| 1  | Efficacy of vonoprazan, a novel potassium-competitive acid blocker, in patients                                                             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | with proton pump inhibitor-refractory acid reflux                                                                                           |
| 3  |                                                                                                                                             |
| 4  | Junichi Akiyama <sup>1,2</sup> , Hiroko Hosaka <sup>2,3</sup> , Shiko Kuribayashi <sup>2,3</sup> , Shiori Moriyasu <sup>1</sup> , Yuya      |
| 5  | Hisada <sup>1</sup> , Hidetaka Okubo <sup>1</sup> , Kazuhiro Watanabe <sup>1</sup> , Koh Imbe <sup>1</sup> , Naoyoshi Nagata <sup>1</sup> , |
| 6  | Yasushi Kojima <sup>1</sup> , Chizu Yokoi <sup>1</sup> , Naomi Uemura <sup>1</sup> , Yasuyuki Shimoyama <sup>2,3</sup> , Osamu              |
| 7  | Kawamura <sup>2,3</sup> , Masanobu Yamada <sup>2</sup> , Motoyasu Kusano <sup>2,3</sup>                                                     |
| 8  |                                                                                                                                             |
| 9  | <sup>1</sup> Division of Gastroenterology and Hepatology, National Center for Global Health and                                             |
| 10 | Medicine, Tokyo, Japan 162-8655                                                                                                             |
| 11 | <sup>2</sup> Department of Medicine and Molecular Science, Gunma University, Maebashi,                                                      |
| 12 | Gunma, Japan 371-8511                                                                                                                       |
| 13 | <sup>3</sup> Division of Gastroenterology and Hepatology, Integrative Center of Internal Medicine,                                          |
| 14 | Gunma University Hospital, Maebashi, Gunma, Japan 371-8511                                                                                  |
| 15 |                                                                                                                                             |
| 16 | Short title: Vonoprazan in PPI-refractory GERD                                                                                              |
| 17 |                                                                                                                                             |

| 18 | Corresponding Author: Junichi Akiyama, | MD |
|----|----------------------------------------|----|
|----|----------------------------------------|----|

- 19 Division of Gastroenterology and Hepatology
- 20 National Center for Global Health and Medicine
- 21 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655 JAPAN
- 22 Tel: +81-3-3202-7181
- 23 Fax: +81-3-3207-1038
- 24 Email: jakiyama@mac.com

- 26 Keywords
- 27 acid suppression; proton pump inhibitor; potassium-competitive acid blocker;
- 28 impedance-pH monitoring; gastroesophageal reflux disease (GERD)
- 29
- \_\_\_\_
- 30
- 31
- 32
- 33
- 34

#### 35 **1. Abstract**

Background: Vonoprazan (VPZ), a novel potassium-competitive acid blocker, has
been reported to produce a more rapid and profound gastric acid suppression than
standard proton pump inhibitors (PPIs) in healthy volunteers and in patients with reflux
disease.

40 Objective: We evaluated the efficacy of VPZ in patients with PPI-refractory
41 gastroesophageal reflux disease (GERD) who exhibited continued pathological
42 esophageal acid exposure.

43 **Methods:** Despite  $\geq 8$  weeks of appropriate PPI therapy, patients with persistent reflux 44 symptoms and pathological esophageal acid exposure (EAE) times (EAETs  $\geq 4\%$ ), 45 documented by baseline multichannel intraluminal impedance-pH (MII-pH) 46 monitoring between November 2012 and September 2016, were invited to switch to 47 VPZ treatment. After an 8-week-course of once-daily VPZ (20 mg), MII-pH monitoring 48 was repeated to compare gastric acid exposure times (GAETs), EAETs, and other reflux 49 parameters relative to the baseline values. Before each MII-pH study, reflux symptom 50 severities were scored using the Gastrointestinal Symptom Rating Scale; erosive 51 esophagitis and fasting plasma gastrin levels were also assessed.

| 52 | Results: From among the 124 patients undergoing MII-pH monitoring during the 4-            |
|----|--------------------------------------------------------------------------------------------|
| 53 | year study period, 75 had completed at least eight weeks of appropriate PPI therapy,       |
| 54 | including 21 with documented abnormal EAEs. A total of 13 patients (median age, 69         |
| 55 | years; females, 64%) were monitored at baseline (following at least 8 weeks of             |
| 56 | appropriate PPI therapy) and after VPZ therapy. The median GAET associated with            |
| 57 | VPZ treatment (23.8%) was less than that for PPI treatment (41.1%; $p = 0.01$ ),           |
| 58 | including both daytime and night-time measurements. VPZ therapy resulted in better         |
| 59 | median EAET values (4.5%) than did PPI therapy (10.6%) during the 24-h monitoring          |
| 60 | period ( $p = 0.055$ ). EAE normalization was achieved in 46% of VPZ-treated patients      |
| 61 | and was associated with complete gastric acid suppression ( $p = 0.005$ ). After switching |
| 62 | to VPZ, reflux symptoms ( $p < 0.01$ ) and erosive esophagitis ( $p = 0.01$ ) improved.    |
| 63 | Conclusions: In patients with PPI-refractory GERD, VPZ provides more potent gastric        |
| 64 | acid suppression, more effective esophageal acid exposure control, enhanced symptom        |
| 65 | improvement, and better esophagitis healing than PPIs.                                     |
| 66 |                                                                                            |
| 67 |                                                                                            |

#### 69 **2. Introduction**

70 Acid suppression using proton pump inhibitors (PPIs) is the first-line approach for 71 treating gastroesophageal reflux disease (GERD). However, approximately one-third 72 of patients with GERD fail to respond symptomatically, either partially or completely, 73 to PPI treatment and may seek further medical care [1]. The failure of PPI treatment to 74 control reflux symptoms has become one of the most common GERD presentations in 75 gastrointestinal clinical practice, and often poses considerable challenges to clinicians. 76 Moreover, PPI-refractory GERD represents an expensive clinical problem due to the 77 need for repeated utilization of healthcare resources, such as clinic visits, diagnostic tests, and prescription medications [2]. 78 79 PPI-refractory GERD may be caused by either non-reflux- or reflux-related factors. 80 After non-GERD etiologies have been ruled out, reflux monitoring using multichannel 81 intraluminal impedance-pH (MII-pH) monitoring is currently used to evaluate the 82 pathophysiology of PPI failure and to guide further treatment strategies [3, 4]. Such 83 monitoring is useful to quantify reflux events and assess the relationship between 84 reflux episodes and patient symptoms. It also enables further characterization of

85 refractory patients as the studies may reveal PPI failure with ongoing acid reflux;

adequate acid control, but ongoing symptomatic non-acid reflux; or no abnormal levels
of reflux. Approximately 16% of patients who experience persistent GERD symptoms,
despite PPI therapy, have ongoing abnormal acid exposure [4]. For these patients, acidsuppressive drugs that are stronger or longer acting than the currently available
pharmaceuticals may provide improved symptom relief.

91

92 Potassium-competitive acid blockers (P-CABs) belong to a new class of gastric acid 93 suppressive agents that act by inhibiting gastric H<sup>+</sup>, K<sup>+</sup>-adenosine triphosphatase in a 94 K<sup>+</sup>-competitive and reversible manner. Vonoprazan (VPZ) is a novel P-CAB, 95 discovered and developed by Takeda Pharmaceuticals (Osaka, Japan), which was 96 launched in February 2015 for the treatment of acid-related disorders and as an 97 adjunctive therapy in Helicobacter pylori eradication. The safety, tolerability, 98 pharmacokinetics, and pharmacodynamics of single- and repeat-doses of VPZ have 99 been evaluated in Asians and Caucasians [6, 7]. The acid-inhibitory effects of 20-mg 100 VPZ, compared with those of conventional PPIs, were evaluated in a randomized cross-101 over study, and showed more rapid, potent, and sustained suppression of gastric acid 102 secretions in healthy volunteers [8]. These effects appear to be related to VPZ's greater

| 103 | accumulation in, and subsequent slower clearance from, gastric tissue [9]. Moreover,      |
|-----|-------------------------------------------------------------------------------------------|
| 104 | VPZ therapy was reported to be non-inferior to lansoprazole for the healing of erosive    |
| 105 | esophagitis, at 8 weeks; patients also remained in remission for over 52 weeks [10].      |
| 106 | Recent studies have shown the effectiveness of VPZ for treating cases of erosive          |
| 107 | esophagitis that were endoscopically shown to demonstrate incomplete healing when         |
| 108 | treated with PPIs [11-13]. Nonetheless, the clinical utility of VPZ in patients with PPI- |
| 109 | refractory acid reflux, documented using MII-pH monitoring, remains unclear. This         |
| 110 | study aimed to evaluate the efficacy of VPZ in patients with refractory GERD who          |
| 111 | continue to exhibit pathological esophageal acid exposure (EAE), despite conventional     |
| 112 | PPI treatment.                                                                            |
| 113 |                                                                                           |
| 114 |                                                                                           |
| 115 | 3.0 Methods                                                                               |
| 116 | 3.1 Patients                                                                              |
| 117 | Patients were retrospectively selected from among those with persistent symptoms,         |
| 118 | despite anti-secretory therapy, who had been referred for ambulatory MII-pH               |
| 119 | monitoring between November 2012 and September 2016. Patients were selected if            |

| 120 | they had (1) persistent GERD symptoms despite at least eight weeks of appropriate PPI    |
|-----|------------------------------------------------------------------------------------------|
| 121 | therapy approved in Japan (either a heartburn or regurgitation sub-score $\geq 3$ in the |
| 122 | Gastrointestinal Symptom Rating Scale [GSRS]), (2) pathological esophageal acid          |
| 123 | exposure (esophageal pH < 4 for $\geq$ 4% of the time), documented using MII-pH, while   |
| 124 | undergoing PPI therapy, and (3) been re-evaluated, using MII-pH monitoring, after        |
| 125 | eight weeks of VPZ (20 mg) therapy. Patients with achalasia, eosinophilic esophagitis,   |
| 126 | esophageal strictures, or past histories of upper abdominal surgeries were excluded.     |
| 127 | Appropriate PPI therapy, in this study, constituted once-daily omeprazole (20 mg),       |
| 128 | lansoprazole (30 mg), rabeprazole (10 mg or 20 mg), or esomeprazole (20 mg),             |
| 129 | according to studies that have assessed the relative potency of PPIs based on erosive    |
| 130 | esophagitis healing and gastric acid suppression [14-16].                                |
| 131 | The study protocol was approved by the Ethics Committee of the National Center for       |
| 132 | Global Health and Medicine (Tokyo, Japan). The study was conducted in accordance         |
| 133 | with the principles of the Declaration of Helsinki and written informed consent was      |
| 134 | obtained from all individuals before performing MII-pH monitoring.                       |
| 135 |                                                                                          |

# 136 3.2 MII-pH Monitoring

| 137 | After an overnight fast, an MII-pH catheter was inserted transnasally and placed to     |
|-----|-----------------------------------------------------------------------------------------|
| 138 | allow monitoring of intraluminal impedance changes at 3, 5, 7, 9, 15, and 17 cm above   |
| 139 | the manometrically located proximal border of the lower esophageal sphincter (LES).     |
| 140 | In addition, pH was monitored 5 cm above and 10 cm below the proximal border of the     |
| 141 | LES. The catheter was connected to a portable data logger (Sleuth, Sandhill Scientific, |
| 142 | Highlands Ranch, CO, USA). During data acquisition, patients consumed standardized      |
| 143 | meals (total calories, 1800 kcal; carbohydrates, 285 g; protein, 70 g; fat, 45 g) and   |
| 144 | recorded symptoms, meal times, and posture changes using event markers on the data      |
| 145 | logger. pH-impedance tracings were analyzed using a dedicated software program          |
| 146 | (BioView Analysis, Sandhill Scientific, Highlands Ranch, CO, USA), coupled with a       |
| 147 | 2-min visual analysis to ensure accurate automated capturing of reflux events.          |
| 148 | Esophageal acid exposure was calculated as the percent of time that the esophageal pH   |
| 149 | was <4 (esophageal acid exposure time, EAET), and gastric acidity was expressed as      |
| 150 | the percent of time that the gastric pH was <4 (gastric acid exposure time, GAET). An   |
| 151 | EAET of $\geq$ 4.0% was considered abnormal. Additionally, complete gastric acid        |
| 152 | suppression was defined as a GAET of <4%, which is the level of acid suppression        |

required to adequately control EAET and effectively promote healing of erosiveesophagitis [17].

The number of total reflux episodes (liquid and mixed reflux detected in at least the two most distal impedance sites) was computed. The bolus clearance time is the percentage of time that the refluxate was in contact with the distal esophageal impedance electrodes, located 5 cm above the LES.

159 We defined the nocturnal period as the period between 22:00 h and 06:00 h, regardless

160 of whether the patient was recumbent; the remaining time was designated as the 161 daytime period. Nocturnal gastric acid breakthrough was defined as a drop in the

162 intragastric pH to <4 for at least 1 h during the nocturnal period.

When MII-pH testing was performed while patients were on-therapy, they continued to take their medications for at least eight weeks. PPIs were taken before breakfast and, in the case of split-dosing, before dinner. For patients with pathological EAETs during the initial appropriate PPI therapy, VPZ (20 mg) was administered after breakfast for eight weeks; patients were invited to be re-evaluated, using MII-pH testing, while taking VPZ. To ensure medication compliance during the pH study, patients were asked if they had taken their medication on each of the previous seven days. If not, the pH study was rescheduled for another time. No other antacids or anti-secretory drugs weregiven during the MII-pH study period.

172

```
173 3.3 Procedures
```

174 All patients were tested for the presence of anti-H. pylori IgG antibodies and the 175 presence of a cytochrome P450 (CYP) 2C19 genotype. Fasting serum gastrin levels 176 were checked on the MII-pH testing days. Patient symptoms were assessed using the 177 GSRS, which is a disease-specific instrument composed of 15 items, in 5 symptom 178 clusters (reflux, abdominal pain, ingestion, diarrhea, and constipation) [18]. The GSRS 179 has a 7-point, graded, Likert-type scale, where 1 represents the absence of troublesome 180 symptoms and 7 represents the presence of very troublesome symptoms. The reliability 181 and validity of the GSRS are well-documented, and normal values for a general 182 population are available [19]. 183 Esophagogastroduodenoscopy was performed, using a high-definition endoscope, to

184 confirm the presence or absence of erosive esophagitis, large (>3 cm) hiatal hernias

185 [20], and columnar-lined esophagus (>1 cm) [21].

#### 187 **3.4** *Data analysis*

188 Continuous data are expressed as means  $\pm$  standard deviations or medians (range or 189 interquartile range, IQR), as appropriate. Categorical data are expressed as numbers 190 (percentages) of patients with a specified condition or clinical variable. Comparisons 191 between two groups were performed using the Mann-Whitney or Wilcoxon signed-rank 192 tests. Categorical data were compared using the Fisher's exact or Chi-squared tests, as 193 appropriate. Statistical analyses were performed using SPSS 24.0.0 software for 194 Macintosh (IBM, Armonk, NY, USA). All tests were two-tailed and a p-value  $\leq 0.05$ 195 was considered statistically significant in all analysis.

196

## 197 **3.5** Sample size calculation

Based on a previous study assessing the gastric acid suppressive effects of esomeprazole and VPZ in 10 healthy adults, the Day 7 gastric pH was >4 for  $61.2 \pm$ 17.1% of the time in the esomeprazole group and for  $85.8 \pm 14.7\%$  of the time in the VPZ group [22]. Using a two-tailed alpha of 0.05 and a 95% power, the required sample size was estimated to be 8 patients.

## 205 **4. Results**

## 206 **4.1** *Demographics and clinical characteristics*

207 Figure 1 shows the patient selection process. Of the 124 patients who underwent MII-208 pH monitoring during the 4-year study period, 75 had taken at least eight weeks of 209 appropriate PPI therapy. Of those, 21 had documented, abnormal EAEs and eight 210 declined enrollment. Thus, a total of 13 patients finally agreed to switch to VPZ and to 211 be re-evaluated with MII-pH monitoring after eight weeks of the modified therapy. The 212 median lag time between the two MII-pH studies (performed while each patient was 213 undergoing PPI therapy and after VPZ therapy) was 277 days (IQR, 116-844); none of 214 the patients underwent anti-reflux surgery and all were clinically managed using 215 additional medications, such as antacids or alginates. The baseline characteristics of 216 these patients are shown in Table 1. Most of the patients (median age, 69 years) were 217 non-obese females. Five patients (38%) had scleroderma, and all had undergone at least eight weeks of appropriate PPI therapy. None of the patients had evidence of current 218 219 H. pylori infections and their medical records did not suggest a history of eradication 220 therapy. Further, their CYP 2C19 genotypes were identified as being homozygous

| 221 | extensive metabolizers (3, 23%), heterozygous extensive metabolizers (8, 62%), or          |
|-----|--------------------------------------------------------------------------------------------|
| 222 | poor metabolizers (2, 15%).                                                                |
| 223 | Esophagogastroduodenoscopy during PPI therapy revealed erosive esophagitis in eight        |
| 224 | patients (62%), four (31%) had large hiatal hernias, and four (31%) had short-segment      |
| 225 | Barrett's esophagus.                                                                       |
| 226 | Symptom severity, using the GSRS questionnaire while on appropriate PPI therapy,           |
| 227 | included a median heartburn sub-score of 4.0 and a median regurgitation sub-score of       |
| 228 | 3.0.                                                                                       |
| 229 |                                                                                            |
| 230 | 4.2 Gastric acid suppression (Table 2) (Fig. 2)                                            |
| 231 | During the 24-h monitoring period, the median GAET was significantly lower when            |
| 232 | patients were being treated with VPZ than when they were treated with PPIs ( $p = 0.01$ ), |
| 233 | which was reflected in both the daytime $(p = 0.046)$ and night-time $(p = 0.01)$          |
| 234 | observations- Similarly, the median gastric pH was significantly higher during VPZ         |

235 treatment, during all monitored periods, than during PPI treatment.

| 236 | Moreover, complete gastric acid suppression was achieved in 38% of patients on VPZ,      |
|-----|------------------------------------------------------------------------------------------|
| 237 | compared with 0% of patients on PPIs. Nocturnal gastric acid breakthrough was less       |
| 238 | common in patients treated with VPZ than when treated with PPIs (85% vs. 54%).           |
| 239 |                                                                                          |
| 240 | 4.3 EAE and reflux episodes                                                              |
| 241 | The median EAET was lower for patients treated with VPZ than for patients treated        |
| 242 | with PPIs during the 24-h monitoring period ( $p = 0.055$ ), and EAET normalization was  |
| 243 | achieved in 46% of patients treated with VPZ (Table 2). In addition, EAET                |
| 244 | normalization was observed in all patients with complete gastric acid suppression, but   |
| 245 | in only 13% of those without ( $p = 0.005$ ) (Fig. 3). Although the median total numbers |
| 246 | of reflux and non-acid reflux episodes were similar between PPI and VPZ treatments       |
| 247 | (p = 0.94), the median number of acid reflux episodes was significantly lower during     |
| 248 | VPZ treatment than during PPI treatment ( $p = 0.03$ ). Similarly, the bolus clearance   |
| 249 | times were similar when the patients were treated with either PPI or VPZ ( $p = 0.89$ )  |
| 250 | (Table 2).                                                                               |
| 251 |                                                                                          |

**4.4** Symptoms, endoscopic findings, and fasting serum gastrin levels (Table 3)

| 253 | Reflux symptoms, such as heartburn and regurgitation, improved markedly after the      |
|-----|----------------------------------------------------------------------------------------|
| 254 | patients switched to VPZ from PPI treatment (heartburn, p = 0.003; regurgitation, p =  |
| 255 | 0.005; reflux dimension scores, $p = 0.001$ ). However, the non-reflux symptoms,       |
| 256 | abdominal pain, indigestion, diarrhea, and constipation, did not change between        |
| 257 | treatments.                                                                            |
| 258 | Endoscopically, erosive esophagitis was present in 62% of the patients treated with    |
| 259 | PPIs but healed in all except one patient (8%) treated with VPZ ( $p = 0.01$ ).        |
| 260 | The levels of fasting plasma gastrin were higher during VPZ treatment than during PPI  |
| 261 | treatment ( $p < 0.01$ ).                                                              |
| 262 |                                                                                        |
| 263 |                                                                                        |
| 264 | 5. Discussion/Conclusion                                                               |
| 265 | According to the current guidelines, patients with refractory GERD symptoms and who    |
| 266 | have negative endoscopy evaluations should undergo ambulatory reflux monitoring to     |
| 267 | explore the underlying mechanisms of their symptoms [3, 4]. When testing patients      |
| 268 | currently being treated with PPIs, MII-pH monitoring is preferred over pH monitoring   |
| 269 | as it enables the characterization of refractory patients into three types: those with |

| 270 | persistent acid reflux, persistent non-acid reflux, or no evidence of reflux. Patients with |
|-----|---------------------------------------------------------------------------------------------|
| 271 | ongoing acid reflux, despite PPI treatment, require therapy escalation to control acid      |
| 272 | reflux. Recent studies have suggested that abnormal EAETs (i.e., $\geq$ 4.0%) offer value   |
| 273 | for predicting symptomatic responses to medical or surgical therapies [23, 24]. The         |
| 274 | prevalence of abnormal EAETs was reported to be 16% in patients with typical GERD           |
| 275 | symptoms being treated with PPIs [5], increasing to as high as 40–62% in patients with      |
| 276 | Barrett's esophagus and being treated with PPIs [25]. This is the first study to evaluate   |
| 277 | the efficacy of VPZ in patients with PPI-refractory GERD and abnormal EAEs. The             |
| 278 | study demonstrates that VPZ (20 mg) provides more potent gastric acid suppression           |
| 279 | than do conventional PPIs and is more effective at controlling EAE, improving reflux        |
| 280 | symptoms, and healing erosive esophagitis.                                                  |
| 281 |                                                                                             |
| 282 | Several studies have assessed the effects of VPZ in patients with PPI-refractory GERD.      |
| 283 | For example, Hoshino et al. evaluated 24 patients with PPI-resistant reflux esophagitis     |
| 284 | and showed that 21 (87.5%) achieved endoscopic healing following VPZ (20 mg)                |
| 285 | therapy [11]. Okuyama et al. included 54 patients with PPI-refractory GERD symptoms         |
| 286 | and showed symptomatic responses to VPZ (20 mg) treatment in 28 (51.9%) [26]; co-           |

| 287 | existing functional dyspepsia, sleep disturbances, and alcohol abstinence were             |
|-----|--------------------------------------------------------------------------------------------|
| 288 | associated with the patients not demonstrating responsiveness to VPZ treatment. In         |
| 289 | addition, two studies assessed the effects of VPZ using MII-pH monitoring. Iwakiri et      |
| 290 | al. evaluated the acid-inhibitory effects of 20- $(n = 9)$ and 40-mg $(n = 10)$ VPZ doses  |
| 291 | in patients with PPI-resistant erosive esophagitis [12]. After 2 weeks of therapy, both    |
| 292 | groups showed significant increases in the percentages (mean) of time that the gastric     |
| 293 | pH was ≥4 (20 mg: pre-VPZ, 73.2%; post-VPZ, 96.5%; 40 mg: pre-VPZ, 70.0%; post-            |
| 294 | VPZ, 100.0%); healing of esophagitis after eight weeks of therapy was seen in 8 of 12      |
| 295 | patients (66.7%) who completed the study and were diagnosed with esophagitis prior         |
| 296 | to therapy. Yamashita et al. assessed the effect of four weeks of VPZ (20 mg) treatment    |
| 297 | in eight patients with erosive esophagitis refractory to PPI treatment [13]. A significant |
| 298 | increase was observed in the median gastric pH >4 holding time ratio (HTR) from            |
| 299 | 26.5% to 78.0% (p = 0.029) and a reduction of the median esophageal pH <4 HTR was          |
| 300 | also observed, from 7.6% to 1.1% ( $p = 0.44$ ); 87.5% of the patients achieved            |
| 301 | esophagitis healing. These results, combined with those from the present study, may        |
| 302 | indicate a potential role for VPZ in the treatment of PPI-refractory GERD, especially      |
| 303 | in patients with persistent acid reflux documented by impedance-pH monitoring or in        |

304 those with esophagogastroduodenoscopy-documented erosive esophagitis during PPI305 therapy.

306

307 Although VPZ was reported to produce more rapid healing than PPIs, Ashida et al. 308 reported that the proportions of patients demonstrating erosive esophagitis healing 309 following VPZ (20 mg) treatment increased over time: 90.7% (week 2), 96.6% (week 310 4) and 99.0% (week 8) for all patients, and 88.0% (week 2), 96.0% (week 4) and 98.7% 311 (week 8) for patients with severe reflux esophagitis [10]. Since we studied PPI-312 refractory patients, we assumed that there would be a larger difference between 313 outcomes at weeks 4 and 8; hence, we performed EGD and MII-pH monitoring after 314 eight weeks of VPZ therapy. As mentioned previously, post-VPZ endoscopic healing 315 rates in PPI-resistant erosive esophagitis patients vary between studies; e.g., 87.5% (n 316 = 24, week 4) in a study by Hoshino [11], 66.7% (n = 12, week 8) in a study by Iwakiri 317 [12], and 87.5% (n = 8, week 4) in one by Yamashita [13]. In our study, one patient did 318 not achieve endoscopic esophagitis healing, demonstrating scleroderma and a large 319 hiatal hernia (EAET, 27.3%), despite eight weeks of VPZ treatment.

| 321 | Scleroderma patients were previously shown to have greater acid exposure than               |
|-----|---------------------------------------------------------------------------------------------|
| 322 | controls, despite high-dose-PPI therapy, in a case-controlled, retrospective study that     |
| 323 | included 38 scleroderma and 38 non-scleroderma (control) patients matched for PPI           |
| 324 | formulation and dose, hiatal hernia size, age, and sex. The study demonstrated that         |
| 325 | 61% of the scleroderma patients and 18% of the control patients had total EAETs $\geq$ 4.5% |
| 326 | [27]. In the present study, we failed to find any demographic predictors, including the     |
| 327 | presence of scleroderma (data not shown), of EAET normalization by VPZ therapy.             |
| 328 | However, this might be due to the small sample size; further studies with larger patient    |
| 329 | groups are warranted to better define the predictors of improved outcomes associated        |
| 330 | with VPZ therapy.                                                                           |
| 331 |                                                                                             |
| 332 | VPZ overcomes many weaknesses of traditional PPI therapies (short half-lives, acid          |
| 333 | lability requiring acid protection, inhibition of only activated proton pumps, requiring    |
| 334 | 3-5 doses before achieving the full effect, and clinical variability related to CYP 2C19    |
| 335 | polymorphisms), resulting in a drug that is more potent and longer acting than              |
|     |                                                                                             |
| 336 | conventional PPIs [27]. The relative PPI potency, defined as omeprazole equivalents,        |

| 338 | In one study that included 48 healthy individuals from the UK, the mean intragastric       |
|-----|--------------------------------------------------------------------------------------------|
| 339 | pH >4 HTRs after 7 days of 10-, 20-, 30-, and 40-mg doses of VPZ were reported to          |
| 340 | be 60.2%, 85.2%, 90.1%, and 93.2%, respectively [7]. Extrapolating those results to        |
| 341 | the pH >4 HTR for PPIs suggests that 10 mg of VPZ, once daily, is approximately            |
| 342 | equivalent to 60 mg of omeprazole and that 20 mg of VPZ is approximately equivalent        |
| 343 | to 60 mg of omeprazole, twice daily, or 40 mg of esomeprazole, twice daily [15].           |
| 344 |                                                                                            |
| 345 | The safety profile of VPZ is a matter of concern because VPZ exerts more profound          |
| 346 | gastric acid inhibition than PPIs. However, no serious, drug-related, treatment            |
| 347 | emergent adverse events were identified during clinical development and the clinical       |
| 348 | safety profile of VPZ has been reported to be comparable to those of other PPIs [8, 10].   |
| 349 | In the present study, fasting plasma gastrin levels were elevated to >4-fold of the upper  |
| 350 | limit of normal. A 52-week esophageal healing maintenance study showed progressive         |
| 351 | increases in serum gastrin levels, rising from $318 \pm 336$ pg/mL after eight weeks of    |
| 352 | treatment to 778 $\pm$ 679 pg/mL after 52 weeks of VPZ (20 mg) treatment. Treatment        |
| 353 | with 10-mg doses resulted in a rise from 291 $\pm$ 220 pg/mL to 514 $\pm$ 436 pg/mL, at    |
| 354 | similar time points. At both treatment doses, there were no significant effects on gastric |

| 355 | neuroendocrine cells at 24 or 52 weeks of therapy, nor were changes in pepsinogen            |
|-----|----------------------------------------------------------------------------------------------|
| 356 | levels observed. A long-term VPZ safety trial is currently underway to                       |
| 357 | histopathologically evaluate the gastric mucosa for evidence of neoplastic alterations       |
| 358 | of the gastric mucosal epithelial cells, as well as other adverse events [28].               |
| 359 |                                                                                              |
| 360 | The limitations of this study include its small sample size, lack of a control group, and    |
| 361 | the retrospective identification of patients; the data were collected prospectively. As      |
| 362 | described previously [4], only a small proportion of patients experiencing persistent        |
| 363 | GERD symptoms, despite PPI therapy, have ongoing abnormal acid exposure. Thus,               |
| 364 | one of the strengths of this study was the actual measurement of gastric acid                |
| 365 | suppression, by MII-pH monitoring, over 24-hour period both before and after VPZ             |
| 366 | therapy in this number of patients. The study also allowed precise identification of         |
| 367 | patients with ongoing reflux and requiring more aggressive acid suppression from             |
| 368 | among all patients with disease refractory to PPI therapy. The use of a standardized         |
| 369 | questionnaire to evaluate symptoms was also a strength of the study. Further, despite        |
| 370 | the study's limitations, our findings support the clinical utility of VPZ as a novel gastric |
| 371 | acid suppressive medication in selected patients with PPI-refractory GERD.                   |
|     | 22                                                                                           |

In conclusion, in patients with PPI-refractory GERD and continued pathological
esophageal acid exposure, VPZ (20 mg) provides more potent gastric acid suppression
and is more effective than PPIs for controlling EAE, improving symptoms, and healing
esophagitis.

#### 377 **6. Statements**

## 378 6.1 Acknowledgements

379 The authors would like to thank Ms. Maiko Tanaka and Ms. Junko Ishihara for their380 assistance with the MII-pH data collection.

381

## 382 6.2 Statement of Ethics

The study was conducted in accordance with the principles of the Declaration of Helsinki and written informed consent was obtained from all individuals before performing MII-pH monitoring. The study protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine (Tokyo, Japan).

387

#### 388 6.3 Disclosure Statement

389 Junichi Akiyama, Naomi Uemura, Hiroko Hosaka, Shiko Kuribayashi, and Motoyasu

- 390 Kusano have served as speakers for Takeda Pharmaceutical Company and Otsuka
- 391 Pharmaceutical Company. Motoyasu Kusano has received research funding from
- 392 Takeda Pharmaceutical Company.
- 393

## **6.4 Funding Sources**

395 There was no grant support for the work performed in conjunction with this manuscript.396

## **397 6.5 Author Contributions**

Junichi Akiyama, Shiori Moriyasu, Yuya Hisada, Hidetaka Okubo, Kazuhiro Watanabe,
Koh Imbe, Naoyoshi Nagata, Yasushi Kojima, Chizu Yokoi, and Naomi Uemura
collected data. Junichi Akiyama, Hiroko Hosaka, Shiko Kuribayashi, Yasuyuki
Shimoyama, Osamu Kawamura, Masanobu Yamada, and Motoyasu Kusano analyzed
the data. Junichi Akiyama, Hiroko Hosaka, Shiko Kuribayashi, and Motoyasu Kusano
designed the research study and wrote the paper.
All authors reviewed and approved the final version of the article, including the

405 authorship list.

# **9. References**

| 407 | 1. | Fass R, Sifrim D. Management of heartburn not responding to proton pump         |
|-----|----|---------------------------------------------------------------------------------|
| 408 |    | inhibitors. Gut. 2009 Feb;58(2):295-309.                                        |
| 409 | 2. | Gerson LB, Kahrilas PJ, Fass R. Insights into gastroesophageal reflux disease-  |
| 410 |    | associated dyspeptic symptoms. Clin Gastroenterol Hepatol. 2011                 |
| 411 |    | Oct;9(10):824-33.                                                               |
| 412 | 3. | Katz PO, Gerson LB, Vela MF. Guidelines for the diagnosis and management of     |
| 413 |    | gastroesophageal reflux disease. Am J Gastroenterol. 2013 Mar;108(3):308-28.    |
| 414 | 4. | Iwakiri K, Kinoshita Y, Habu Y, Oshima T, Manabe N, Fujiwara Y, et al.          |
| 415 |    | Evidence-based clinical practice guidelines for gastroesophageal reflux disease |
| 416 |    | 2015. J Gastroenterol. 2016 Aug;51(8):751-67.                                   |
| 417 | 5. | Scarpellini E, Ang D, Pauwels A, De Santis A, Vanuytsel T, Tack J. Management   |
| 418 |    | of refractory typical GERD symptoms. Nat Rev Gastroenterol Hepatol. 2016        |
| 419 |    | May;13(5):281-94.                                                               |
| 420 | 6. | Sakurai Y, Nishimura A, Kennedy G, Hibberd M, Jenkins R, Okamoto H,             |
| 421 |    | Yoneyama T, Jenkins H, Ashida K, Irie S, Täubel J. Safety, tolerability,        |
| 422 |    | pharmacokinetics, and pharmacodynamics of single rising TAK-438                 |

423 (vonoprazan) doses in healthy male Japanese/non-Japanese subjects. Clin Transl
424 Gastroenterol. 2015 Jun;6:e94.

- 425 7. Jenkins H, Sakurai Y, Nishimura A, Okamoto H, Hibberd M, Jenkins R, 426 Yoneyama T, Ashida K, Ogama Y, Warrington S. Randomised clinical trial: 427 Safety, tolerability, pharmacokinetics and pharmacodynamics of repeated doses 428 of TAK-438 (vonoprazan), a novel potassium-competitive acid blocker, in 429 healthy male subjects. Aliment Pharmacol Ther. 2015 Apr;41(7):636-48. 430 8. Sakurai Y, Mori Y, Okamoto H, Nishimura A, Komura E, Araki T, Shiramoto M. 431 Acid-inhibitory effects of vonoprazan 20 mg compared with esomeprazole 20 432 mg or rabeprazole 10 mg in healthy adult male subjects-a randomised open-label 433 cross-over study. Aliment Pharmacol Ther. 2015 Sep;42(6):719-30. 434 9. Matsukawa J, Hori Y, Nishida H, Kajino M, Inatomi N. A comparative study on 435 the modes of action of TAK-438, a novel potassium-competitive acid blocker, 436 and lansoprazole in primary cultured rabbit gastric glands. Biochem Pharmacol. 437 2011 May;81(9):1145-51. 438 Ashida K, Sakurai Y, Hori T, Kudou K, Nishimura A, Hiramatsu N, Umegaki E, 10.
- 439 Iwakiri K. Randomised clinical trial: Vonoprazan, a novel potassium-

| 440 |     | competitive acid blocker, vs. lansoprazole for the healing of erosive esophagitis. |
|-----|-----|------------------------------------------------------------------------------------|
| 441 |     | Aliment Pharmacol Ther. 2016 Jan;43(2):240-51.                                     |
| 442 | 11. | Hoshino S, Kawami N, Takenouchi N, Umezawa M, Hanada Y, Hoshikawa Y,               |
| 443 |     | Kawagoe T, Sano H, Hoshihara Y, Nomura T, Iwakiri K. Efficacy of vonoprazan        |
| 444 |     | for proton pump inhibitor-resistant reflux esophagitis. Digestion.                 |
| 445 |     | 2017;95(2):156-61.                                                                 |
| 446 | 12. | Iwakiri K, Sakurai Y, Shiino M, Okamoto H, Kudou K, Nishimura A, Hiramatsu         |
| 447 |     | N, Umegaki E, Ashida K. A randomized, double-blind study to evaluate the acid-     |
| 448 |     | inhibitory effect of vonoprazan (20 mg and 40 mg) in patients with proton-pump     |
| 449 |     | inhibitor-resistant erosive esophagitis. Therap Adv Gastroenterol. 2017            |
| 450 |     | Jun;10(6): 439-51.                                                                 |
| 451 | 13. | Yamashita H, Kanamori A, Kano C, Hashimura H, Matsumoto K, Tsujimae M,             |
| 452 |     | Yoshizaki T, Momose K, Obata D, Eguchi T, Fujita M, Okada A. The effects of        |
| 453 |     | switching to vonoprazan, a novel potassium-competitive acid blocker, on gastric    |
| 454 |     | acidity and reflux patterns in patients with erosive esophagitis refractory to     |
| 455 |     | proton pump inhibitors. Digestion. 2017;96(1):52-9.                                |

| 456 | 14. | Caro JJ, Salas M, Ward A. Healing and relapse rates in gastroesophageal reflux |
|-----|-----|--------------------------------------------------------------------------------|
| 457 |     | disease treated with the new proton-pump inhibitors lansoprazole, rabeprazole, |
| 458 |     | and pantoprazole compared with omeprazole, ranitidine, and placebo: evidence   |
| 459 |     | from randomized clinical trials. Clin Ther. 2001 Jul;23(7):998-1017.           |
| 460 | 15. | Graham DY, Tansel A. Interchangeable use of proton pump inhibitors based on    |
| 461 |     | relative potency. Clin Gastroenterol Hepatol. 2018 Jun;16(6):800-8.            |
| 462 | 16. | Kirchheiner J, Glatt S, Fuhr U, Klotz U, Meineke I, Seufferlein T, Brockmöller |
| 463 |     | J. Relative potency of proton-pump inhibitors-comparison of effects on         |
| 464 |     | intragastric pH. Eur J Clin Pharmacol. 2009 Jan;65(1):19-31.                   |
| 465 | 17. | Howden CW, Burget DW, Hunt RH. Appropriate acid suppression for optimal        |
| 466 |     | healing of duodenal ulcer and gastroesophageal reflux disease. Scand J         |
| 467 |     | Gastroenterol Suppl. 1994; 201:79-82.                                          |
| 468 | 18. | Dimenas E, Glise H, Hallerbäck B, Hernqvist H, Svedlund J, Wiklund I. Well-    |
| 469 |     | being and gastrointestinal symptoms among patients referred to endoscopy       |
| 470 |     | owing to suspected duodenal ulcer. Scand J Gastroenterol. 1995                 |
| 471 |     | Nov;30(11):1046-52.                                                            |

| 472 | 19. | Dimenas E, Carlsson G, Glise H, Israelsson B, Wiklund I. Relevance of norm          |
|-----|-----|-------------------------------------------------------------------------------------|
| 473 |     | values as part of the documentation of quality of life instruments for use in upper |
| 474 |     | gastrointestinal disease. Scand J Gastroenterol Suppl. 1996;221:8-13.               |
| 475 | 20  | Makuuchi H. Clinical study of sliding esophageal hernia-with special reference      |
| 476 |     | to the diagnostic criteria and classification of the severity of the disease. Nihon |
| 477 |     | Shokakibyo Gakkai Zasshi. 1982 Aug;79(8):1557–67 (in Japanese, with English         |
| 478 |     | abstract).                                                                          |
| 479 | 21  | Sharma P, Dent J, Armstrong D, Bergman JJ, Gossner L, Hoshihara Y, Jankowski        |
| 480 |     | JA, Junghard O, Lundell L, Tytgat GN, Vieth M. The development and                  |
| 481 |     | validation of an endoscopic grading system for Barrett's esophagus: the Prague      |
| 482 |     | C & M criteria. Gastroenterology. 2006 Nov;131(5):1392-9.                           |
| 483 | 22. | Sakurai Y, Mori Y, Okamoto H, Nishimura A, Komura E, Araki T, Shiramoto M.          |
| 484 |     | Acid-inhibitory effects of vonoprazan 20 mg compared with esomeprazole 20           |
| 485 |     | mg or rabeprazole 10 mg in healthy adult male subjectsa randomised open-            |
| 486 |     | label cross-over study. Aliment Pharmacol Ther. 2015 Sep;42(6):719-30.              |

| 487 | 23. | Patel A, Sayuk GS, Gyawali CP. Acid-based parameters on pH-impedance        |
|-----|-----|-----------------------------------------------------------------------------|
| 488 |     | testing predict symptom improvement with medical management better than     |
| 489 |     | impedance parameters. Am J Gastroenterol. 2014 Jun;109(6):836-44.           |
| 490 | 24. | Patel A, Sayuk GS, Gyawali CP. Parameters on esophageal pH-impedance        |
| 491 |     | monitoring that predict outcomes of patients with gastroesophageal reflux   |
| 492 |     | disease. Clin Gastroenterol Hepatol. 2015 May;13(5):884-91.                 |
| 493 | 25. | Gerson LB, Mitra S, Bleker WF, Yeung P. Control of intra-esophageal pH in   |
| 494 |     | patients with Barrett's esophagus on omeprazole-sodium bicarbonate therapy. |
| 495 |     | Aliment Pharmacol Ther. 2012 Apr;35(7):803-9.                               |
| 496 | 26. | Okuyama M, Nakahara K, Iwakura N, Hasegawa T, Oyama M, Inoue A, Ishizu      |
| 497 |     | H, Satoh H, Fujiwara Y. Factors associated with potassium-competitive acid  |
| 498 |     | blocker non-response in patients with proton pump inhibitor-refractory      |
| 499 |     | gastroesophageal reflux disease. Digestion. 2017;95(4):281-7.               |
| 500 | 27. | Stern EK, Carlson DA, Falmagne S, Hoffmann AD, Carns M, Pandolfino JE,      |
| 501 |     | Hinchcliff M, Brenner DM. Abnormal esophageal acid exposure on high-dose    |
| 502 |     | proton pump inhibitor therapy is common in systemic sclerosis patients.     |
| 503 |     | Neurogastroenterol Motil. 2018 Feb;30(2):e13247.                            |

| 504 | 28. | Echizen H. The first-in-class potassium-competitive acid blocker, vonoprazan |
|-----|-----|------------------------------------------------------------------------------|
| 505 |     | fumarate: Pharmacokinetic and pharmacodynamic considerations. Clin           |
| 506 |     | Pharmacokinet. 2016 Apr;55(4):409-18.                                        |
| 507 | 29. | Uemura N, Kinoshita Y, Haruma K, Yao T, Kushima R, Kanoo T. Rationale and    |
| 508 |     | design of the VISION study: A randomized, open-label study to evaluate the   |
| 509 |     | long-term safety of vonoprazan as maintenance treatment in patients with     |
| 510 |     | erosive esophagitis. Clin Exp Gastroenterol. 2018 Jan;11:51-6.               |

#### 511 Figure Legends

512 Fig. 1. Study flowchart. Of the 124 patients undergoing multichannel intraluminal 513 impedance-pH (MII-pH) monitoring during the almost 4-year study period, 75 had 514 undergone at least 8 weeks of appropriate proton pump inhibitor (PPI) therapy. Of those, 515 abnormal esophageal acid exposure was documented in 21 patients; 8 patients declined 516 enrollment. Thus, a total of 13 patients agreed to switch to vonoprazan therapy and to 517 be re-evaluated after 8 weeks of therapy. 518 519 Fig. 2. Representative tracings of the multichannel intraluminal impedance-pH (MII-520 pH) monitoring study (a) upon conclusion of 20-mg rabeprazole therapy (baseline) 521 (EAET = 19.7%, GAET = 36.5%) and (b) after 8 weeks of 20-mg vonoprazan therapy, 522 showing complete gastric acid suppression (EAET = 0%, GAET = 0%) 523 EAET, Esophageal acid exposure time; GAET, gastric acid exposure time 524

Fig. 3. Association between gastric acid suppression and esophageal acid exposure
during vonoprazan therapy. Normalization of esophageal acid exposure time was

- 527 achieved in 46% of patients treated with vonoprazan, and it was generally associated
- 528 with gastric acid suppression sufficient for esophagitis healing (GAET <4%).
- 529 PPI, proton pump inhibitor; GERD, gastroesophageal reflux disease; EAE, esophageal
- 530 acid exposure; GAET, gastric acid exposure time

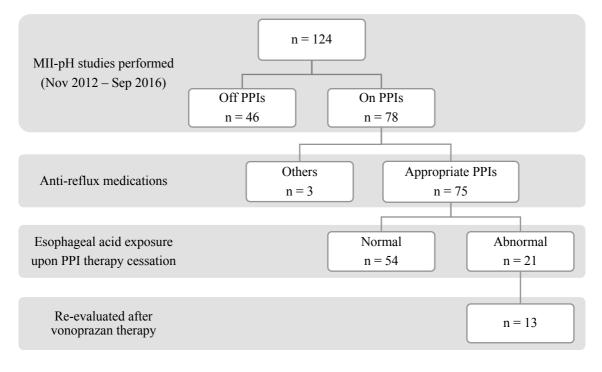
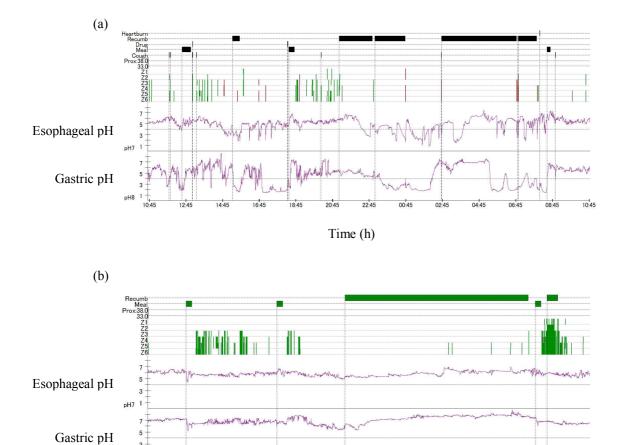




Figure 1





02:45

04:45

06:45

08:45

10:45

111

18:45

Figure 2

3 pH8 1 10:45

12:45

14:45

16:45

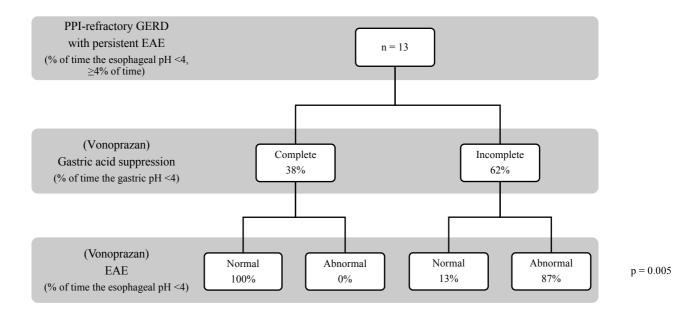



Fig. 3

| Variables                                                        | n = 13           |
|------------------------------------------------------------------|------------------|
| Age, years, median (range)                                       | 69.0 (47-82)     |
| Sex (Female), n (%)                                              | 9 (64%)          |
| Body mass index, median (range)                                  | 20.3 (16.4–24.8) |
| Comorbidity: scleroderma, n (%)                                  | 5 (38%)          |
| Proton pump inhibitors, n (%)                                    |                  |
| Omeprazole, 20 mg                                                | 2 (15%)          |
| Lansoprazole, 30 mg                                              | 4 (31%)          |
| Esomeprazole, 20 mg                                              | 2 (15%)          |
| Rabeprazole, 20 mg                                               | 5 (38%) #        |
| Helicobacter pylori infection, n (%)                             | 0 (0%)           |
| Cytochrome P450 2C19 genotype, n (%)                             |                  |
| Homozygous extensive metabolizer                                 | 3 (23%)          |
| Heterozygous extensive metabolizer                               | 8 (62%)          |
| Poor metabolizer                                                 | 2 (15%)          |
| Esophagogastroduodenoscopy findings (on PPIs)                    |                  |
| Erosive esophagitis, n (%)                                       | 8 (62%)          |
| Los Angeles classification (none/A/B/C/D), n                     | 5/4/2/2/0        |
| Hiatal hernia (>3 cm), n (%)                                     | 4 (31%)          |
| Short-segment Barrett's esophagus (>1 cm), n (%)                 | 4 (31%)          |
| Symptom severity (GSRS reflux dimension) (on PPIs), median (IQR) |                  |
| Heartburn                                                        | 4.0 (2.5–4.5)    |
| Regurgitation                                                    | 3.0 (2.0-5.0)    |

Table 1. Baseline characteristics of patients treated with vonoprazan for proton pump inhibitor (PPI)-refractory gastroesophageal reflux disease

GSRS, Gastrointestinal Symptom Rating Scale; IQR, interquartile range

# single-dose (n = 2), split-dose (n = 3)

Table 2. Comparisons of multichannel intraluminal impedance-pH monitoring findings between proton pump inhibitor (PPI) and vonoprazan therapies.

|                                            | PPIs             | Vonoprazan      | p value |
|--------------------------------------------|------------------|-----------------|---------|
|                                            | (n = 13)         | (n = 13)        |         |
| Gastric acidity                            |                  |                 |         |
| All day                                    |                  |                 |         |
| GAET (% time with gastric pH $<$ 4)        | 41.1 (33.9–59.6) | 23.8 (0.7–35.1) | 0.01    |
| Median gastric pH                          | 4.4 (3.6–4.9)    | 5.1 (4.8-6.4)   | 0.04    |
| Complete gastric acid suppression          |                  |                 |         |
| (GAET <4%), n (%)                          | 0 (0%)           | 5 (38%)         |         |
| Daytime                                    |                  |                 |         |
| GAET (% time with gastric pH <4)           | 35.9 (29.3–60.7) | 16.1 (0.9–29.5) | 0.046   |
| Median gastric pH                          | 4.6 (3.7–5.2)    | 5.6 (5.2–6.2)   | 0.056   |
| Night-time                                 |                  |                 |         |
| GAET (% time with gastric pH <4)           | 63.6 (43.7–79.9) | 33.5 (0.0–58.0) | 0.01    |
| Median gastric pH                          | 3.2 (2.6–4.4)    | 5.2 (3.7-6.7)   | 0.02    |
| Nocturnal gastric acid breakthrough, n (%) | 11 (85%)         | 7 (54%)         | 0.73    |
| Esophageal acid exposure                   |                  |                 |         |
| All day                                    |                  |                 |         |
| EAET (% time with esophageal pH <4)        | 10.6 (6.5–18.7)  | 4.5 (0.2-8.8)   | 0.055   |
| Median esophageal pH                       | 5.5 (5.2–5.6)    | 5.7 (5.3–5.8)   | 0.35    |
| Normal EAET (EAET <4%), n (%)              | 0 (0%)           | 6 (46%)         |         |
| Daytime                                    |                  |                 |         |
| EAET (% time with esophageal pH <4)        | 9.5 (6.8–10.8)   | 0.9 (0.0-6.7)   | 0.15    |
| Median esophageal pH                       | 5.6 (5.2–5.8)    | 5.6 (5.2–5.8)   | 0.81    |
| Night-time                                 |                  |                 |         |
| EAET (% time with esophageal pH $<$ 4)     | 12.7 (6.0–29.1)  | 0.0 (0.0–14.0)  | 0.31    |
| Median esophageal pH                       | 5.1 (4.7–5.4)    | 5.4 (4.9–5.9)   | 0.31    |
| Number of reflux episodes                  |                  |                 |         |
| Total                                      | 57 (20–69)       | 50 (14-62)      | 0.27    |
| Acid                                       | 11 (4–33)        | 1 (0–11)        | 0.03    |
| Non-acid                                   | 33 (13–42)       | 23 (10–53)      | 0.94    |
| Bolus clearance time, %                    | 5.7 (2.5–7.9)    | 2.5 (0.4–10.3)  | 0.89    |

Values are expressed as medians (interquartile range) or n (%)

PPI, proton pump inhibitor; EAET, esophageal acid exposure time; GAET, gastric acid exposure time

Table 3. Comparisons of symptom intensity, erosive esophagitis, and fasting serum gastrin level between proton pump inhibitor (PPI) and vonoprazan therapies

|                                                | PPIs          | Vonoprazan     | p value |
|------------------------------------------------|---------------|----------------|---------|
|                                                | (n = 13)      | (n = 13)       |         |
| Symptom intensity                              |               |                |         |
| (GSRS sub-dimension scores), median (IQR)      |               |                |         |
| Reflux                                         | 3.0 (2.3–5.0) | 1.5 (1.0–2.5)  | 0.001   |
| Heartburn                                      | 4.0 (2.5–4.5) | 2.0 (1.5-2.5)  | 0.003   |
| Regurgitation                                  | 3.0 (2.0-5.0) | 1.0 (1.0-2.5)  | 0.003   |
| Abdominal pain                                 | 1.7 (1.2–2.8) | 1.3 (1.0–2.5)  | 0.194   |
| Indigestion                                    | 1.8 (1.4–3.6) | 2.0 (1.4–2.4)  | 0.246   |
| Diarrhea                                       | 1.3 (1.2–2.0) | 1.7 (1.0–2.8)  | 0.919   |
| Constipation                                   | 2.3 (1.2–3.5) | 2.0 (1.2–3.7)  | 0.581   |
| Erosive esophagitis (on antisecretory therapy) |               |                |         |
| Los Angeles classification (None/A/B/C/D), n   | 5/4/2/2/0     | 12/1/0/0/0     | 0.01    |
| Fasting serum gastrin, pg/mL (median (IQR))    | 468 (390-692) | 851 (726–1830) | 0.007   |

GSRS, Gastrointestinal Symptom Rating Scale; IQR, interquartile range