation, which is enormously 55 expensive and represents a serious problem in terms of healthcare costs.⁵ 56 57 Older adults are more likely to fall during hospitalization,⁶ and patients with a first hip fracture have a higher risk of a second fracture than those with no hip fracture.⁷ 58

In addition, many older adults fail to recover after hip fracture surgery and falls are a frequent cause of death.⁸ Furthermore, second fracture is more likely to occur within a short period of time after the first fracture.⁹ Because of this, predicting and preventing falls during hospitalization after hip fracture is important.

Recent studies have shown that post-hip fracture knee pain (PHFKP) is common

64	in rehabilitation after hip fracture, with an incidence of 28-37.4%. ^{10,11,12} Knee
65	osteoarthritis (OA) ¹¹ and intertrochanteric femoral fracture ^{10,12} have been reported as
66	risk factors for PHFKP. In addition, postoperative varus deformity in the neck-shaft
67	angle of the affected lower extremity has been associated with the development of
68	PHFKP, and intertrochanteric femoral fracture has been shown to have greater varus
69	deformity. ¹⁰ Thus, although the clinical features of PHFKP have been clarified, physical
70	function characteristics that may contribute to falls remain unclear.
71	Physical function factors known to influence falls include balance function ¹³ and
72	gait speed. ¹⁴ In older adults after hip fracture, age, sex, and cognitive decline have been
73	reported as factors associated with balance function, ¹⁵ and sex, type of fracture, knee
74	extensor strength, and cognitive decline have been reported as factors associated with
75	gait speed. ¹⁶ The clinical question of this study is whether PHFKP development during
76	hospitalization could be a factor influencing balance function and gait speed.
77	Clarification of the relationship between PHFKP and physical function is
78	important in determining the weighting of interventions in the postoperative
79	rehabilitation of hip fracture patients with PHFKP. The aims of this study were to: 1)
80	investigate whether PHFKP is a factor in balance function and gait speed; and 2)

81 identify precautions for the rehabilitation of PHFKP patients.

82	
83	Material and Methods
84	Research design
85	This study comprised a retrospective review of medical records of patients during
86	rehabilitation after hip fracture surgery. All study protocols were approved by the ethics
87	committee at Hidaka Hospital (approval number: 301), and the need to obtain informed
88	consent was waived due to the retrospective nature of the study.
89	
90	Patients
91	Data from 471 postoperative hip fracture patients admitted to the convalescent
92	ward of Hidaka Hospital between March 2012 and August 2020 were included
93	according to the following inclusion criteria: age >65 years; and history of hip fracture
94	for which surgery had been performed. Exclusion criteria were: cognitive impairment
95	(revised Hasegawa Dementia Scale score <21); ¹⁷ any knee pain at rest or during gait
96	within 3 months before hip fracture; ¹¹ no gait exercises; ipsilateral knee replacement or
97	fractures around the knee; history of stroke; sudden transfer due to onset of another
98	disease or recurrent fractures; or missing data.
99	All participants in the present study underwent a conventional rehabilitation

program prescribed by a physician and conducted by physical therapists and
occupational therapists, as required. A rehabilitation program was started within 1–3
days postoperatively. Therapies were customized and involved muscle strength,
balance, gait, and activities of daily living. Rehabilitation was performed 7 days/week,
for 1–2 h/day.

106 Data collection

Basic information, parameters at discharge, physical function at discharge, and information on the development of PHFKP were collected from medical records. Basic information included age, sex, body mass index (BMI), type of fracture (femoral neck fracture or intertrochanteric femoral fracture), American Society of Anesthesiologists physical status (ASA-PS), and use of analgesics. The ASA-PS is an index for classifying the general state of a patient based on their comorbidities.¹⁸ The admission parameter was the Functional Independence Measure motor score (FIM-motor). Discharge parameters were: discharge destination (home or facility), length of hospital stay (days from surgery to discharge), FIM-motor, gait ability (Functional Ambulation Categories: FAC), and gait independence (FAC 0-3, not independent; 4-5, independent). Physical function on admission was measured using knee extension range

60

1 2 3		9
4 5 6	118	of motion (KE-ROM) limitation and manual muscle testing of knee extension (MMT).
9	119	Physical function at discharge was measured using KE-ROM limitation, MMT, Berg
12	120	balance scale (BBS), and maximum walking speed (MWS). MWS was measured on a
15	121	10-m gait path. PHFKP defined pain as present if the pain, including the word "knee
18	122	(affected side)," was noted in the medical records along with a record of the numerical
21	123	rating scale (NRS). We referred to three locations in the medical record: 1) results of
24	124	physical therapy assessment, as regular assessments for all patients that always collect
27	125	pain information, performed by the physical therapist on admission to the ward and at
30	126	discharge; 2) daily chart entries by the physical therapist; and 3) pain location and pain
33	127	intensity recorded daily by nurses. PHFKP was surveyed in the two phases. The early
36	128	period was 1 week from the time of physical therapy assessment immediately after
39	129	admission, and the late period was 1 week before the physical therapy assessment at
42	130	discharge. Pain intensity was assessed by NRS and the maximum recorded score was
45	131	considered representative. The NRS is a 10-point pain rating scale, categorized as: 1–3,
48	132	mild; 4–7, moderate; and 8–10, severe pain. ¹⁹
51	133	To prevent information bias, sheets recording the primary outcome, PHFKP, and
54	134	sheets recording other basic information and radiographic analysis were kept separately
55 56 57 58 59 60	135	and collected on separate days.

136	
137	Statistical analysis
138	For continuous variables, the mean, standard deviation, median and interquartile
139	range (25-75%) are presented. Categorical variables are presented in terms of the
140	number of patients. Basic information, FIM-motor as the admission parameter,
141	discharge parameters, and physical function were compared between groups with and
142	without PHFKP. Student's t-test was used to compare continuous variables with a
143	normal distribution, and the Mann-Whitney test was used for variables with a non-
144	parametric distribution. The chi-square test was used to compare categorical variables.
145	As age differed significantly in the above comparisons between the two groups, P-
146	values adjusted for age were calculated for all parameters except age. Adjustment of
147	continuous variables was done by analysis of covariance (ANCOVA) for normally
148	distributed variables and by non-parametric ANCOVA for non-parametric distributed
149	variables. ²⁰ For categorical variables, age was stratified into age groups of 65–74 years,
150	74-84 years, and 85 years and older, and adjusted P values were calculated using the
151	Cochran-Mantel-Haenszel Tests. ²¹
152	Multiple analysis with a forward stepwise selection method was conducted to
153	clarify the effect of PHFKP on balance function and gait speed, using BBS and MWS as

4 5		
6 7	154	dependent variables. Patients were divided into two groups using a BBS cut-off value
8 9 10	155	for falls (50 points), ²² as the BBS was not normally distributed. Logistic regression
11 12 13	156	analysis was then performed. As MWS showed a normal distribution, multiple linear
14 15 16	157	regression analysis was performed with the MWS value as the dependent variable. For
17 18 19	158	both BBS and MWS, PHFKP, age, sex, BMI, type of fracture, ASA-PS, use of
20 21 22	159	analgesics, ROM on admission, and MMT on admission were entered as independent
23 24 25	160	variables. Variance inflation factor (VIF) was calculated for the independent variables
26 27 28	161	entered to check for multicollinearity.
29 30 31	162	A two-sided <i>P</i> -value less than 0.05 was considered statistically significant. All
32 33 34	163	statistical analyses were performed using IBM SPSS version 26 statistical software
35 36 37	164	(IBM Corp., Armonk, NY, USA) and R statistical software.
37 38 39 40	165	
41 42 43	166	Results
44 45 46	167	Of the 471 patients who met the inclusion criteria, 325 met the exclusion criteria
47 48 49	168	(Figure 1). Overall, 43 of the 146 patients (29.5%) developed PHFKP. PHFKP was
50 51	169	present in the early period in 39 patients and in the late period in 20 patients, with 16
52 53 54	170	patients (37.2%) showing pain in both the early and late periods. Pain intensity in the
55 56 57 58 59	171	early phase was mild in 18 patients, moderate in 18, and severe in 3. Pain intensity in

172	the late phase was mild in 15 patients, moderate in 4, and severe in 1. Mean duration
173	from date of surgery to initial assessment was 25.6 ± 14.7 days.
174	Table 1 shows basic information, FIM-motor as the admission parameter,
175	discharge parameters, and physical function for all subjects. Table 2 shows basic
176	information, FIM-motor as the admission parameter, discharge parameters, pain
177	intensity, and physical function in the non-PHFKP and PHFKP groups. The PHFKP
178	group was older ($P = 0.019$) and showed a higher frequency of intertrochanteric femoral
179	fracture ($P = 0.010$, adjusted $P = 0.014$). The PHFKP group tended to be more
180	frequently discharged to a facility ($P = 0.028$, adjusted $P = 0.086$). Mean length of stay
181	was 13.3 days longer in the PHFK group ($P < 0.001$, adjusted $P < 0.001$). FIM, FAC,
182	and frequency of gait independence did not differ significantly according to age-
183	adjusted <i>P</i> -values. <u>KE-ROM limitation, MMT, and BBS ($P = 0.034$, adjusted $P =$</u>
184	0.254) showed no significant difference between groups, while MWS ($P = 0.001$,
185	adjusted $P = 0.006$) was significantly lower in the PHFKP group.
186	Table 3 shows the results of logistic regression analysis with BBS as the
187	dependent variable. BBS was good in 85 patients and poor in 61 patients. Age, type of

189 results of multiple linear regression analysis with MWS as the dependent variable.

fracture, and MMT were selected as factors, while PHFKP was not. Table 4 shows the

190	<u>PHFKP (standardized beta (β) = -0.202, <i>P</i> = 0.005), age (β = -0.438, <i>P</i> < 0.001), sex (β</u>
191	= -0.156, $P = 0.025$), and BMI ($\beta = 0.182$, $P = 0.009$) were selected as significant
192	factors. The model had an F-value of 18.49 and adjusted R ² of 0.325 ($P < 0.001$). VIF
193	of independent variables was small (1.022-1.061).
194	
195	Discussion
196	The present study investigated whether PHFKP is a factor influencing balance
197	function and gait speed. The results showed that patients with PHFKP had a significant
198	decrease in MWS. Furthermore, multiple linear regression analysis showed that PHFKP
199	was a factor independently associated with reduction of gait speed. In addition, more
200	patients in the PHFKP group tended to be discharged to facilities. In the rehabilitation
201	of patients with hip fractures, PHFKP represents a problem that should be kept in mind
202	because of the risk of reducing gait speed.
203	The PHFKP group showed that MWS was significantly reduced and multiple
204	linear regression analysis identified PHFKP as a factor associated with MWS. These
205	results indicate PHFKP as a factor independently associated with reduced gait speed. In
206	older adults, the cut-off value of MWS for falls is known to be 1.0 m/s. ²³ The present
207	results showed that mean values were less than the cut-off value in the PHFKP group.

Our results suggest that among hospitalized older adults hip fracture patients, many of whom have a MWS around 1.0 m/s, the risk of falling may be increased in patients who develop PHFKP. Although FIM, FAC, and gait independence did not differ significantly, patients in the PHFKP group were more likely to undergo facility discharge, suggesting that PHFKP may have an impact on outcomes. However, the number of subjects in the PHFKP group was small, and further validation is needed for gait independence and discharge destination. The PHFKP group showed a significant decrease in BBS scores, but the age-adjusted P value did not show a significant difference and BBS was not selected as an associated factor in logistic regression analysis. The reasons why PHFKP was a factor for MWS and not for BBS are considered below. Discrepancies have been reported between knee pain and knee OA severity.²⁴ Reduced gait speed has been reported to be caused by knee pain alone,²⁵ while balance function has been reported to be caused by knee OA severity,²⁶ not knee pain. Although not directly investigated, the exclusion of previous knee pain and the large number of patients with relatively mild pain intensity suggest that the number of patients with severe knee OA might have been small. PHFKP may therefore not have been selected as a factor in impaired balance function,

226	although the association with reduced gait speed was strong.
227	The incidence of PHFKP in our study (29.5%) was similar to that reported in
228	previous studies. ^{10,11,12} PHFKP patients were found to have more frequent
229	intertrochanteric femoral fractures and a longer hospital stay by 13.3 days. These results
230	were also significantly different after adjusting for age, and seem to be generalizable.
231	As for hospital stay, a previous study confirmed that hip fracture patients with PHFKP
232	stayed 5.1 days ¹² longer in acute wards and 12.7 days ¹⁰ longer in convalescent wards,
233	supporting the present results. KE-ROM limitation was significantly greater in the
234	PHFKP group in the two-group comparison, but not after adjusting for age, suggesting
235	that the effect of age was greater among subjects in this study. In the present analysis,
236	we adjusted only for age. We therefore need to analyze factors associated with PHFKP
237	in multiple analyses that also adjust for other variables to determine whether KE-ROM
238	limitation is independently associated with the development of PHFKP.
239	Our results reveal for the first time that PHFKP caused decreases in gait speed, in
240	addition to prolonging hospitalization. ^{11,12} Moreover, PHFKP may have an impact on
241	discharge destination. Because of the potential for such problems, investigation of

suggest a high risk of reduced gait speed in patients with PHFKP, which should be

prevention and treatment methods for PHFKP is important. The findings from this study

considered in rehabilitation.

245	The present study showed three main limitations. First, selection bias may have
246	been present, as a large proportion of patients (325 of 471 patients) were excluded from
247	analysis. Second, we used MMT to measure muscle strength. The MMT is subjective,
248	and has low inter-rater reliability in differentiating between "normal" (score 5) and
249	"good" (score 4).27 For this reason, hand-held dynamometers are increasingly being
250	used for quantitative muscle strength measurements. ²⁸ Third, because this study
251	investigated knee pain in a retrospective study, some patients with PHFKP may not
252	have been included in the medical record.
253	In conclusion, MWS was lower in patients with PHFKP. In multiple analyses,
254	PHFKP was not identified as a factor associated with BBS, but was a factor for MWS.
255	The results revealed that PHFKP is independently associated with reduced gait speed. In
256	the rehabilitation of patients who develop PHFKP after hip fracture, attention should be
257	paid to findings of reduced gait speed.
258	
259	Disclosure statement
260	The authors declare no conflict of interest.

6

60

261 <u>References</u>

- ⁷/₈
 ⁸/₉
 ⁹/₂₆₃
 ¹⁰/₁₀
 ¹⁰/₁₀
- 264 2. Cooper C, Cole ZA, Earl SC *et al.* Secular trends in the incidence of hip and other
 265 osteoporotic fractures. *Osteoporos Int* 2011; 22: 1277-1288.
- ¹³ 266 3. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture.
 ¹⁵ 267 Osteoporos Int 1997; 7: 407-413.
- 268 4. Cheung CL, Ang SB, Chadha M, *et al.* An updated hip fracture projection in Asia:
 269 The Asian Federation of Osteoporosis Societies study. *Osteoporos Sarcopenia*270 2018; 4: 16-21.
- 271 5. Veronese N, Maggi S. Epidemiology and social costs of hip fracture. *Injury* 2018;
 272 49: 1458-1460.
- 24 273 6. Singh I, Hooton K, Edwards C, *et al.* Inpatient hip fractures: understanding and addressing the risk of this common injury. *Age Ageing* 2020; **49**: 481-486.
- 27 275 7. Hagino H. Fragility fracture prevention: review from a Japanese perspective.
 28 276 *Yonago Acta Med* 2012; 55: 21-28.
- 30 277 8. Alegre-López J, Cordero-Guevara J, Alonso-Valdivielso JL, *et al.* Factors
 31 278 associated with mortality and functional disability after hip fracture: an inception
 33 279 cohort study. *Osteoporos Int* 2005; 16: 729-736.
- ³⁴
 ³⁵
 ³⁶
 ³⁷
 ³⁸
 ³⁹
 ³⁹
 ³⁴
 ³⁵
 ³⁶
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁸
 ³⁹
 ³⁹
 ³¹
 ³¹
 ³¹
 ³⁴
 ³⁵
 ³⁶
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁸
 ³⁹
 ³⁹
 ³¹
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³⁴
 ³⁵
 ³⁵
 ³⁶
 ³⁶
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁸
 ³⁸
 ³⁹
 ³⁹
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³²
 ³¹
 ³²
 ³¹
 ³²
 ³²
 ³¹
 ³²
 ³²
 ³²
 ³²
 ³³
 ³⁴
 ³⁴
 ³⁵
 ³⁵</l
- 282 10. Kaizu Y, Miyata K, Arii H, *et al.* Femoral morphology is associated with
 283 development of knee pain after hip fracture injury among older adults: A nine-year
 284 retrospective study. *J Orthop* 2021; 24: 190-193.
- 42 285 11. Harato K, Yoshida H. Pseudogout at the knee joint will frequently occur after hip
 43 286 fracture and lead to the knee pain in the early postoperative period. *J Orthop Surg*45 287 *Res* 2015; 10: 4.
- 288 12. Kim HJ, Lee SJ, Hyun JK, *et al.* Influence of hip fracture on knee pain during postoperative rehabilitation. *Ann Rehabil Med* 2018; **42**: 682-689.
- 290 13. Ambrose, AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: a
 291 review of the literature. *Maturitas* 2013; **75**: 51-61.
- ⁵² 292 14. Fritz S, Lusardi M. White paper: "walking speed: the sixth vital sign". *J Geriatr*⁵⁴ 293 *Phys Ther* 2009; **32**: 46-49.
- ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁰
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁰
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁰
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁰
 ⁵¹
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵³
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵¹
 ⁵¹
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵³
 ⁵³
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁴
 ⁵⁵
 ⁵⁵
 ⁵⁵
 ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵¹
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵³
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁵</l

1 2		1
3 4 5	297	16. Mangione KK, Craik RC, Lopopolo R, et al. Predictors of gait speed in patients
6	298	after hip fracture. Physiother Can 2008; 60: 10-18.
7 8	299	17. Imai Y, Hasegawa K. The revised Hasegawa's dementia scale (HDS-R)-evaluation
9	300	of its usefulness as a screening test for dementia." J Hong Kpng Coll Psychiatr
10 11	301	1994; 4 : 20-24.
12	302	18. Chen LH, Liang J, Chen MC, et al. The relationship between preoperative
13 14	303	American Society of Anesthesiologists Physical Status Classification scores and
15	304	functional recovery following hip-fracture surgery. BMC Musculoskelet Disord
16 17	305	2017; 18 : 410.
18	306	19. Swarm RA, Paice JA, Anghelescu DL, et al. Adult cancer pain, version 3.2019,
19 20	307	NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2019; 17:
21	308	977-1007.
22 23	309	20. Akritas MG, Arnold SF, Du Y. Nonparametric models and methods for nonlinear
24	310	analysis of covariance. Biometrika 2000; 87: 507-526.
25 26	311	21. Mantel N, Fleiss JL. Minimum expected cell size requirements for the Mantel-
27	312	Haenszel one-degree-of-freedom chi-square test and a related rapid procedure. Am
28 29	313	<u>J Epidemiol 1980; 112: 129-134.</u>
30	314	22. Lusardi MM, Fritz S, Middleton A, et al. Determining risk of falls in community
31 32	315	dwelling older adults: a systematic review and meta-analysis using posttest
33	316	probability. J Geriatr Phys Ther 2017; 40: 1-36.
34 35	317	23. Viccaro LJ., Perera S, Studenski SA. Is timed up and go better than gait speed in
36	318	predicting health, function, and falls in older adults? J Am Geriatr Soc 2011; 59:
37 38	319	887-892.
39	320	24. Hannan MT, Felson DT, Pincus T. Analysis of the discordance between
40 41	321	radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 2000;
42	322	27 : 1513-1517.
43 44	323	25. Bindawas SM. Relationship between frequent knee pain, obesity, and gait speed in
45	324	older adults: data from the Osteoarthritis Initiative. Clin Interv Aging 2016; 11:
46 47	325	237-244.
48	326	26. Park HJ, Ko S, Hong HM, et al. Factors related to standing balance in patients with
49 50	327	knee osteoarthritis. Ann Rehabil Med 2013; 37: 373-378.
51	328	27. Van der Ploeg RJ, Oosterhuis HJ, Reuvekamp J. Measuring muscle strength. J
52 53	329	Neurol 1984; 231 : 200-203.
54	330	28. Stark T, Walker B, Phillips JK, et al. Hand-held dynamometry correlation with the
55 56	331	gold standard isokinetic dynamometry: a systematic review. PM R 2011; 3: 472-
57	332	479.
58 59	333	
60		

Figure legend

Flow diagram of participant data.

Figure 1

1 2 3 4	
2 3 4 5 6 7 8 9	334 335 336
10	550
11 12 13	
14 15 16 17	
18 19	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
24 25 26	
27 28 29	
30 31 32	
33 34 35	
38	
39 40 41	
42 43 44	
45 46 47 48	
49 50 51	
52 53 54	
55 56 57	
58	

59 60

GGI Editorial office (Email: ggi@blackwellpublishingasia.com)

to per period

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53 54	
55	
56	
57	
58	
59	
60	

1 2

_

Table 1. Basic information, admission parameter, discharge parameters, and physical function for all participants

All participants ($n = 146$)
80.5±7.9 (81, 75-86)
24/122
20.5±3.2 (20.5, 18.1–22.6)
83/63
36/65/43/2
93/53
50.3±16.2 (53, 38-63)
132/14
70.3±18.5 (71, 57-82)
76.7±11.4 (79, 72–85)
1/14/131
23/28/62/33
3.8±5.6 (0, 0-5)
7/42/97
3.3±5.3 (0, 0-5)
49.8±6.4 (52, 46–55)
1.01±0.35 (0.99, 0.78–1.2)

Values are shown as mean±SD (median, interquartile range).

Table 2. Comparison of basic information, discharge parameters and physical function between groups

¥7	Non-PHFKP	PHFKP	Unadjusted	Adjusted	
Variable	(<i>n</i> = 103)	(<i>n</i> = 43)	<i>P</i> value	P value	
Basic information					
Age, years	79.1±8.3 (80, 72-86)	82.6±7.1 (83, 78-88)	0.019 ^a	-	
Sex, male/female	20/83	4/39	0.150 ^c	0.187	
Body mass index, kg/m ²	20.3±3.2 (20.4, 18-22.2)	20.9±3.3 (21, 18.1-23.5)	0.283 ^a	0.192	
Type of fracture, femoral neck/intertrochanteric	66/37	17/26	0.010 ^c	0.014	
ASA-PS, 1/2/3/4	27/45/30/1	9/20/13/1	0.845°	0.917	
Analgesic, take/not taken	66/37	27/16	0.883°	0.877	
Admission parameter					
Functional Independent Measure motor score	51.7±15.9 (54, 39-64)	46.9±16.7 (51, 29-62)	0.117 ^b	0.078	
Discharge parameters					
Destination, home/facility	97/6	35/8	0.028 ^c	0.086	
Length of hospital stay, days	66.4±18.4 (66, 53-78)	79.7±14.9 (79, 69-87)	<0.001a	< 0.001	
Functional Independent Measure motor score	77.5±12.2 (80, 73–87)	74.7±8.9 (76, 70–80)	0.141 ^b	0.241	
Functional ambulation categories, 2/3/4	0/7/96	1/7/35	0.058 ^c	0.213	
Pain intensity, numerical rating scale					
Early period	0	3.6±2.1 (3, 2-5)	-	-	
Late period	0	1.3±1.8 (0, 0-2)	-	-	
Physical function at admission					
Manual muscle testing, 2/3/4/5	19/17/42/25	4/11/20/8	0.311°	0.371	
Knee extension range of motion, degrees	2.5±4.1 (0, 0-5)	6.9±7.6 (5, 0-10)	0.012 ^b	0.244	
Physical function at discharge					
Manual muscle testing, 3/4/5	5/26/72	2/16/25	0.342°	0.425	
Knee extension range of motion, degrees	2.2±3.7 (0, 0-5)	5.9±7.3 (5, 0-10)	<0.002 ^b	0.236	
Berg balance scale	50.6±6.1 (52, 47–55)	47.9±6.7 (49, 44–54)	0.034 ^b	0.254	
Maximum walking speed, m/s	1.07±0.39 (1.04, 0.85-1.3)	0.85±0.32 (0.89, 0.59-1.11)	0.001ª	0.006	

PHFKP, post-hip fracture knee pain. The threshold for significance is P < 0.05.

^a Independent t-test. ^b Mann-Whitney U test. ^c Chi-squared test.

Adjusted *P*-value is the *P*-value adjusted for age.

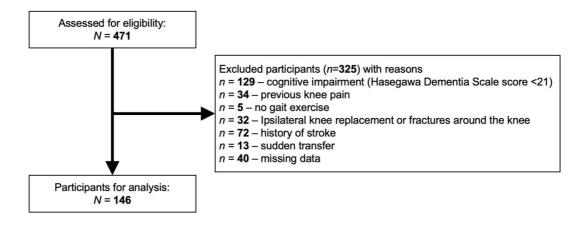
Table 3. Logistic re	egression analys	is for variables on t	the Berg balance sc	ale $(n = 146)$

Independent variables	β	Odds ratio [95%CI]	P value
Age	0.141	1.151 [1.082–1.225]	< 0.001
Type of fracture	1.252	3.496 [1.564–7.815]	0.002
Manual muscle testing	-0.501	0.606 [0.394–0.931]	0.022

The threshold for significance is P < 0.05. β , standardized beta.

to pee peu eu

Variable	β	P value	VIF	R ²	Adjusted R ²	F
Maximum walking speed				0.344	0.325	18.49*
PHFKP	-0.202	0.005	1.061			
Age	-0.438	< 0.001	1.054			
Sex	-0.156	0.025	1.022			
BMI	0.182	0.009	1.029			


TO PER RUIN

Moduli in the second second second second second second second second (x = 140)

PHFKP, post-hip fracture knee pain; VIF, variance inflation factor. β , standardized beta.

The threshold for significance is P < 0.05. ** Significant at P < 0.001 level.

Figure

Figure 1

pant data Flow diagram of participant data