PS3型三脚型四座配位子を有する 10 族金属錯体の合成と性質

群馬大学理工学府理工学研究科 物質生命理工学領域 有機元素化学研究室 大間 倫

主查 久新 荘一郎 教授
副查 松尾 一郎 教授
副查 浅野 素子 教授
副查 堀内 宏明 准教授
副查 武田 亘弘 准教授

目次

略語		4			
本論文で	本論文で記述される化合物とその化合物番号				
第一章	序論	6			
	1-1. 10 族金属錯体	7			
	1-2. PS3型三脚型四座配位子	9			
	1-2-1. 三脚型四座配位子	9			
	1-2-2. 硫黄配位子	10			
	1-2-3. ホスフィン配位子	10			
	1-2-4. PS3型三脚型四座配位子	11			
	1-3. PS3型三脚型四座配位子を有する10族金属錯体	12			
	1-4. 本研究の目的	14			
	参考文献	14			

「第二章」イソプロピル基を有する PS3 型三脚型四座配位子を用い

1	0族金属錯体の合成	16

2-1.	序	17
2-2.	ジメチルパラジウム錯体 5a と酸との反応	18
2-3.	カチオン性クロロ錯体の合成	21
2-4.	まとめ	23
2-5.	実験項	23
参考	文献	29

第三章 PS3型三脚型四座配位子を有するパラジウム錯体の

	反応とその触媒反応への応用	30
3-1.	序	31
3-2.	カチオン性パラジウム錯体 12a,13a の溶媒安定性の解明	32
3-3.	アルケンとの反応	32
3-4.	溝呂木ヘッククロスカップリング反応	38
3-5.	イソプロピル基の脱離反応	39
3-6.	まとめ	44
3-7.	実験項	44
参考	·文献	47

第四章 tert-ブチル基を有する PS3 型三脚型四座配位子を用いた

	10族金属錯体の合成
	4-1. 序
	4-2. カチオン性クロロパラジウム錯体 4b, 11b の合成
	4-3. ジメチルパラジウム錯体の合成
	4-4. ジメチルパラジウム錯体と酸との反応
	4-5. まとめ
	4-6. 実験項
	参考文献
第五章	錯体の構造
	5-1. 序
	5-2. X 線結晶構造解析による結晶中での構造
	5-3. 溶液中での構造
	5-4.X線結晶構造解析がされていないパラジウム錯体の構造推定
	5-5. まとめ
	5-6. 実験項
	参考文献
第六章	結論
	6-1. PS3型三脚型四座配位子を有する10族金属錯体の合成
	6-2. PS3型三脚型四座配位子を有する10族金属錯体の反応性
	6-3. PS3型三脚型四座配位子を有する10族金属錯体の構造
	6-4. まとめ
	参考文献
第七章	各種錯体の NMR・IR チャート及び X-線結晶構造解析結果
	[PdClP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]Cl (3a)
	$[PdClP(C_{6}H_{4}-2-SC(CH_{3})_{3})_{3}]BF_{4} (4b)$
	$[Pd(CH_3)_2P(C_6H_4-2-SC(CH_3)_3)_3] (5b)$
	$[Pd(CH_3)_2P(C_6H_4-2-SCH(CH_3)_2)_3] (6a)$
	$[PdCl(CH_3)P(C_6H_4-2-SC(CH_3)_3)_3] (6b)$
	$[NiClP(C_6H_4-2-SCH(CH_3)_2)_3]CF_3SO_3(10a)$
	$[PdClP(C_6H_4-2-SCH(CH_3)_2)_3]CF_3SO_3\ (11a)$
	$[PdClP(C_6H_4-2-SC(CH_3)_3)_3]CF_3SO_3 (11b)_{$
	[Pd(CH ₃)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CF ₃ SO ₃ (12a)

$[Pd(CH_3)P(C_6H_4-2-SC(CH_3)_3)_3]CF_3SO_3 (12b)$	178
$[Pd(CF_{3}SO_{3})P(C_{6}H_{4}-2-SCH(CH_{3})_{2})_{3}]CF_{3}SO_{3}(13a)$	188
[Pd(CF ₃ COO)(CH ₃)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃] (14a)	221
[Pd(CF ₃ COO)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CF ₃ COO (15 a)	223
$[Pd(CH_3)P(C_6H_4-2-SCH(CH_3)_2)_3]BF_4 (16a)$	238
$[Pd(CH_3)P(C_6H_4-2-SC(CH_3)_3)_3] BF_4 (16b)$	240
$[Pd(OH_2) P(C_6H_4-2-SCH(CH_3)_2)_3](BF_4)_2 (17a)_{$	241
$[Pd(CH_{3}COO)(CH_{3})P(C_{6}H_{4}-2-SCH(CH_{3})_{2})_{3}] (18a)$	256
$[Pd(CH_{3}COO)(CH_{3})P(C_{6}H_{4}-2-SC(CH_{3})_{3})_{3}] (18b)$	270
$[Pd(SC_{6}H_{5})(CH_{3})P(C_{6}H_{4}-2-SCH(CH_{3})_{2})_{3}] (19a)$	271
$[Pd(OC_{6}H_{5})(CH_{3})P(C_{6}H_{4}-2-SCH(CH_{3})_{2})_{3}] (20a)$	273

本論文では以下の略語を使用した

PS ₃	(2-RSC ₆ H ₄) ₃ P Ligand
TfO	trifluoromethanesulfonate
TFA	trifluoroacetate
Ph	Phenyl group
TMEDA	tetramethylenediamine
ppm	parts per million
THF	tetrahydrofuran
r.t.	room temperature
min	minutes
h	hours
d	days
Me	methyl group
Et	ethyl group
Ac	acetyl group
NMR	nuclear magnetic resonance

ÇΙ

C۱

CI

,Me

TFA、

R-

1b

1a

Figure 1. 本論文で記述される化合物とその化合物番号.

序論

1-1.10 族金属錯体

後期遷移金属である 10 族金属、すなわちニッケル、パラジウム、白金はいずれも古くか らその触媒作用等に興味が持たれ、盛んに研究がおこなわれ続けている金属である。

ニッケルは油脂の硬化を初め、一般の有機化合物の水素化触媒として広く用いられている。表面積が大きい多孔質や微粉末状のラネーニッケル¹⁾、ギ酸ニッケル触媒²⁾、漆原ニッケル触媒³⁾、など多くのものが知られている。また、ニッケル錯体はヒドロビニル化(Scheme 1-1, A)⁴⁾やヒドロホウ素化(Scheme 1-1, B)⁴⁾、エチレンの重合(Scheme 1-1, C)⁴⁾などに用いられ、さらに、R₃Pまたは(RO)₃Pが配位する0価ニッケル錯体はブタジエンの環化(Scheme 1-1, D)⁴⁾に利用されている。近年では、二酸化炭素から有用な有機化合物を合成する研究などが、各種ニッケル錯体を用いて研究されている(Scheme 1-1, E)⁴⁾⁵。

Scheme 1-1. ニッケル錯体を用いた触媒反応の例.

またニッケルは、10 族金属の中でだけでなく、遷移金属全体の中でも、価格がかなり安い 部類(1円/g程度)に入るのも魅力である。

パラジウムは古くから水素化、酸化、脱水素などの触媒として研究されてきた。水素化 ではアセチレンや共役ジエンの部分水素化に優れた選択性を示し、石油の分解オレフィン ガス精製の触媒としても利用されている。通常活性炭、シリカ、アルミナ、硫酸バリウム、 炭酸カルシウムなどに担持されたものが使用され、パラジウム炭酸カルシウム触媒を酢酸 鉛などで被毒したリンドラー触媒のはアセチレン系化合物の部分水素化に卓越した選択性 を示す触媒として有名である(Scheme 1-2, A)。パラジウム塩はエチレンまたはプロペンから アセトアルデヒドまたはアセトンを製造する酸化触媒として利用されるが(ワッカー法)¹⁾ (Scheme 1-2, B)、この場合は還元されて生じるパラジウムを酸化するのに塩化銅を併用する。 他にもオレフィンのアセトキシ化、例えばエチレンと酢酸からの酢酸ビニルの合成(Scheme 1-2, C)やオレフィンやジエンの二量化(Scheme 1-2, D)、ベンゼン同士、あるいはベンゼンと オレフィンのカップリング、カルボニル化、辻-トロスト反応⁷ (Scheme 1-2, E)、溝呂木-ヘ ック反応⁸⁾ (Scheme 1-2, F)、根岸カップリング⁸⁾ (Scheme 1-2, G)、右田-小杉-スティルカッ プリング⁸⁾ (Scheme 1-2, G)、鈴木-宮浦カップリング⁸⁾ (Scheme 1-2, G)、檜山-畠中クロスカ ップリング⁹⁾ (Scheme 1-2, G)、園頭カップリング⁸⁾ (Scheme 1-2, H)、村橋-ブッフバルト-ハートウィッグ反応⁸⁾(Scheme 1-2, I)、熊田-玉尾カップリング⁸⁾ (Scheme 1-2, J)などの触媒と しても用いられている。パラジウム自体は比較的高価な金属(2000 円 /g 程度)であり、より 高効率な反応が求められる。

$$R \xrightarrow{\qquad} R' \quad H_2 \xrightarrow{\qquad} R \xrightarrow{\qquad} R \xrightarrow{\qquad} R' \qquad (A)$$

$$1/_2 O_2 \qquad PdCl_2, CuCl_2 O H$$
 (B)

$$1_{2}O_{2}$$
 $H_{3}COOH \xrightarrow{PdCl_{2}, NaOAc, CuCl_{2}} O$ (C)

$$R \xrightarrow{Ph} \xrightarrow{PdCl_2} \xrightarrow{Ph} \xrightarrow{Ph} (D)$$

$$\begin{array}{cccc} R & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

 $X = OAc, CI, etc. \quad Nu = Nucleophil$

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$\begin{array}{c} & X \\ & M^{-}R \\ & \end{array} \xrightarrow{ [Pd] } \\ & & \swarrow \\ & & & & \\ \end{array}$$
 (G)

X = haligene, M = Zn, Sn, Si, B

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & X = haligene \end{array}$$
 (H)

Scheme 1-2. パラジウム錯体を用いた触媒反応の例.

(I)

自金は古くからその触媒反応について多くの研究者による研究が進められており、H₂O₂の分解、アルコールの酸化、SO₂の酸化、NH₃の酸化等多くの反応でその触媒作用が認められてきた¹⁾。一般に水素化、脱水素、酸化などの触媒として優れた触媒作用を有し、使用温度範囲も広く工業的にも多量に使用されている。自金黒や自金海綿としても使用されるが、通常はアルミナ、シリカ、活性炭などの担体に分散した状態で用いられることが多い。石油の改質には白金–アルミナ系の触媒が、アンモニアの酸化やアンドリュッソー法¹⁰によるメタンからのシアン化水素の合成(Scheme 1-3, A)にはロジウムを含む白金の網状触媒が、また工場の排ガス中の NOx の低減用や自動車の排ガス処理用の触媒としてはハニカム型支持体に担持されたものが使用される。白金の塩または錯体も種々の触媒作用があり、水素化の触媒やヒドロシリル化⁹の触媒(Scheme 1-3, B)等として利用される。

CH₄ NH₃ 1.5 O₂ $\xrightarrow{Pt/Rh}$ HCN 3H₂O (A) R HSiR₃ $\xrightarrow{[Pt]}$ R SiR₃ (B) Scheme 1-3. 白金錯体を用いた触媒反応の例.

白金は装飾品にも使用され、その価格は高いものとなっている(3000円/g程度)。そのため 高効率な触媒が求められる。

1-2. PS3型三脚型四座配位子

1-2-1. 三脚型四座配位子

三脚型四座配位子は空配位座を有する三方両錐型構造を安定にとることができ、安定か つ高活性な錯体を合成できると期待される。すなわち反応活性であると考えられる空配位 座を周囲の立体保護基により安定化することにより、安定に空配位座が形成され、周囲の 立体障害を通り抜けることのできる基質に対して活性化を行うことができると期待される。 SchrockのNN₃型三脚型四座配位子を有するモリブデン錯体やPetersのBP₃型三脚型四座配 位子を有する鉄錯体は窒素分子を活性化し温和な条件でのアンモニアの合成を可能にした (Figure 1)¹¹⁾。

 Schrock (2002)
 Peters (2013)

 Figure 1-1. 窒素活性化能が発現する三脚型四座配位子を有する遷移金属錯体.

1-2-2. 硫黄配位子

硫黄はその強い配位性から触媒の活性部位と結合しその部位を不活性化することにより 触媒にとって触媒毒として知られている元素である¹⁴⁾。一方で生物の世界においてはヒド ロゲナーゼやニトロゲナーゼの活性部位(Figure 1-2)と考えられている部位に遷移金属との クラスターとして存在している¹²⁾。

Figure 1-2. ニトロゲナーゼの活性部位.

また、NS₃型三脚型四座配位子に導入されたチオエーテル部位は溶液中で四配位構造と五配 位構造の平衡及び各チオエーテル部位の配位子交換反応が起こっていると示唆されている (Figure 1-3)¹³⁾。

Figure 1-3. チオエーテル部位の交換反応.

このことより、チオエーテル部位を有する多座配位子では溶液中で一時的に空配位座が生 成していると考えられる。触媒反応では、基質が触媒となる金属に配位することにより反 応が開始されることが多い。空配位座が形成されるということはこの部位に基質が配位可 能となるということになるため、触媒活性の発現に寄与するのではないかと考えられる。 また、挿入や還元的脱離を起す際には基質が金属から離れるため空配位座が形成される。 このときに多座配位子の硫黄が付近に存在することにより、即座にこの空配位座を埋める ことができるため系全体の安定化に寄与するのではないかと考えられる。

1-2-3. ホスフィン配位子

トリアルキルホスフィンやトリアリールホスフィンは遷移金属錯体の配位子として有用 な化合物であり、アルキル及びアリール基のかさ高さが配位能に及ぼす影響について詳細 に調べられている¹⁴⁾。加えて金属に配位しやすく比較的強い結合を形成することから錯体 を安定化することができると考えられる。

以上の観点からリンと硫黄を有する PS₃型三脚型四座配位子を用いることにより興味深い性質を有する新規錯体を合成できるのではないかと期待される。

1-2-4. PS3型三脚型四座配位子

既に Meek や Tsang、Eisenberg らによってチオエーテル上にメチル基を有する PS₃型三脚型四座配位子を有する種々の遷移金属錯体が合成されている(Figure 1-4)¹⁵⁾。

Figure 1-4. PS₃型三脚型四座配位子を有する遷移金属錯体.

1965年にMeekらがチオエーテル上にメチル基を有するPS₃型三脚型四座配位子を用いた各種ニッケル錯体の合成を報告した¹⁵⁾。このとき同定は元素分析と紫外可視吸収スペクトル、融点測定により行われた。また Meek らは 1967年に同様の配位子を用いたパラジウム錯体¹⁵⁾を、Tsang らは 1968年にこの配位子を用いたモリブデン錯体を報告している¹⁵⁾。さらに Eisenberg らはニッケル錯体のX線結晶構造解析の結果を 1969年に報告した¹⁵⁾。

一方でこれまでに報告されている PS_3 型三脚型四座配位子を用いた錯体においては、その 合成や X 線結晶構造解析の報告はあるものの、その錯体を用いた反応性や触媒活性に関す る報告例は、2002 年に Pakkanen らが報告した系中に $Rh_4(CO)_{12}$ と配位子を加えて系中で錯 体を発生させていると考えられる 1-ヘキセンのヒドロホルミル化などに限られており、極 めて少ない(Scheme 1-4)¹⁶。

Scheme 1-4. 1-ヘキセンのヒドロホルミル化.

そのため、このような PS₃型三脚型四座配位子を有する遷移金属錯体の性質については十分に調べられているとは言いがたい。

1-3. PS3型三脚型四座配位子を有する10族金属錯体

武田らはチオエーテル上に嵩高い置換基であるイソプロピル基と tert-ブチル基を有する 新規 PS₃型三脚型四座配位子を合成し、その性質の解明を行ってきた¹⁷⁾。イソプロピル基 を有する PS₃型三脚型四座配位子を有する錯体においては白金、パラジウム各ジクロロ錯体 7a, 3a 及びパラジウム、ニッケルの各カチオン性クロロテトラフルオロボーレート錯体 2a, 4a が合成され、X 線結晶構造解析による結晶中での構造が明らかとなっている (Scheme 1-5)¹⁷⁾。

Scheme 1-5. 配位子 1a を有する各種10族金属錯体.

またパラジウム錯体においては、構造決定が不十分であるものの中性ジメチルパラジウム 錯体 5a が合成され、塩化水素との反応により、その当量によってメチルクロロ錯体 6a と ジクロロ錯体 3a が生成すると明らかにしている(Scheme 1-6)。

Scheme 1-6. ジメチルパラジウム錯体 5a の合成と 5a と塩酸との反応.

さらに反応条件の最適化が行われていないものの、ジクロロパラジウム錯体 3a 及びジクロ ロ白金錯体 7a を加熱すると塩化イソプロピルの脱離を伴い錯体 8a, 9a が生成することが報 告されている(Scheme 1-7)。

Scheme 1-7. イソプロピル基の脱離反応を伴う錯体の生成.

ー方チオエーテル上に *tert*-ブチル基を有する錯体においては、錯体合成の際に一つの *tert*-ブチル基が脱離した錯体 **8b** が生成することが明らかとなっている (Scheme 1-8)¹⁷⁾。

Scheme 1-8. tert-ブチル基を有するパラジウム錯体の合成.

1-4. 本研究の目的

本研究においては PS₃型三脚型四座配位子を有する 10 族金属錯体の合成とその性質の解明、および触媒反応への応用を目的とした。

種々の錯体合成の経路として PS₃型三脚型四座配位子を有する 10 族金属錯体に種々の試薬 を反応させることで新規中性錯体やカチオン性錯体を合成しようと考えた。まずジメチル パラジウム錯体 5a に着目し、パラジウム上のメチル基が酸と反応することから種々の酸と 反応させることにより、さまざまな錯体の合成を志向した (Scheme 1-9)。特に一当量の酸と 反応して形成されると考えられるカチオン性モノメチルパラジウム錯体は類似の錯体がア ルケンの重合触媒として活性を示していることより触媒活性を示すことを期待した。合成 した錯体についてはアルケンの重合に対して触媒活性を有するのか調査した。

tert-ブチル基を有する PS3型三脚型四座配位子 1b を用いて配位子 1a を有する各種パラジウム錯体と同様の錯体が合成できるかについて検討を行った。

さらに合成した種々の錯体について構造について調査を行う。その過程でチオエーテル上の置換基による錯体合成や構造への影響を明らかにする。

Scheme 1-9. ジメチルパラジウム錯体 5a と酸との反応.

参考文献

1) P. Atkins, T.Overton, M. Weller, F. Armstrong, シュライバー・アトキンス無機化学, 東京化学 同人 (2010).

- 2) 笹力, 有機合成化学協会誌, 11, 463-466 (1953).
- 3) Y. Urushibara, Bull. Chem. Soc. Jpn., 25, 280 (1952).
- 4) 檜山爲次郎, 有機合成のための触媒反応 103, 東京化学同人 (2004).

5) T. Sakakura, J. Choi, H. Yasuda, Chem. Rev., 107, 2365-2387 (2007).

6) H. Lindlar, Helv. Chem. Acta, 35, 446-450 (1952).

7) J. Tsuji, Transition metal reagents and catalysts, Wiley (2002).

8) 奥山格, 有機反応機構の書き方 基礎から有機金属反応まで, 丸善株式会社 (2010).

9)田中正人,有機ケイ素化合物の遷移金属触媒反応,吉良満夫,玉尾皓平,現代ケイ素化学,化学同人,267-282 (2004).

10) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kuhn, *Angew. Chem. Int. Ed.*, **50** 8515-8537 (2011).

11) a) D. V. Yandulv, R. R. Schrock J. Am. Chem. Soc., 124, 6252–6253 (2002); b) J. S. Anderson,
M. Moret, J. C. Peters, J. Am. Chem. Soc., 135, 534–537 (2013).

12) a) L. E. Mortenson, R. N. F. Thorneley, Ann. Rev. Biochem., 48, 387-418 (1979); b) Z. Zhou, H.

wang, P. Yu, M. M. Olmsted, S. P. Cramer, J. Inorg. Biochem., 118, 100-106 (2013); c) A. Volbeda,

M. Charon, C. Plras, E. C. Hatchikian, M. Frey, J. C. Fontecilla-Camps, *Nature*, **373**, 580–587 (1995).

13) K. Nakajima, T. Kajino, M. Nonoyama, M. Kojima, Inorg. Chem. Acta, 312, 67-73(2001).

14) J. F. Hartwig, ハートウィグ有機遷移金属化学, 東京化学同人 (2014).

15) a) G. Dyer, M. O. Workman, D. W. Meek, Inorg. Chem., 6, 1404–1407 (1967); b) L. P. Haugen,

R. Eisenberg, Inorg. Chem., 8, 1072–1078 (1969); c) G. Dyer, D. W. Meek, Inorg. Chem., 6, 149–

153 (1967); d) G. Dyer, D. W.Meek, Inorg. Chem., 4, 1398–1402 (1965); e) E. W. Abel, J. C.

Dormer, D. Ellis, K. G. Orrell, V. Šik, M. B. Hursthouse, M. A. Mazid, J. Chem. Soc., Dalton Trans.,

1073 (1992); f) W. S. Tsang, D. W. Meek, A. Wojcicki, Inorg. Chem., 7, 1263-1268 (1968).

16) P. Suomalainen, R. Laitinen, S. Jääskeläinen, M. Haukkaa, J. T. Pursiainen, T. A. Pakkanen, J. *Mol. Catal. Chem.*, **179**, 93–100 (2002).

17) a) N. Takeda, Y. Tanaka, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, 83, 157-164
(2010); b) N. Takeda, Y. Tanaka, R. Oma, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, 89, 922-930 (2016); c) N. Takeda, D. Watanabe, T. Nakamura, and M. Unno, *Organometallics*, 29, 2839-2841 (2010).

第二章

イソプロピル基を有する PS3型三脚型四座配位子を用いた 10族金属錯体の合成

2-1. 序

カチオン性モノメチルパラジウム錯体では、不飽和結合の挿入反応(Scheme 2-1)が進行することが知られており、重合触媒として使用できると報告されている¹⁾。

Scheme 2-1. アルケンの挿入反応.

ホスフィン配位子やカルベン配位子、アミン配位子を有するジメチルパラジウム錯体は 種々の酸と反応し、メチル基が酸の共役塩基部位に置換される(Scheme 2-2)ことが知られて いる²⁾。

Scheme 2-2. ジメチルパラジウム錯体の酸との反応.

加えてフェノールや酢酸等の酸では一当量の酸により一置換体であるモノメチル錯体が生成することも報告されている²⁾。

そこで、既に合成が報告されている PS₃型三脚型四座配位子を有するジメチル錯体 5a を酸 と反応させカチオン性モノメチルパラジウム錯体の合成を目指した。既に PS₃型三脚型四座 配位子を有するジメチルパラジウム錯体 5a と塩化水素との反応についてはその当量により 中性モノメチルパラジウム錯体 6a とジクロロパラジウム錯体 3a が作り分けられると報告 されている(Sheme 2-3)³。そこで本研究においては TfOH、TFAH、HBF₄、AcOH、PhSH、PhOH を用いてジメチルパラジウム錯体 5a との反応について検討を行った。加えて、酸以外の試 薬と反応するか検討を行うために MeOH との反応についても検討を行った。

2-2. ジメチルパラジウム錯体 5a と酸との反応

ジメチルパラジウム錯体 5a と塩酸との反応は既に報告されている³。この反応においては 一当量の塩酸と反応させた場合には平面四配位錯体であるクロロメチルパラジウム錯体 6a が、二当量の酸と反応させた場合には三方両錐型構造のジクロロパラジウム錯体 3a が生成 する (Scheme 2-3)。これらの構造は X 線結晶構造解析により明らかにされている。

Scheme 2-3. ジメチルパラジウム錯体 5a と塩酸、トリフルオロ酢酸との反応.

トリフルオロ酢酸との反応を行なったところ、塩化水素との反応と同様に空気下ベンゼン 中室温で一当量の酸との反応では平面四配位型の錯体であるメチルパラジウム錯体 14a が 収率 53%で無色結晶として、二当量の酸と反応させた場合には三方両錐型構造のカチオン 性錯体 15a が収率 61%で赤色結晶として生成した (Scheme 2-3)。錯体 15a の構造は X 線結 晶構造解析により明らかにした。

ー当量のトリフルオロメタンスルホン酸をベンゼン溶液にし、ジメチルパラジウム錯体 5a のベンゼン溶液(淡黄色溶液)に滴下したところ黄色の沈殿が生成し、溶液が黄色となった。 沈殿を濾過すると目的のカチオン性メチルトリフラート錯体 12a が収率 75%で得られた (Scheme 2-4)。二当量のトリフルオロメタンスルホン酸を滴下すると溶液が無色透明になり 赤色固体が生成した。沈殿を濾過すると目的のカチオン性ジトリフラート錯体 13a が収率 >99%で得られた。錯体 13a の構造は X 線結晶構造解析により明らかにした。

18

Scheme 2-4. ジメチルパラジウム錯体 5a とトリフルオロメタンスルホン酸との反応.

ー当量のテトラフルオロホウ酸をジメチルパラジウム錯体 5a のベンゼン溶液(淡黄色溶液)に滴下したところ溶液が無色透明になり黄色の沈殿が生成した。沈殿を濾過すると目的のカチオン性メチルテトラフルオロボーレート錯体 16a が収率 91%で得られた (Scheme 2-5)。二当量のテトラフルオロホウ酸を滴下すると溶液が無色透明になり赤色固体が生成した。沈殿を濾過すると目的のジカチオン性アクアジテトラフルオロボーレート錯体 17a が収率 83%で得られた。錯体 17a は X 線結晶構造解析により結晶中での構造を決定した.

Scheme 2-5. ジメチルパラジウム錯体 5a とテトラフルオロホウ酸との反応.

空気下ベンゼン中において室温でジメチルパラジウム錯体 5a と一当量の酢酸とを 30 分 反応させた。溶媒を留去し、アセトンとヘキサンを用いた再結晶により目的物を得た。中 性のメチルアセテートパラジウム錯体 18a が橙色結晶として収率 93%で得られた (Scheme 2-6)。二から四当量の酢酸と反応させた場合、上記の HCl、TfOH、TFAH、HBF4 との反応と は異なり、二置換体は生成せず、中性のメチルアセテートパラジウム錯体 18a が橙色結晶 として得られた。本錯体は X 線結晶構造解析により結晶中での構造が明らかとなった。空 気下ベンゼン中においてベンゼンチオール、フェノールそれぞれと室温で 30 分反応させた ところ複雑な混合物と橙色の不溶な沈殿を得る結果となった。そこでアルゴン下遮光し反 応を行ったところ、ベンゼンチオールを用いた場合には中性メチルベンゼンチオラートパ ラジウム錯体 19a が橙色溶液として生成した (Scheme 2-6)。溶媒を留去しベンゼンとヘキ サンを用いて再沈殿を行い橙色固体が収率 76%で得られた。フェノールを用いた場合には 黄色溶液が生成した。溶媒を留去しベンゼンとヘキサンを用いて再沈殿を行い中性メチル フェノキシパラジウム錯体 20a が黄色固体として収率 21% で得られた (Scheme 2-6)。

Scheme 2-6. ジメチルパラジウム錯体 5a と酢酸、ベンゼンチオール、フェノールとの反応.

以上をまとめると、pKa が負の値を示すような強い酸(HCl, TfOH, TFAH, HBF4)との反応に おいては酸の当量により錯体を作り分けられることが明らかとなった。一方 pKa の値が正 となるような弱い酸(AcOH, PhSH, PhOH)においては多量の酸と反応させてもモノメチル錯 体が生成することが明らかとなった。加えて酸ではないメタノールとは反応しないという ことも明らかとなった(Scheme 2-6)。また、酢酸との反応においてはメチレン架橋ジカーボ ネート配位子を有するジメチル錯体との反応で2置換体が生成しているという結果が得ら れている²⁰のとは対照的な結果となった(Scheme 2-7)。

Scheme 2-7. ジメチルパラジウム錯体と酢酸との反応.

この反応性の違いについては以下のように考えている。カルベン,ホスフィンやアミドと 比較してチオエーテルはトランス効果が小さい。そのためパラジウム上のメチル基の反応 性に差が生じ18a, 19a, 20aのチオエーテル配位子のトランス位に位置するメチル基が酸と 反応しなかったと考えられる。この反応性の違いは、X線結晶構造解析で平面四配位構造を とるジクロロ錯体及びジメチル錯体のどちらにおいてもリンのトランス位の配位子と金属 の結合距離が硫黄のトランス位の配位子と金属の結合距離よりも長くなっていることから 示唆されている(Table 2-1)。

Table 2-1. パラジウムと配位原子の結合距離

		5b		5a	3a	
	Pd(1)-L(1)/Å	2.055	53(17)	2.067(6)	2.3242(8)	
	Pd(1)-L(2)/Å	2.103	39(16)	2.088(6)	2.3700(8)	
						\rightarrow
N	le((2)L)Me(L(1))	CI((2)	_)、 _CI(L((1)) =	
	Pd			Pd	Ar =	_S⁻R
	R-S PAr	2	<i>i</i> -Pr —	S PAr ₂	2 1 4	
	5a : R = <i>i-</i> Pr			3a	a : R =	<i>i-</i> Pr
	5b : R = <i>t</i> -Bu			•••	b : R =	t-Bu

2-3. カチオン性クロロ錯体の合成

カチオン性メチルトリフラート錯体 12a についてクロロホルムとヘキサンを用いて再結 晶を試みたところ、NMR において変化が現れ新たな錯体が生成したことが示唆された。そ こでクロロホルム中でカチオン性メチルトリフラート錯体 12a を 1 日反応させた後溶媒を 留去し、クロロホルムとヘキサンを用いて再結晶を行ったところ、メチル基がクロロ基に 置換したカチオン性クロロトリフラート錯体 11a を橙色結晶として収率 87%で得ることに 成功した (Scheme 2-8)。錯体 11a の構造は ¹H および ³¹P NMR により決定し,最終的には X 線結晶構造解析によりその構造の詳細を明らかにした。

Scheme 2-8. カチオン性メチルトリフラートパラジウム錯体 12a とクロロホルムとの反応.

錯体 11a はカチオン性クロロテトラフルオロボーレート錯体 4a とカウンターアニオンが異 なっているのみである。そこでカチオン性クロロテトラフルオロボーレート錯体 4a と同様 の合成法で合成できるかについて検討を行った。クロロホルム中室温で、配位子とジクロ ロビスベンゾニトリルパラジウムにトリフルオロメタンスルホン酸ナトリウムを加え 4 日 間反応させた。溶媒を留去しジクロロメタンとヘキサンを用いて再結晶を行ったところ目 的物である錯体 11a を橙色固体として収率 97%で得た (Scheme 2-9)。

Scheme 2-9. カチオン性クロロトリフラートパラジウム錯体 11a の合成.

またこの反応において、トリフルオロメタンスルホン酸ナトリウムを酢酸ナトリウムに替 えて反応を行った。しかし先ほどとは対照的にジクロロ錯体 **3a** を与える結果となった。こ れらの結果からナトリウム塩を用いたカウンターアニオンの導入は強酸のナトリウム塩に 限られることが示唆された。

ニッケル錯体においてもパラジウム錯体と同様にジクロロメタン中室温で配位子 1a と塩 化ニッケル六水和物と共にテトラフルオロホウ酸ナトリウムを反応系に共存させることに よりカチオン性クロロニッケルテトラフルオロボレート錯体 2a が合成できると明らかにな っている^{3a)}。そこでこのナトリウム塩をトリフルオロメタンスルホン酸ナトリウムに変え ることによりカチオン性クロロニッケルトリフラート錯体 10a が合成できるか検討を行っ た。反応の結果ニッケル錯体 10a が青色固体として収率 91%で生成した (Scheme 2-10)。よ ってニッケルにおいてもナトリウム塩を変えることによりカウンターアニオンを変えるこ とができると明らかとなった。

Scheme 2-10. カチオン性クロロトリフラートニッケル錯体 10a の合成.

一方ジクロロ白金錯体 7a については白金上にクロロ基が二つ配位し、PS3型三脚型四座 配位子のチオエーテルとホスフィンが一つずつ配位した平面四配位型構造の錯体であるこ とがわかっている^{3a}。本錯体の合成は空気下ジクロロメタン中室温で配位子 1a とジクロロ シクロオクタジエン白金を 4 日間反応させることにより得られる。そこで本反応系にナト リウムトリフラート及びテトラフルオロホウ酸ナトリウムをそれぞれ加えて反応を行った。 結果ジクロロ錯体 7a のみが生成したことが NMR より明らかとなった。クロロ配位子とト リフラートもしくはテトラフルオロボーレートとの交換は進行しない結果となった (Scheme $2-11)_{\circ}$

Scheme 2-11. ジクロロ白金錯体へのカウンターアニオン導入検討.

2-4. まとめ

ジメチルパラジウム錯体 5a に種々の酸を作用させる事により各種パラジウム錯体の合成 に成功した。pKaの低い酸においては酸の当量によりモノメチルパラジウム錯体とカチオン 性パラジウム錯体を作り分けられると明らかになった。pKaの高い酸においては酸の当量に よらずにモノメチルパラジウム錯体が生成することが明らかとなった。これはホスフィン とチオエーテルのトランス効果の違いによるものだと考えられる。さらにカチオン性クロ ロパラジウム及びニッケル錯体では pKa の低い酸のナトリウム塩を錯体合成の際に共存さ せることによりナトリウム塩に由来するカウンターアニオンを導入できることが明らかと なった。一方白金錯体ではこのような反応は進行しないと明らかとなった。

2-5. 実験項

2-5-1. [Pd(CF₃COO)(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (14a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(Ⅱ)] (5a) 0.065 g (0.010 mmol)、ベンゼン 5 ml を加え、トリフルオロ酢酸 0.0080ml (0.10 mmol)を滴下 した。室温で 30 分撹拌し、溶媒を留去した。無色固体を収量 0.040 g (53%)で得た。 Collorless crystal, 158.7 ℃ (decomp.).

¹H NMR(400 MHz, benzene-*d*₆): δ 1.12 (d, ³*J*_{HH} = 6.7 Hz, 18H), 1.50 (d, ³*J*_{HP} = 1.6 Hz, 3H), 3.17 (sep, ³*J*_{HH} = 6.7 Hz, 3H), 6.75 (t, ³*J*_{HH} = 7.0 Hz, 3H), 6.88 (dt, ³*J*_{HH} = 7.5 Hz, ⁴*J*_{HP} = 1.4 Hz, 3H), 7.09-7.14 (m, 3H), 7.51-7.58 (m, 3H). ¹³C{¹H} NMR (151 MHz, benzene-*d*₆): δ 15.15 (s, CH₃), 22.55 (s, CH₃), 41.87 (s, CH), 126.46 (d, *J*_{CP} = 8.7 Hz, CH), 131.44 (s, CH), 132.24 (d, *J*_{CP} = 8.7 Hz, CH), 133.60 (d, ¹*J*_{CP} = 56.4 Hz, C), 136.44 (d, *J*_{CP} = 8.7 Hz CH), 141.56 (d, ²*J*_{CP} = 14.5 Hz, C).

³¹P{¹H} NMR(162 MHz, benzene- d_6): δ 43.3 (s).

¹⁹F{¹H} NMR (376 MHz, benzene- d_6): δ -74.5 (s).

Anal. Calcd for C₃₀H₃₆F₃O₂PPdS₃: C, 50.01; H, 5.05%. Found: C, 49.74; H, 5.13%.

2-5-2. [Pd(CF₃COO)P(C₆H₄-2-SCH(CH₃)₂)₃]CF₃COO (15a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.053 g (0.085 mmol)、ベンゼン 5 ml を加え、トリフルオロ酢酸 0.0190ml (0.14 mmol)を滴下 した。室温で 30 分撹拌し、溶媒を留去した。赤色固体を収量 0.045 g (61%)で得た。NMR により目的物の生成が示唆されたものの、元素分析の値が大きくずれているため単離には いたっていない。

Red solid, 76.0 $^{\circ}$ C (decomp.).

¹H NMR(400 MHz, benzene- d_6):8 0.80 (d, ³ J_{HH} = 6.6 Hz, 18H), 2.97 (sep, ³ J_{HH} = 6.6Hz, 3H), 6.79-6.99 (m, 9H), 7.72 (brs, 3H).

³¹P NMR (162 MHz, benzene- d_6): δ 84.2 (s).

¹⁹F NMR (376 MHz, benzene-*d*₆): δ -74.8 (brs), -75.78 (brs).

Anal. Calcd for C₃₁H₃₃F₆O₄PPdS₃: C, 45.56; H, 4.07%. Found: C, 42.85; H, 3.86%.

2-5-3. [Pd(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (12a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.089 g (0.14 mmol)、ベンゼン 2 ml を加え、ベンゼン 1 ml にトリフルオロメタンスルホン 酸 0.0125 ml (0.14 mmol) を加えたものを滴下した。室温で 30 分撹拌し、析出した黄色固体 を吸引ろ過により得た。収量は 0.082 g (75%)であった。

Yellow solid, m.p. : 167.0 $^{\circ}$ C (decomp.)

¹H NMR (400 MHz, Acetone- d_6): δ 0.93 (d, ³ J_{HP} = 8.5 Hz, 3H), 1.23 (d, ³ J_{HH} = 6.6 Hz, 18H), 3.63 (sep, ³ J_{HH} = 6.6 Hz, 3H), 7.79 (m, 6H), 8.02 (dd, ⁴ J_{HP} = 3.6 Hz, ³ J_{HH} = 7.3 Hz, 3H), 8.23 (dt, ⁴ J_{HH} = 1.4 Hz, ³ J_{HH} = 7.6 Hz, 3H).

³¹P{¹H} NMR (162 MHz, Acetone- d_6): δ 69.0 (s).

¹³C {¹H} NMR (75.3 MHz, Acetone- *d*₆): δ 22.8 (s, CH₃), 48.3 (s, CH), 131.8 (d, ${}^{3}J_{CP} = 5.0$ Hz, CH), 134.7 (s, CH), 134.8 (d, ${}^{1}J_{CP} = 48.2$ Hz, C), 135.5 (s, CH), 135.9 (d, ${}^{2}J_{CP} = 12.2$ Hz, CH), 141.9 (d, ${}^{2}J_{CP} = 33.8$ Hz, C).

注)パラジウム上のメチル基及びトリフラートの CF₃に由来するピークは観測できなかった。 ¹⁹F{¹H} NMR (282.3 MHz, Acetone- *d*₆): δ -78.7 (s).

IR (KBr) : 516.89, 528.46, 549.67, 572.82, 636.47, 667.32, 688.54, 725.18, 740.61, 761.83, 781.12, 1027.99, 1051.13(S=O), 1107.06, 1139.85, 1159.14(S=O), 1222.79, 1249.79, 1263.29, 1367.44, 1386.72, 1427.23, 1448.44, 1569.95, 2866.02, 2898.81, 2927.74, 2966.31, 3056.96, 3076.25, 3442.7, 3473.56, 3504.42, 3523.7, 3541.06, 3560.35.

UV-vis (THF): λ_{max} 248 nm (ϵ 24000), λ_{max} 317 nm (ϵ 16000).

Anal. Calcd for C₂₉H₃₆F₃O₃PPdS₄: C, 46.12; H, 4.80%. Found: C, 46.16; H, 5.04%.

2-5-4. [Pd(CF₃SO₃)P(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (13a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.089 g (0.14 mmol)、ベンゼン 5 ml を加え、トリフルオロメタンスルホン酸 0.0195 ml (0.22 mmol)を滴下した。室温で 30 分撹拌し、析出した赤色固体を吸引ろ過により得た。収量は 0.097 g (>99%)であった。

Red Crystal, m.p.: 195 °C (decomp.).

¹H NMR (400 MHz, Acetone-*d*₆): δ 1.31 (d, ³*J*_{HH} = 6.6 Hz, 18H), 3.69 (sep, ³*J*_{HH} = 6.6 Hz, 3H), 7.90 (ddt, ⁴*J*_{HH} = 0.9 Hz, *J*_{HP} = 3.4 Hz, ³*J*_{HH} = 7.7 Hz 3H), 8.04 (ddt, ⁴*J*_{HH} = 1.3 Hz, *J*_{HP} = 2.4 Hz, ³*J*_{HH} = 7.7 Hz, 3H), 8.15 (dd, ³*J*_{HH} = 7.7 Hz, ³*J*_{HP} = 11.7, 3H), 8.22 (dd, ⁴*J*_{HP} = 3.4 Hz, ³*J*_{HH} = 7.7, 3H). ³¹P{¹H} NMR (162 MHz, Acetone-*d*₆): δ 81.1 (s).

¹³C{¹H} NMR (151 MHz, Acetone- d_6): δ 22.4 (s, CH₃), 50.0 (s, CH), 132.7 (d, ² J_{CP} = 10.1 Hz, CH), 132.9 (d, ¹ J_{CP} = 69.8 Hz, C), 135.4 (d, ³ J_{CP} = 5.0 Hz, CH), 136.1 (d, ³ J_{CP} = 13.0 Hz, CH), 137.1 (d, ⁴ J_{CP} = 13.0 Hz CH), 137.5 (d, ² J_{CP} = 17.3 Hz, C).

注)トリフラートのCF3に由来するピークは観測できなかった。

¹⁹F{¹H} NMR (282.3 MHz, Acetone- d_6): δ -78.4 (s).

IR (KBr):497.60, 516.89, 532.32, 567.03, 636.47, 744.47, 765.69, 775.33, 1020.27(S=O), 1118.64, 1164.92(S=O), 1211.21, 1230.50, 1244.00, 1265.22, 1317.29, 1369.37, 1388.65, 1429.15, 1460.01, 2931.60, 2966.31, 3068.53, 3083.96 cm⁻¹.

UV-vis (CHCl₃): λ_{max} 337 nm (ε4300), λ_{max} 413 nm (ε2300), λ_{max} 485 nm (ε1500).

Anal. Calcd for C₂₉H₃₃F₆O₆PPdS₅: C, 39.17; H, 3.74%. Found: C, 38.94; H, 3.83%.

2-5-5. [Pd(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃]BF₄ (16a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.286 g (0.46 mmol)、ベンゼン 5 ml を加え、テトラフルオロホウ酸水溶液 0.066 ml (0.41 mmol) を滴下した。室温で 1 日撹拌し、析出した黄色固体を吸引ろ過により得た。収量は 0.289g (91%)であった。

Yellow solid, 194.0 °C (decomp.).

¹H NMR(400 MHz, benzene-*d*₆): δ 0.92 (d, ³*J*_{HP} = 8.5 Hz, 3H), 1.22 (d, ³*J*_{HH} = 6.6 Hz, 18H), 3.63 (sep, ³*J*_{HH} = 6.6 Hz, 3H), 7.75 (tt, *J* = 7.6Hz, *J* = 1.4 Hz, 3H), 7.81 (tt, *J* = 7.6 Hz, *J* = 1.6 Hz, 3H), 8.02 (ddd, *J* = 7.6 Hz, *J* = 3.9 Hz, *J* = 1.6 Hz, 3H), 8.23 (t, *J* = 7.6Hz, 3H). ¹³C{1H} NMR (151 MHz, Acetone-*d*₆): δ -1.5 (d, ²*J*_{CP} = 109.8 Hz, CH₃), 22.8 (s, CH₃), 48.3 (s, CH), 131.8 (d, ³*J*_{CP} = 4.3 Hz, CH), 134.7 (s, CH), 134.8 (d, *J*_{CP} = 48.4 Hz, CH), 135.4 (s, CH), 135.9 (d, *J*_{CP} = 11.6 Hz, CH), 141.9 (d, *J*_{CP} = 34.7 Hz, CH).

 ${}^{31}P{}^{1}H$ NMR (162 MHz, benzene- d_6): δ 69.6 (s).

¹⁹F{¹H} NMR (376 MHz, benzene- d_6): δ -152.5 (s), -152.6 (s).

Anal. Calcd for C₂₈H₃₆BF₄PPdS₃ • 1/2 H₂O: C, 47.91; H, 5.31%. Found: C, 47.80; H, 5.20%.

2-5-6. [Pd(OH₂) P(C₆H₄-2-SCH(CH₃)₂)₃](BF₄)₂ (17a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.242 g (0.39 mmol)、ベンゼン 5 ml を加え、テトラフルオロホウ酸水溶液 0.130 ml (0.81 mmol) を滴下した。室温で1日撹拌し、析出した赤色固体を吸引ろ過により得た。収量は 0.248 g (83%)であった。

Red solid, 194.5 $^{\circ}$ C (decomp.).

¹H NMR(400 MHz, Acetone-*d*₆): δ 1.32 (d, ³*J*_{HH} = 6.6 Hz, 18 H), 3.66 (sep, ³*J*_{HH} = 6.6 Hz, 18 H), 7.88 (brt, ³*J*_{HH} = Hz, 3 H), 8.02 (brt, 3 H), 8.13 (brt, 3 H), 8.20 (brd, 3 H).

³¹P NMR (162 MHz, Acetone $-d_6$): δ 81.6 (s).

¹⁹F NMR (376 MHz, Acetone- d_6): δ -151.1 (s), -151.2 (s).

Anal. Calcd for C₂₇H₃₅B₂F₈OPPdS₃: C, 41.43; H, 4.51%. Found: C, 41.29; H, 4.74%.

2-5-7. [Pd(CH₃COO)(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (18a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(Ⅱ)] (5a) 0.271 g (0.44 mmol)、ベンゼン 5 ml を加え、酢酸 0.025 ml (0.44 mmol)を滴下した。室温で 1 日撹拌し、析出した橙色固体を吸引ろ過により得た。収量は 0.251 g (93%)であった。 Orange solid, 149.5 ℃ (decomp.).

¹H NMR (400 MHz, benzene-*d*₆): δ 1.14 (d, ³*J*_{HH} = 6.8 Hz, 18 H), 1.49 (d, ³*J*_{HP} = 2.4 Hz, 3 H), 2.36 (s, 3 H), 3.27 (sep, ³*J*_{HH} = 6.8 Hz, 3 H), 6.85 (t, ³*J*_{HH} = 7.6 Hz, 3 H), 6.92 (tdd, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 1.6 Hz, ⁴*J*_{HP} = 1.6 Hz, 3 H), 7.14-7.21 (m, 3 H), 7.81 (ddd, ³*J*_{HP} = 11.2 Hz, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 1.2 Hz, 3 H).

¹³C{1H} NMR (151 MHz, benzene- d_6): δ 13.6 (s, CH₃), 22.7 (s, CH₃), 24.4 (s, CH₃), 41.9 (s, CH), 126.5 (d, ³*J*_{CP} = 8.7 Hz, CH), 131.3 (s, CH), 132.6 (d, *J*_{CP} = 8.7 Hz, CH), 134.3 (d, *J*_{CP} = 53.5 Hz, C), 137.2 (d, *J*_{CP} = 10.1 Hz, CH), 141.5 (d, *J*_{CP} = 14.5 Hz, C), 175.8 (s, C).

³¹P NMR (162 MHz, benzene- d_6): δ 47.7 (s).

Anal. Calcd for C₃₀H₃₉O₂PPdS₃: C, 54.17; H, 5.91%. Found: C, 53.30; H, 5.95%.

2-5-8. [Pd(SC₆H₅)(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (19a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.204 g (0.33 mmol)、ベンゼン 5 ml を加え、ベンゼンチオール 0.033 ml (0.32 mmol)を滴下した。室温で1日撹拌し、析出した橙色固体を吸引ろ過により得た。収量は 0.189 g (76%)であった。

Orange solid, 90.1 $^{\circ}$ C (decomp.).

¹H NMR(400 MHz, acetone- d_6): δ 0.84 (d, ³ J_{HH} = 4.8 Hz, 3H), 1.55 (d, ³ J_{HP} = 6.4 Hz, 18H), 3.88 (sep, ³ J_{HH} = 6.4Hz, 3H), 6.77 (t, ³ J_{HH} = 7.3 Hz, 1H), 6.90 (t, ³ J_{HH} = 7.3 Hz, 2H), 7.21 (dd, ³ J_{HH} = 7.9

Hz, ${}^{4}J_{HH} = 1.4$ Hz, 1H), 7.28-7.34 (m, 3H), 7.47–7.56 (m, 5H), 7.70 (ddd, ${}^{3}J_{HH} = 7.9$ Hz, $J_{HP} = 4.0$ Hz, ${}^{4}J_{HH} = 0.8$ Hz, 3H).

¹³C{1H} NMR (151 MHz, acetone- d_6): δ 11.2 (s, CH₃), 23.1 (s, CH₃), 41.9 (s, CH), 122.0 (s, CH), 127.6 (s, CH), 127.9 (d, ³*J*_{CP} = 7.2 Hz, CH), 132.2 (s, CH), 133.7 (d, *J*_{CP} = 7.2 Hz, CH), 134.9 (d, *J*_{CP} = 2.9 Hz, CH), 135.3 (d, *J*_{CP} = 44.8 Hz, C), 136.5 (d, *J*_{CP} = 5.8 Hz, CH), 141.9 (d, *J*_{CP} = 17.3 Hz, C), 149.5 (d, *J*_{CP} = 2.9 Hz, C).

³¹P NMR(162 MHz, acetone-*d*₆): δ 37.3 (s).

Anal. Calcd for C₃₄H₄₁PPdS₄ • 1/4 benzene: C, 58.02; H, 5.83%. Found: C, 57.78; H, 5.82%.

2-5-9. [Pd(OC₆H₅)(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (20a)の合成

フラスコに[ジメチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム(II)] (5a) 0.113g(0.18 mmol)、ベンゼン 5 ml を加え、フェノールベンゼン溶液 1.8 ml (0.17 mmol)を滴 下した。室温で1日撹拌し、析出した淡黄色固体を吸引ろ過により得た。収量は 0.192 g で あった。NMR により目的物と思われるピークが以下の通り観測されたものの¹H NMR にお いてフェノールのピークが観測され、単離にはいたっていない。

Light yellow solid,

¹H NMR(400 MHz, acetone-*d*₆): δ 0.97 (d, ³*J*_{HP} = 2.3 Hz, 3H), 1.25 (d, ³*J*_{HH} = 6.6 Hz, 18H), 3.59 (sep, ³*J*_{HH} = 6.6Hz, 3H), 6.24 (brs, 1H), 6.84–6.89 (m, 4H), 7.27–7.36 (m, 6H), 7.54–7.60 (m, 3H), 7.44 (dd, ³*J*_{HH} = 7.7 Hz, *J*_{HP} = 4.2 Hz, 3H).

¹³C{1H} NMR (151 MHz, acetone-*d*₆): δ 14.8 (s, CH₃), 22.8 (s, CH₃), 41.5 (s, CH), 113.2 (s, CH), 119.6 (s, CH), 127.5 (d, ${}^{3}J_{CP} = 7.2$ Hz, CH), 129.1 (s, CH), 132.5 (s, CH), 132.8 (d, $J_{CP} = 8.7$ Hz, CH), 133.9 (d, $J_{CP} = 53.5$ Hz, C), 136.4 (d, $J_{CP} = 7.2$ Hz, CH), 141.9 (d, $J_{CP} = 14.5$ Hz, C). ³¹P NMR(162 MHz, acetone-*d*₆): δ 39.7 (s).

2-5-10. [PdCIP(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (11a)の合成

フラスコにトリス(イソプロピルチオフェニル)ホスフィン (**1a**)0.115g(0.24 mmol)、[ビス ベンゾニトリルジクロロパラジウム(II)]0.075g(0.20 mmol)、ナトリウムトリフラート 0.361 g(2.10 mmol)、ジクロロメタン 5 ml を加え、室温で7日間撹拌し、減圧下溶媒を留去した。 得られた固体をクロロホルム/ヘキサンにより再沈殿させ、橙色固体を得た。収量は 0.139g (92%)であった。

別法としてフラスコに[メチルトリス(イソプロピルチオフェニル)ホスフィンパラジウム (Ⅱ)]トリフラート (12a) 0.029 g (0.038 mmol)、クロロホルム 10 ml を加え、室温で1週間撹 拌し、減圧下溶媒を留去した。得られた固体をクロロホルム/ヘキサンにより再沈殿させ、 橙色固体を得た。収量は 0.029 g (97%)であった。

Orange crystal. m.p.:175.0 °C (decmp.)

¹H NMR (400 MHz, CDCl₃): δ 1.30 (d, ³*J*_{HH} = 6.6 Hz, 18H), 3.47 (sep, ³*J*_{HH} = 6.6 Hz, 3H), 7.75 (m,

6H), 7.85 (t, ${}^{3}J_{HH} = 7.0$ Hz, 3H), 8.22 (dd, ${}^{3}J_{HH} = 8.0$ Hz, ${}^{3}J_{HP} = 10.4$ Hz, 3H).

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 81.5 (s).

¹³C{¹H} NMR (150.6 MHz, CDCl₃): δ 22.6 (s, CH₃), 48.5 (s, CH), 132.4 (d, ³*J*_{CP} = 8.6 Hz, CH), 132.6 (d, ^{*1*}*J*_{CP} = 64.9 Hz, C), 134.3 (d, ²*J*_{CP} = 13.1 Hz, CH), 135.2 (s, CH), 135.6 (d, ³*J*_{CP} = 2.8 Hz, CH), 137.4 (d, ²*J*_{CP} = 18.6 Hz, C).

注)トリフラートの CF3 に由来するピークは観測できなかった。

¹⁹F{¹H} NMR (282.3 MHz, CDCl₃): δ –78.9 (s).

IR (KBr): 516.89, 532.32, 559.32, 572.82, 638.39, 669.25, 727.11, 740.61, 767.62, 781.12, 879.48, 931.55, 1029.92, 1058.85(S=O), 1114.78, 1153.35(S=O), 1224.71, 1251.72, 1261.36, 1276.79, 1367.44, 1388.65, 1429.15, 1450.37, 1460.01, 1568.02, 1635.52, 2866.02, 2927.74, 2964.39, 3055.03, 3082.04, 3330.84, 3348.19, 3365.55, 3384.84, 3394.48, 3411.84, 3423.41, 3463.92, 3481.27, 3492.85.

UV-vis (CHCl₃): λ_{max} 248 nm (ϵ 25000) , λ_{max} 278 nm (ϵ 11000) , λ_{max} 364 nm (ϵ 3900).

Anal. Calcd for C₂₈H₃₃ClF₃O₃PPdS₄: C, 43.36; H, 4.29%. Found: C, 43.15; H, 4.44%.

2-5-11. [NiCIP(C₆H₄-2-SCH(CH₃)₂)₃]CF₃COO (10a)の合成

フラスコにトリス(イソプロピルチオフェニル)ホスフィン (**1a**) 0.141 g (0.29 mmol)、ジク ロロニッケル六水和物 0.060 g (0.25 mmol)、ナトリウムトリフラート 0.345 g (2.01 mmol)、 ジクロロメタン 5 ml を加え、室温で 4 日間撹拌し、減圧下溶媒を留去した。得られた固体 をクロロホルム/ヘキサンにより再沈殿させ、青色固体を得た。収量は 0.168 g (91%)であっ た。

Blue solid, m.p.:212.0 °C (decmp.)

¹H NMR (400 MHz, CDCl₃): δ 1.31 (d, ³*J*_{HH} = 8.8 Hz, 18H), 3.73 (sepd, ³*J*_{HH} = 8.8 Hz, ⁴*J*_{HP} = 2.0 Hz, 3H), 7.71 (t, ³*J*_{HH} = 11.0 Hz, ⁴*J*_{HH} = 3.0 Hz, ⁴*J*_{HH} = 1.4 Hz, 3H), 7.80 (ddd, ³*J*_{HH} = 11.0 Hz, ⁴*J*_{HH} = 4.3 Hz, ⁴*J*_{HH} = 1.0 Hz, 3H), 7.91 (ddt, ³*J*_{HH} = 11.0 Hz, ⁴*J*_{HH} = 3.3 Hz, ⁴*J*_{HH} = 1.4 Hz, 3H), 8.68 (t, ³*J*_{HH} = 11.0 Hz, 3H).

¹³C{¹H} NMR(150 MHz, CDCl₃) : δ 22.3 (s, CH3), 50.7 (s, CH), 132.9 (d, J_{CP} = 7.2 Hz, CH), 133.4 (d, J_{CP} = 13.0 Hz, CH), 133.6 (s, CH), 134.8 (s, CH), 135.3 (d, ¹ J_{HP} = 63.4 Hz, C), 137.0 (d, ² J_{CP} = 23.1 Hz, C).

注)トリフラートのCF3に由来するピークは観測できなかった。

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 103.3(s).

¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -77.9(s).

IR (KBr): 516.89, 532.32, 551.6, 572.82, 638.39, 673.11, 727.11, 740.61, 779.19, 879.48, 931.55, 1029.92, 1056.92(S=O), 1116.71, 1157.21(S=O), 1224.71, 1242.07, 1249.79, 1265.22, 1274.86, 1282.57, 1369.37, 1388.65, 1433.01, 1460.01, 1568.02, 1635.52, 2867.95, 2927.74, 2968.24, 3055.03, 3082.04, 3301.91, 3319.26, 3392.55, 3406.05, 3423.41, 3444.63, 3477.42, 3488.99.

UV-vis (CHCl₃): λ_{max} 246 nm (ϵ 35000), λ_{max} 265 nm (ϵ 15000), λ_{max} 332 nm (ϵ 5700), λ_{max} 474 nm (ϵ 350), λ_{max} 639 nm (ϵ 2000),

Anal. Calcd for C₂₈H₃₃F₃NiO₃PS₄: C, 46.20; H, 4.60%. Found: C, 45.38; H, 4.55%.

参考文献

a) G. Gatti, J. A. Lo'pez, C. Mealli, A. Musco, J. Organomet. Chem., 483, 77–79 (1994); b) S.
 Stro''mberg, M. Oksman, L. Zhang, K. Zetterberg, Acta. Chem. Scandinavica, 49, 689–695 (1995).
 a) Y. Kim, K. Osakada, K. Sugita, T. Yamamoto, A. Yamamoto, Organometallics, 7, 2182-2187 (1988); b) Y. Kim, K. Osakada, A. Takenaka, A. Yamamoto, J. Am. Chem. Soc., 112, 1096-1104 (1990); c) Y. Kayaki, I. Shimizu, A. Yamamoto, Bull. Chem. Soc. Jpn., 70, 1141-1147 (1997); d) P.
 W. G. Ariyananda, G. P. A. Yap, J. Rosenthal, Dalton Trans., 41, 7977-7983 (2012); e) Y. Caia, Y. Shi, Dalton Trans., 42, 5232-5236 (2013).

3) a) N. Takeda, Y. Tanaka, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, 83, 157-164 (2010);
b) N. Takeda, Y. Tanaka, R. Oma, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, 89, 922-930 (2016).

第三章

PS3型三脚型四座配位子を有する パラジウム錯体の反応とその 触媒反応への応用

3-1. 序

1-1. において述べたように、パラジウム錯体は水素化反応、酸化反応、脱水素反応、 カップリング反応など、種々の反応において触媒として高い活性を示すことが知られてお り、パラジウム錯体の触媒活性について数多くの研究が行われている。

2章において著者は、ジメチルパラジウム錯体 5a と酸との反応により、以下に示す種々のパラジウム錯体 3a-6a, 11a-20a の合成に成功した (Scheme 3-1)。

Scheme 3-1. PS₃型三脚型四座配位子を有するパラジウム錯体.

特に、錯体 12a, 16a はカチオン性メチルパラジウム錯体であり、カチオン性メチルパラジウム錯体はアルケンの重合触媒として使用されている (Scheme 3-2)¹⁾ ため、その触媒活性に 興味が保たれる。

Scheme 3-2. カチオン性メチルパラジウム錯体を触媒とするアルケンの重合反応.

そこで本章では、合成された各種パラジウム錯体が触媒活性を有するかについて検討を行 った。

3-2. カチオン性パラジウム錯体 12a,13a の溶媒安定性の解明

カチオン性メチルパラジウム錯体 12a が再結晶の際にクロロホルムと反応しクロロメチ ルパラジウム錯体 11a を与えたため、本錯体の溶媒中での安定性について検討を行った。パ ラジウム錯体 12a をアセトン中で 20 時間放置したところ、分解物が NMR で観測されるよ うになり、140 時間たつと錯体 12a は完全に消失して複雑な混合物を与える結果となった。 ベンゼン中では、わずかに溶解している錯体 12a は分解したが、溶解していない固体に変 化は見られなかった。アセトニトリル中では、1 週間経過したところで分解物が観測された。 また錯体 12a が溶解したメタノール、エタノール、イソプロピルアルコール、酢酸エチル、 THF について、アルゴン下 1 ヶ月放置した後に溶媒を留去し NMR を測定したところ、全て の場合において錯体が分解したと考えられる複数の反応混合物を与えることが明らかにな った。以上から、錯体 12a の場合はアセトニトリルを使用することができると明らかとな った。

錯体 12a と同様にトリフラートを対アニオンに持つカチオン性パラジウムジトリフラート錯体 13a はアセトンとヘキサンから再結晶を行って精製することができる。単結晶作成の際に1週間以上静置をしたが錯体の NMR に変化は現れなかった。よって本錯体はアセトン中で反応を行うこととした。

3-3. アルケンとの反応

カチオン性メチルパラジウム錯体はアルケンの重合反応触媒として知られている¹⁾。合成 した種々のパラジウム錯体がアルケンの重合反応において触媒活性を示すかについて検討 を行った。アルケンとして 1-ヘキセンを用いてカチオン性メチルトリフラート錯体 12a、カ チオン性ジトリフラート錯体 13a を用いて反応の検討を行った (Table 3-1)。

Table 3-1. アルケンの重合反応の検討

結果いずれの場合においても重合反応は進行しない結果となったものの異性化反応が進行 することが確認された。そこでアルケンの異性化反応に対する触媒活性を調べることとし た。アルケンの異性化反応は医薬や天然物などの合成において重要な反応である¹⁾²。反応 検討のための基質として 4-フェニル-1-ブテンを選んだ。フェニル基を有することにより TLC を用いた反応追跡ができる利点と、アルケンとフェニル基が離れていることによりフ エニル基の立体障害の影響を抑えられるのではないかと考えこの基質を選択した。異性化 反応の際にはアルケン部位に触媒が配位して反応が進行すると考えられる。そのためフェ ニル基が近いと触媒の配位子と干渉し触媒がアルケン部位に近づきにくくなるのではない かと考えた。まず溶媒の検討を行った (Table 3-2)。

	<u> 13a (1 m</u>	nol%)	\sim	\sim	\searrow	\frown	\sim	\searrow	\sim	`
	solv			Į			Į			
<u> </u>	Temp.,	time	<i>`</i>		~		~			_
					F	Products	a			
Entry	Solvent	time (h)	Temp.		\ :	Ph	<i>E/Z</i>	:	Ph	_E/Z
1	MeOH	2	reflux	0	:	26	1/0.2	:	74	Е
2	MeOH	3	reflux	0	:	19	1/0.2	:	81	Ε
3	EtOH	2	reflux	0	:	11	1/0.3	:	89	Ε
4	<i>i</i> -PrOH	2	reflux	0	:	10	1/0.3	:	90	Ε
5	MeCN	2	reflux	74	:	7	1/1.2	:	19	Ε
6	MeCN	24	reflux	47	:	15	1/0.8	:	38	Ε
7	benzene	2	reflux	100	:	0	-	:	0	-
8	acetone	2	40 °C	94	:	4	1/0.3	:	2	Ε
9	AcOEt	2	reflux	100	:	0	-	:	0	-
10	AcOEt + H ₂ O	2	reflux	92	:	5	1/1.3	:	3	Е
11	THF	2	reflux	100	:	0	-	:	0	_
12	THF + H_2O	2	reflux	95	:	3	1/1.7	:	2	Ε
13	THF + HSi(OEt) ₃	2	r.t.	67	:	22	1/1.3	:	11	Ε
14	THF + $HSi(OEt)_3$	24	r.t.	0	:	5	1/0.9	:	95	Ε

Table 3-2. 4-フェニル-1-ブテンの異性化反応の溶媒検討

^a: The ratio of products were calculated by ¹H NMR spectram.

カチオン性メチルパラジウムトリフラート錯体 12a がクロロホルムと反応しカチオン性ク ロロパラジウムトリフラート錯体となるためハロゲン系溶媒は反応検討から除外した。結 果としていずれの場合においても重合反応は進行せず、アルコールを用いた場合に異性化 反応がより進行することが明らかとなった (entries 1-4)。より反応が進行したエタノールを 用いて各種パラジウム錯体の触媒活性の検討を行った (Table 3-3)。

	cat. (1 mc EtOH reflux, 2	bl%) → h							
			F	Products ^a					
Entry	Catalyst	Ph ⁄⁄⁄	∖ :	Ph	E/Z	:	Ph	E/Z	
1	[PdCl(1a)] ⁺ Cl ⁻ (3a)	95	:	1	1/1.1	:	4	E	<i>i</i> -Pr
2	[PdCl(1a)] ⁺ BF ₄ ⁻ (4a)	98	:	1	1/1.0	:	1	E	S S <i>i</i> -Pr
3	[PdCl(1a)] ⁺ OTf ⁻ (11a)	98	:	1	1/1.4	:	1	E	
4	[PdMe(1a)] ⁺ OTf ⁻ (12a)	0	:	33	1/0.3	:	67	E	
5	[PdOTf(1a)] ⁺ OTf ⁻ (13a)	0	:	11	1/0.3	:	89	E	
6	[PdTFA(1a)] ⁺ TFA ⁻ (15a)	17	:	53	1/1.2	:	30	E	
7	[PdMe(1a)] ⁺ BF ₄ ⁻ (16a)	0	:	33	1/0.3	:	67	E	
8	$[PdOH_2(1a)]^+(BF_4)_2$ (17	a) 0	:	10	1/0.3	:	90	E	
9	[PdMeMe(1a)] (5a)	98	:	2	1/1.0	:	0	-	
10	[PdMeCl(1a)] (6a)	74	:	13	1/0.7	:	13	E	
11	[PdMeTFA(1a)] (14a)	47	:	34	1/1.2	:	19	E	
12	[PdMeOAc(1a)] (18a)	95	:	3	1/1.2	:	2	E	
13	none	100	:	0	-	:	0	_	

Table 3-3. 4-フェニル-1-ブテンの異性化反応の触媒検討

^a : The ratio of products were calculated by ¹H NMR spectrum.

錯体3a-6a, 11a-18aを触媒として用いて4-フェニル-1-ブテンの異性化反応を検討したところ、 結果としてカチオン性ジトリフラート錯体 13a (entry 5)やジカチオン性アクアジテトラフル オロボーレート錯体 17a (entry 8)が良い活性を示した。1-フェニル-2-ブテンにおいては触媒 活性が高い錯体 12ar13a, 16a, 17a において E 選択性が見られた。また、1-フェニル-1-ブテン まで反応が進行したいずれの場合においても¹H NMR において E 体しか観測されなかった。 このようなアルケンの異性化反応においては E 選択性が高い錯体が多いものの完全に E 体 のみを生成する錯体はあまり多くは無い。同様の反応においては塩化パラジウムが変換率 10%で E 体のみを与えると報告されている³⁾。類似の反応としてアリルアレーンの異性化に おいてはジアセトニトリルジクロロパラジウムやジクロロパラジウム、ビス(トリフェニ ルホスフィン)ジクロロパラジウム、パラジウムビス(テトラフルオロアセテート)が E 体のみを与えると報告されている³⁾。本反応における 100%の E 選択性は本錯体の特徴であ るといえる。他方触媒の効率を考えると反応性は良くないといえる³⁾。今後この反応性の低 さを生かして、1-フェニル-2-ブテンのような異性化が進行しきっていない生成物の選択的 合成への応用が期待される。

続いて基質の検討を行った(Table 3-4)。

Table3-4. アルケンの異性化反応の基質検討

a : The ratio of products were calcurated by ¹H NMR spectrum.

基質としてアリルアニソール、1-ヘキセンを用いて検討を行った。触媒は反応性の高かった カチオン性ジトリフラート錯体 13a を用いた。結果としていずれの基質においても異性化 は進行し、アリルアニソールを用いた場合においては生成物が E 体のみであることが ^IH NMR により確認された。1–ヘキセンを用いて反応を行った場合においては 2-ヘキセンを 86%の割合で E 選択的(E: Z=7:3)に与えることが ^IH NMR により確認された。3–ヘキセン は 12%の割合で得られることが ^IH NMR により確認されたものの、全てのピークが 2–ヘキ センと重なるため E 体と Z 体の割合は算出できなかった。

アルケンの異性化反応においてアルコールを溶媒として用いた場合に反応が良く進行し、 反応が進行しない溶媒でも水やシランを添加した場合に反応が進行することが確認された (Table 3-2)。このことから、本反応では溶媒や添加剤のプロトンが異性化反応に関わってい るのではないかと考え、重溶媒を用いて検討を行った。触媒としてカチオン性ジトリフラ ート錯体 13a を用い、溶媒として重メタノール-d4を用いて反応を行った(Table 3-5)。また重 水を加えた場合についても検討を行った。いずれの場合においても異性化生成物に重水素 化体は観測されず、異性化反応時において溶媒や添加剤とのプロトンに交換は起こってい ないことが明らかとなった。

Table 3-5.4-フェニル-1-ブテンの異性化反応の重水素化検討

^a: Check the dutorium compound by ¹H NMR spectram.
これまでに提唱されているヒドリドを有しないパラジウム錯体を用いた異性化の反応機構はアルケンがパラジウムに配位した後に酸化的付加、還元的脱離を経て異性化が進行し、 異性化生成物が錯体から脱離し触媒が再生される機構である(Scheme 3-3, A)。この反応は主 に触媒として 0 価パラジウム錯体が用いられ、パラジウムが 0 価と二価を行き来するよう な反応となる。

Scheme 3-3. 一般的に知られているアルケンの異性化反応機構.

しかし今回の錯体は2価パラジウム錯体であり、かつ錯体を還元して0価錯体を生成する ような試薬を加えていない。そこで今回の反応は別の反応機構によって進行するのではな いかと考えた。アルコールや水があると良く反応が進行することから、これらが反応に関 わっていると考えた。また系中にカウンターアニオン由来のルイス塩基が存在することに 着目し、アルケンが配位した後にプロトンの脱離が進行し、その後プロトンが求電子的に 付加することにより異性化が進行する系を考えた(Scheme 3-3, B)²⁾。この系であれば、アル コールや水があると良く反応が進行した理由としてアルコールや水由来のプロトンが反応 に関与することにより反応の進行が早くなったと考えることが可能である。この機構では 重溶媒や重水が存在するとプロトンと重水素の交換が進行すると期待される。しかしこの 反応系においてそのような交換反応は進行しないことが明らかとなった。そこで、ルイス 塩基が関与した異性化機構に着目した (Scheme 3-3, C)²⁾。この機構では塩基がプロトンを引 き抜きながらアルケンの末端へ移動させることにより異性化が進行する。この機構を適応 すると推定反応機構は以下のようになる(Scheme 3-4)。本反応においてはパラジウムが電子 を求引することにより、プロトンの脱離が促進される。そのためルイス酸性の高い錯体に おいて反応が良く進行する傾向が見られる。

Scheme 3-4. 予想されるアルケンの異性化反応機構.

この機構ではカウンターアニオンやアルコール、水の酸素がルイス塩基として作用すると 考えられる。

3-4. 溝呂木-ヘッククロスカップリング反応⁴⁾

下記の条件により触媒として錯体 3a~5a, 11a~15a, 18a を用いて反応を行った (Table 3-6)。 結果は以下の表のようになった。

Table 3-6. 溝呂木-ヘッククロスカップリング反応における触媒検討

^a: The yield was calcurated by ¹H NMR spectrum.

錯体[PdOTf(1a)]+OTF(13a)を用いた場合に反応は顕著に進行した。一方ほかの錯体においてはほとんど反応が進行せず、さらにパラジウム上にクロロ基を有する錯体については全く

反応が進行しない結果となった。またこれらの収率は NMR 収率であり、また反応しなかった場合にはすべて原料が定量的に回収された。

3-5. イソプロピル基の脱離反応

ジクロロパラジウム錯体 3a とジクロロ白金錯体 7a は加熱によりイソプロピルクロライドの脱離が進行すると明らかになっている (Scheme 3-5)⁵⁾。まず反応条件の最適化が行われていないため、反応条件の最適化を行った。

Scheme 3-5. イソプロピル基の脱離反応.

ジクロロパラジウム錯体 3a とジクロロ白金錯体 7a について、クロロホルム中 60 ℃で反応 追跡を行った。結果ジクロロパラジウム錯体 3a は 7 時間で、ジクロロ白金錯体 7a は 6 時 間で反応が完結することが明らかになった (Scheme 3-5)。

続いて反応機構を推定するためにジクロロパラジウム錯体 **3a** からイソプロピルクロライドが脱離する反応の反応速度測定を行った。

NMR チューブ中で40 ℃から60 ℃まで5 ℃刻みで約1時間ごとに¹H NMR を測定した。 イソプロピル基のメチンの積分強度の比 (Table 3-7) から生成する錯体 8a の生成量を計算 した。

Table 3-7. ¹H NMR によるパラジウム錯体 3a を加熱し 8a が得られる反応の各温度の各反応 時間における 3a と 8a のイソプロピル基のメチンピークの積分強度比

temp.	60	О°С	55	5 ℃	50	°C	45	°C	40	°C
time	3a a	8a a	3a ^a	8a a						
0 h	30	3.05	30	3.77	_	_	30	3.80	30	0.33
1 h	30	8.55	30	6.32	30	4.21	30	4.48	30	0.62
2 h	30	15.12	30	9.73	30	5.76	30	5.38	30	1.03
3 h	30	23.33	30	12.80	30	7.26		_	30	1.41
4 h	30	34.39	30	16.83	30	8.99	30	6.87	30	1.70

^a: The integration of methine peak in isopropyl group by ¹H NMR spectrum

Table 3-8. パラジウム錯体 3a を加熱し 8a が得られる反応の各温度の各反応時間における 3a と 8a の反応溶液中での濃度

tem	p. 60	O°C	55	°C	50	°C
time	3a ^a (mol/l)	8a ^a (mol/l)	3a ^a (mol/l)	8a ^a (mol/l)	3a ^a (mol/l)	8a ^a (mol/l)
0 h	0.0219	0.0030	0.0191	0.0036	_	_
1 h	0.0176	0.0068	0.0172	0.0054	0.0207	0.0044
2 h	0.0143	0.0108	0.0153	0.0074	0.0195	0.0057
3 h	0.0116	0.0136	0.0138	0.0089	0.0185	0.0067
4 h	0.0093	0.0159	0.0123	0.0104	0.0173	0.0079
tem	p. 4	5 °C	40	°C		
time	3a ^a (mol/l)	8a ^a (mol/l)	3a ^a (mol/l)	8a^a (mol/l)		
0 h	0.0187	0.0036	0.0206	0.0003		
1 h	0.0182	0.0041	0.0203	0.0006		
2 h	0.0175	0.0047	0.0199	0.0010		
3 h	_	_	0.0196	0.0013		
4 h	0.0166	0.0057	0.0193	0.0016		
_						

^a: Calculated by ¹H NMR spectrum

結果は Table 3-8 のようになった。

1 次反応では反応前の生成物の濃度([3a₀])と反応後の生成物の濃度([3a])および反応速度定数(*k*)が以下の式で表される。ここで*t*は反応時間を表す。

d[3a]/dt = -k[3a]

この積分形は

 $-kt = \ln([3a]/[3a_0])$

となる。

2 次反応では反応前の生成物の濃度([3ao])と反応後の生成物の濃度([3a])及び反応速度定数 (k)が以下の式で表される。ここでtは反応時間を表す。

 $d[3a]/dt = -k[3a]^2$

この積分形は

 $kt + 1/[3a_0] = 1/[3a]$

となる。

60 ℃ の場合、結果を 1 次反応として t と ln([**3a**]/[**3a**₀])の値をプロットすると直線のグラフが 得られた(Figure 3-1 A)。一方二次反応として t と 1/[**3a**]の値をプロットすると直線に乗らな かった(Figure 3-1 B)。

Figure 3-1. 60 ℃ におけるパラジウム錯体 **3a** の熱反応の反応速度測定(A: 一次反応として プロット, B: 二次反応としてプロット).

このことより本反応は一次反応もしくは擬一次反応であるといえると考えられる。 そこで40 ℃から60 ℃までの原料と生成物の濃度の商の対数をとった値を反応時間に対し てプロットし最小二乗法により傾きを求め、反応速度定数を算出した(Figure 3-2, Table 3-9)。

Figure 3-2. パラジウム錯体 3a の熱反応の反応速度測定.

Reaction Temp.	<i>k</i> (s ⁻¹)	R^2
40 °C	-4.87x10 ⁻⁶	0.992
45 °C	-8.17x10 ⁻⁶	0.999
50 °C	-1.68x10 ⁻⁵	0.997
55 °C	-2.91x10 ⁻⁵	0.999
60 °C	-5.65x10 ⁻⁵	0.999

Table3-9. パラジウム錯体 3a の熱反応の反応速度定数

求めた反応速度定数の対数を温度の逆数に対してプロット(アレニウスプロット)した (Figure 3-3)。

Figure 3-3. パラジウム錯体 3a の熱反応のアレニウスプロット.

このグラフを以下に示すアレニウスの式を用いて解析した。ここで*R*は気体定数(8.314462) を表す。

 $lnk = -E_a/RT + lnA$ これによると、活性化エネルギーと頻度因子は以下のようになる。 $Ea = 107 \pm 3 \text{ kJ/mol}$ $A = 3.29 \times 10^{12} \text{ s}^{-1}$

求めた反応速度定数を温度で割ったものの対数を温度の逆数に対してプロット(アイリング プロット)した(Figure 3-4)。

Figure 3-4. パラジウム錯体 3a の熱反応のアイリングプロット.

このグラフを以下に示すアイリングの式によって解析した^の。ここで*R*は気体定数、*h*はプランク定数、*k*_Bはボルツマン定数を表す。

 $k = hT/k_B \exp(\Delta S^{\ddagger}/R) \exp(-\Delta H^{\ddagger}/RT)$

両辺をTで割り対数をとると以下のように表すことができる。

 $\ln k/T = (-\Delta H^{\ddagger}/R)1/T + \Delta S^{\ddagger}/R + \ln(h/k_B)$

この結果から活性化エントロピーと活性化エンタルピーは以下のようになる。

 $\Delta H^{\ddagger} = 104 \pm 3 \text{ kJ/mol}$

 $\Delta S^{\ddagger} = -14 \pm 187 \text{ J/mol K}$

以上の結果をまとめると本反応の活性化エネルギーは 107± 3 kJ/mol、頻度因子は 3.29× 10^{12} 、活性化エントロピーは -14 ± 187 J/mol K、活性化エンタルピーは 104 \pm 3 kJ/mol となる。

Figure 3-1 より本反応は一次もしくは偽一次反応であることが示唆された。一次反応である と仮定するともっとも可能性のある反応機構は Scheme 3-6 のようになる。本機構で考えた 場合,カチオン性錯体 4a でイソプロピルクロリドの脱離反応が進行すると,不安定と考え られる空配位座をもつカチオン性パラジウム(II)錯体が生成することになり,錯体 4a でイソ プロピルクロリドの脱離反応が進行しないことが本機構により説明できる。

Scheme 3-6. イソプロピルクロライドの脱離反応機構

しかし現在溶媒がどのような影響を本反応に与えているのかわかっておらず、今後更なる 検討を必要とする。

3-6. まとめ

合成した各種錯体 3a-6a, 11a-18a はアルケンの重合反応に対しては触媒活性を示さなかったものの、異性化反応において触媒活性を示す結果となった。特に高いルイス酸性を示すと考えられるカチオン性パラジウム錯体である 11a、12a、13a、15a、16a を用いた場合に良く反応が進行した。溝呂木ーヘッククロスカップリング反応では錯体 13a を用いた場合に良良く反応が進行した。錯体 3a から 8a へのイソプロピルクロライドの脱離反応では、反応速度測定の結果 1 次反応であることが示唆された。

3-7. 実験項

3-7-1. アルケンの重合反応の検討

NMR チューブにセプタムを嵌め Ar 置換した後に Table 3-10 に示した Catalyst, Solvent, Substrate を加え、室温で1週間反応を行った。得られた混合物の $^{\text{H}}$ NMR を測定し、アルケン部位の積分比から生成比を計算した 7 。

Table3-10.	重合反応の検討
-------------------	---------

						result
Entry	Catalyst	Solvent	Substrate	time	Temp.	A : B (<i>E/Z</i>) : C
1 [({2	2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdCH ₃]OTf (12a) 7 mg (0.009 mmol)	Acetonetril-d ₃ 0.5 ml	1-hexene 0.0058 ml (0.046 mmol)	1 w	r.t.	2 : 98 (72/28) : 0
2 [({2	2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 6 mg (0.007 mmol)	Acetone- <i>d₆</i> 0.5 ml	1-hexene 0.0045 ml (0.036 mmol)	1 w	r.t.	2 : 98 (59/41) : 0

A = 1-hexene, B = 2-hexene, C = 3-hexene

3-7-2. アルケンの異性化反応

Entries 1–14, 16-27: アルゴン置換を行った二ロナスフラスコに Table 3-11 に示した Catalyst, Solvent, Substrate を加え、Table 3-11 に示した温度と時間で反応を行った。反応終了後溶媒 を留去し、ヘキサンを加えて錯体を沈殿させた後ろ過により錯体を取り除き再度溶媒を留 去した。得られた混合物の¹H NMR を測定し、アルケン部位の積分比から生成比を計算し た⁷。

Entry 15:アルゴン置換した NMR チューブに錯体(Catalyst)を加え再度アルゴン置換した後 溶媒 (Solvent)、アルケン (Substrate)の順に加え 40度で反応を行った。¹H NMR を測定しア ルケン部位の積分比から生成比を計算した⁷⁾。

へキセンにおいては、1-ヘキセンの末端 CH₂のピーク(4.94 ppm)と 2-ヘキセンと 3-ヘキセンのアルケン部位のピーク(5.30–5.45 ppm)、及び 2-ヘキセンの末端メチルのピーク(1.63 (E)、1.60 (Z) ppm)の値を用いた。

フェニルブテンにおいては4-フェニル-1-ブテンの末端 CH₂のピーク(5.01 ppm)と1-フェニ ル-2-ブテンのアルケン部位のピーク(5.46–5.67 ppm)、1-フェニル-1-ブテンのアルケン部位の ピーク(6.27, 6.38 ppm)を用い、1-フェニル-2-ブテンの立体構造の判定には末端メチル基(1.70 (*E*), 1.75 (*Z*) ppm)及びメチレン部位(3.30 (*E*), 3.46 (*Z*) ppm)を用いた。

アリルアニソールとその異性体においてはアリルアニソールの末端 CH₂ のピーク(5.01 ppm)と異性化体のアルケン部位のピーク(6.12, 6.35 ppm)を用いた。

1-フェニル-1-ブテン及び 4-メトキシ-1-(プロプ-1-エン-1-イル)ベンゼンの立体構造の判定 にはアルケン部位のカップリング定数を用いた。

						result
Ent	y Catalyst	Solvent	Substrate	time	Temp.	A : B (E/Z) :C (E/Z)
1	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 30 mg (0.034 mmol)	MeOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	3 h	Reflux	0 : 19 (1/0.2) : 81 (<i>E</i>)
2	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 140 mg (0.157 mmol)	EtOH 10 ml	4–Phenyl–1–Butene 2.0 ml (13 mmol)	2 h	Reflux	0: 9(1/0.3):91(<i>E</i>)
3	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 126 mg (0.141 mmol)	EtOH 10 ml	4–Phenyl–1–Butene 2.0 ml (13 mmol)	1 d	Reflux	0:5 (1/0.3):95 (<i>E</i>)
4	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 25 mg (0.028 mmol)	<i>i</i> –PrOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	19 : 56 (1/0.3) : 25 (<i>E</i>)
5	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 29 mg (0.033 mmol)	<i>i–</i> PrOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	4 h	Reflux	0 : 10 (1/0.3) : 90 (<i>E</i>)
6	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 25 mg (0.028 mmol)	CH₃CN 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	74 : 7 (1/1.2) : 19 (<i>E</i>)
7	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 28 mg (0.031 mmol)	CH ₃ CN 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	1 d	Reflux	47 : 15 (1/0.8) : 38 (E)
8	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 25 mg (0.028 mmol)	EtOAc 2.5 ml	4–Phenyl–1–Buten 0.50 ml (3.3 mmol)	e 2 h	Reflux	100:0 :0
9	[({2−CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 26 mg (0.029 mmol)	EtOAc 2.5 ml H ₂ O 0.1 ml	4–Phenyl–1–Buten 0.50 ml (3.3 mmol)	e 2 h	Reflux	92 : 5 (1/1.3) : 3 (<i>E</i>)
10	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 27 mg (0.030 mmol)	benzene 2.5 ml	4–Phenyl–1–Buten 0.50 ml (3.3 mmol)	e 2 h	Reflux	100:0:0
11	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 25 mg (0.028 mmol)	THF 2.5 ml	4–Phenyl–1–Buten 0.50 ml (3.3 mmol)	e 2 h	Reflux	100:0 :0
12	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 28 mg (0.031 mmol)	THF 2.5 ml H ₂ O 0.2 ml	4–Phenyl–1–Buten 0.50 ml (3.3 mmol)	e 2 h	Reflux	95 : 3 (1/1.7) : 2 (<i>E</i>)
13	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 1.8 mg (0.0020 mmol)	THF 0.5 ml HSi(OEt) <u>;</u> 0.042 ml (0.229 mm	4–Phenyl–1–Buten 0.35 ml ₃ (2.3 mmol) ol)	e 1 d	r.t.	0 : 5 (1/1.3) : 95 (<i>E</i>)

Table3-11. アルケンの異性化反応

A = 4-phenyl-1-butene, B = 1-phenyl-2-butene, C = 1-phenyl-1-butene

Table3-II. ノルケンの異性化反応(紡

Entry	/ Catalyst	Solvent	Substrate	time	Temp.	result A : B (<i>E</i> / <i>Z</i>) :C (<i>E</i> / <i>Z</i>)
14	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 10.8 mg (0.012 mmol)	Acetone–d ₆ 0.5 ml	4–Phenyl–1–Butene 0.030 ml (0.20 mmol)	2 h	40 °C	94:4 (1/0.3):2 (<i>E</i>)
15	[({2–CH(CH ₃) ₂ SC ₆ H ₄) ₃ PPdCl]Cl (3a) 23 mg (0.035 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	95 : 1 (1/1.1) : 4 (<i>E</i>)
16	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdCl]BF ₄ (4a) 26 mg (0.036 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	98 : 1 (1/1.0) : 1 (<i>E</i>)
17	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdC]]OTf (11a) 26 mg (0.034 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	98 : 1 (1/1.4) : 1 (<i>E</i>)
18	[((2–CH(CH ₃) ₂ SC ₆ H ₄) ₃ P)PdMe]OTf (12a) 23 mg (0.030 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	0 : 33 (1/0.3) : 67 (<i>E</i>)
19	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdTFA]TFA (15a) ^a 28 mg (0.024 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	17 : 53 (1/1.2) : 30 (<i>E</i>)
20	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdMe]BF ₄ (16a) 20 mg (0.028 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	0 : 33 (1/0.3) : 67 (<i>E</i>)
21[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOH ₂](BF ₄) ₂ (17a 22 mg (0.028 mmol)) EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	0 : 10 (1/0.3) : 90 (<i>E</i>)
22	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)Pd2Me] (5a) 18 mg (0.029 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	98 : 2 (1/0.9) : 0
23	[({2−CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdMeCl] (6a) 21 mg (0.033 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	74 : 13 (1/0.7) : 13 (<i>E</i>)
24	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdMeTFA] (14a) ^a 19 mg (0.026 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	47 : 34 (1/0.2) : 19 (<i>E</i>)
25	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdMeOAc] (18a) 23 mg (0.034 mmol)	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	95 : 3 (1/1.2) : 2 (<i>E</i>)
26	-	EtOH 2.5 ml	4–Phenyl–1–Butene 0.50 ml (3.3 mmol)	2 h	Reflux	100:0:0
27 ^b	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 34 mg (0.038 mmol)	EtOH 2.5 ml	1–hexene 0.50 ml (4.00 mmol)	2 h	Reflux	2 : 86 (0.7/0.3) : 12 (-)
28 ^c	[({2-CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdOTf]OTf (13a) 25 mg (0.028 mmol)	EtOH 2.5 ml	Allylanisol 0.50 ml (3.26 mmol)	2 h	Reflux	2 : 98 (<i>E</i>) : 0

^a: TFA = CF_3COO

A = 4-phenyl-1-butene, **B** = 1-phenyl-2-butene, **C** = 1-phenyl-1-butene

^b: $\mathbf{A} = 1$ -hexene, $\mathbf{B} = 2$ -hexene, $\mathbf{C} = 3$ -hexene, ^c: $\mathbf{A} = Allylanisol$, $\mathbf{B} = 1$ -methoxi-4-(prop-1en-1-yl)benzene, $\mathbf{C} = non$

3-7-3. Mizoroki-Heck クロスカップリング反応

アルゴン置換をしたフラスコにヨードベンゼン 0.25 ml (2.2 mmol)、アクリル酸メチル 0.25 ml (2.8 mmol)、トリエチルアミン 0.31 ml (0.31 mmol)、DMF 10 ml、錯体 0.11 mmol (Table 3-12, Catalyst)を加え 50 ℃で 3 時間撹拌した。反応終了後飽和塩化アンモニウム水溶液を加え、ジエチルエーテルを用いて抽出した。有機層の溶媒を留去し¹H NMR においてケイ皮酸メ チルのメチル基のピーク(3.81 ppm)とヨードベンゼンのピーク(7.05, 7.30, 7.67 ppm)との積分 比により収率を算出した⁸。

Table3-12. Mizoroki-Heck クロスカップリング反応

Entry	Catalyst			Yield
1	$[Pd(CF_{3}SO_{3})P(C_{6}H_{4}-2-SCH(CH_{3})_{2})_{3}]CF_{3}SO_{3} (13a)$)0.097 g	(0.11 mmol)	85%
2	$[Pd(CF_{3}CO_{2})P(C_{6}H_{4}\text{-}2\text{-}SCH(CH_{3})_{2})_{3}]CF_{3}CO_{2}\ (\textbf{15a})^{2}$	a)0.090 g	(0.11 mmol)	7%
3	$[Pd(CH_3)P(C_6H_4-2-SCH(CH_3)_2)_3]CF_3SO_3$ (12a)	0.082 g	(0.11 mmol)	8%
4	[Pd(CH ₃)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CF ₃ CO ₂ (14a)	0.079 g	(0.11 mmol)	4%
5	$[Pd(CH_3)(CH_3CO_2)P(C_6H_4-2-SCH(CH_3)_2)_3]$ (18a)	0.075 g	(0.11 mmol)	9%
6	[Pd(CH ₃)(CH ₃)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃] (5a)	0.066 g	(0.11 mmol)	5%
7	[PdCIP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]Cl (3a)	0.072 g	(0.11 mmol)	-
8	[PdClP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CF ₃ SO ₃ (11a)	0.085 g	(0.11 mmol)	-
9	[PdClP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]BF ₄ (4a)	0.076 g	(0.11 mmol)	-

3-7-4. ジクロロパラジウム錯体 3aのイソプロピル基脱離反応の反応速度測定

ジクロロパラジウム錯体 3a と CDCl₃をアルゴン置換した NMR チューブに入れ、恒温槽を 用いて Table 3-13 に示した温度で加熱した。約1時間ごとに氷浴させて反応の進行を止めた 後に NMR を用いて反応の追跡を行った。イソプロピル基のメチンのピークの比から原料 3a と生成物 8a の割合を算出した。

Table3-13. パラジウム錯体 3a のイソプロピル基の脱離反応

Entry	[({2–CH(CH ₃) ₂ SC ₆ H ₄ } ₃ P)PdCI]Cl	CDCI ₃	Temp.
1	9.7 mg (0.015 mmol)	1.0437 g	40°C
2	7.7 mg (0.012 mmol)	1.0086 g	45°C
3	8.3 mg (0.013 mmol)	0.8929 g	50°C
4	9.6 mg (0.015 mmol)	0.9889 g	55°C
5	9.4 mg (0.015 mmol)	0.8876 g	60°C

参考文献

1) a) G. Gatti, J. A. Lo'pez, C. Mealli, A. Musco, *J. Organomet. Chem.*, **483**, 77–79 (1994); b) S. Stro'mberg, M. Oksman, L. Zhang, K. Zetterberg, *Acta chem. Scandinavica*, **49**, 689–695 (1995).

2)M. Hassam, A. Taher, G. E. Arnott, I. R. Green, W. A. L. van Otterlo, *Chem. Rev.*, **115**, 5462–5569 (2015).

3) a) L. T. N. Chuc, C. Chen, W. Lo, P. Shen, Y. Hsuan, H. Gavin, F. Shieh, D. Hou, ACS Omega, 2,

698–711 (2017); b) M. Hassam, A. Taher, G. E. Arnott, I. R. Green, W. A. L. van Otterlo, *Chem. Rev.*, **115**, 5462–5569 (2015).

4) R. H. Heck, *Palladium-Catalyzed Vinylation of Organic Halides*, Organic Reactions Vol 27, 345–390, Devision of Organic Chemistry (1982).

5) N. Takeda, Y. Tanaka, R. Oma, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, **89**, 922-930 (2016).

6) P. Atkins, J. Paula, アトキンス物理化学, 東京化学同人 (2009).

7) R. J. Abraham, M. Canton, L. Griffiths, *Magn. Reson. Chem.*, **39**, 421–431 (2001); C. Yang, C. He, *J. Am. Chem. Soc.*, **127**, 1966–1967 (2005); SDBSWeb: https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, August 2019); J. M. Concellón, H. Rodríguez-Solla, C. Simal, M. Huerta, *Org. Lett.*, **7**, 5833–5835 (2005).

8) SDBSWeb: https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, August 2019).

第四章

tert-ブチル基を有する PS₃型三脚型四座配位子を用いた 10族金属錯体の合成

4-1. 序

第二章において、イソプロピル基を有する三脚型四座配位子 **1a** を有するジメチルパラジ ウム錯体 **5a** に酸を反応させることにより種々の錯体を合成することに成功した。類似の *tert*-ブチル基を有する三脚型四座配位子 **1b** においても同様の反応が進行し、種々の錯体の 合成が可能となることが期待される。しかしながら、配位子 **1b** を[PdCl₂(PhCN)₂]と反応さ せた場合には、*tert*-ブチル基が一つ脱離して中性のクロロパラジウム錯体 **8b** が生成するこ とが知られている (Scheme 4-1)¹⁾。一方、ジクロロパラジウム錯体[PdCl{P(C₆H₄-2-*i*-Pr)₃}]Cl (**3a**)では加熱することにより *i*-PrCl の脱離が進行するのに対し、**3a** のアニオン交換した錯体 [PdCl{P(C₆H₄-2-*i*-Pr)₃}]BF₄ (**4a**)が同条件下で安定であることが知られている¹⁾。このことか ら、低温で反応を行うことにより *tert*-ブチル基の脱離を抑えてジクロロパラジウム錯体 **3b** の合成ができ、加えてカウンターアニオンを導入することにより *tert*-ブチル基の脱離を抑制 することができると期待される。そこで本章では、*tert*-ブチル基が脱離していないカチオン 性パラジウム錯体 [PdCl{P(C₆H₄-2-*t*-Bu)₃]X (**4b**: X = BF₄, **11b**: X = OTf) の合成とそれらを 用いた種々のパラジウム錯体の合成を目指した。

Scheme 4-1. 配位子 1b と [PdCl₂(PhCN)₂]との反応.

4-2. カチオン性クロロパラジウム錯体 4b, 11b の合成

まずジクロロパラジウム錯体 3b の合成検討を行った。ジクロロメタンを溶媒として0℃で1日ジクロロビスベンゾニトリルパラジウムと配位子 1b を反応させたところ、³¹P NMR にて 105.1 ppm と 73.7 ppm にピークが観測された。このうち 73.7 ppm のピークは *tert*-ブチル基が脱離した錯体 8b のピークであり、105.1 ppm のピークは目的のジクロロパラジウム 錯体 3b のピークと考えられる。再結晶による精製を試みたものの、ジクロロパラジウム錯体 3b を単離することはできなかった。しかし ³¹P NMR においてジクロロパラジウム錯体 3b と思われるピークが観測されたことから、*tert*-ブチル基が脱離したパラジウム錯体 8b は ジクロロパラジウム錯体 3b が形成されてから生成している可能性が高いと考えられる。

続いてカウンターアニオンをトリフラートとテトラフルオロボーレートに変えたカチオン性パラジウム錯体 4b, 11b の合成検討を行った。空気下室温でジクロロメタン中1日間、ジクロロビスベンゾニトリルパラジウムと対応するナトリウム塩、配位子 1b を反応させ、ろ過により生成した固体を取り除いた後に溶媒を留去したところ、目的の錯体を赤色固体として収率 97%(錯体 4b)、81%(錯体 11b)で得た (Scheme 4-2)。本反応においては tert-ブチ

ル基の脱離は進行せず、目的の錯体が選択的に得られた。この反応はイソプロピル基を有 する場合の反応とほぼ同一の結果を得た。

Scheme 4-2. カチオン性クロロパラジウム錯体の合成.

4-3. ジメチルパラジウム錯体の合成

イソプロピル基を有するカチオン性クロロテトラフルオロボーレートパラジウム錯体 4a はメチルリチウムと反応させることにより中性ジメチルパラジウム錯体 5a を与えることが 明らかとなっている¹⁾。そこで *tert*-ブチル基を有するカチオン性クロロテトラフルオロボー レートパラジウム錯体 4b でも同様の反応が進行するかについて検討を行った。

アルゴン下ベンゼン中室温でカチオン性クロロテトラフルオロボーレートパラジウム錯体 4b に 3 当量のメチルリチウムを滴下し 15 分反応させたところ、ジメチルパラジウム錯体 5b を白色固体として収率 75%で得た (Scheme 4-3)。ベンゼンとヘキサンを用いた再結晶 により無色単結晶が得られたため、X 線結晶構造解析により結晶中での構造を明らかにした結果、錯体 5b は中性の平面四配位錯体であることが明らかとなった。錯体 4b はイソプロ ピル基を有する錯体と同様の条件で合成され、構造も類似していることが明らかとなった。

Scheme 4-3. ジメチルパラジウム錯体 5b の合成.

4-4. ジメチルパラジウム錯体と酸との反応

第二章において、イソプロピル基を有するジメチルパラジウム錯体 5a は酸との反応にお いて種々のモノメチルパラジウム錯体や二つのメチル基が置換したパラジウム錯体を生成 すると述べた。そこで tert-ブチル基を有するジメチルパラジウム錯体 5b についても同様の 反応が進行するかについて検討を行った。 ジメチルパラジウム錯体 5b と1 当量のトリフルオロメタンスルホン酸をベンゼン中空気下 室温で 30 分反応させることにより黄色固体を得た (Scheme 4-4)。¹H NMR においてカチオ ン性メチルトリフラートパラジウム錯体 12b と思われるピークが主となる 2 種類の錯体の 混合物と思われるピークが得られた。さらにジメチルパラジウム錯体 5b と 2 当量のトリフ ルオロメタンスルホン酸をベンゼン中空気下で 30 分反応させるとベンゼンに不溶の赤色固 体が生成するした。この生成物を Acetone-d₆を用いて NMR により測定すると溶媒に溶けに くいため ³¹P NMR ではピークが観測できず、¹H NMR、¹⁹F NMR において錯体らしきピーク が観測された。しかし 2 時間ほどそのまま静置すると溶液の濃度が上がり ³¹P NMR におい てピークが観測されるものの ¹H NMR のピークは最初に測定したものと異なっており、錯 体が変化したことが示唆された。¹H NMR の積分比から最初に生成した錯体は 5b の二つの メチル基がトリフラートに置換した錯体 13b であると考えられる。一方時間を置いて観測 された錯体のピークは *tert*-ブチル基に由来するピークの積分値が約 18H になっており、一 つの *tert*-ブチル基が脱離した錯体 23b であると考えられた。しかしどちらの錯体も単離に はいたっていない。

Scheme 4-4. ジメチルパラジウム錯体 5b とトリフルオロメタンスルホン酸との反応.

ー当量の塩酸とジメチルパラジウム錯体 5b をベンゼン中室温空気下で 30 分反応させ、 溶媒を留去した後にクロロホルムとヘキサンを用いて再沈殿を行うと橙色の固体を得た。 ³¹P NMR、¹H NMR よりこの固体は中性メチルクロロパラジウム錯体 6b であることが示唆 された (Scheme 4-5)。

Scheme 4-5. ジメチルパラジウム錯体 5b と塩酸、テトラフルオロホウ酸、酢酸との反応.

また、ジメチルパラジウム錯体 5b を1当量のテトラフルオロホウ酸水溶液とベンゼン中空 気下室温で1日反応させることによりカチオン性テトラフルオロホウ酸メチルパラジウム 錯体 16b が生成した (Scheme 4-5)。

さらに、ジメチルパラジウム錯体 5b を一当量の酢酸と1日反応させた。溶媒を留去しアセトンとヘキサンを用いた再結晶によりメチルアセトキシパラジウム錯体 18b を橙色結晶として収率 81%で得た(Scheme 4-5)。

一方、二当量の塩酸やテトラフルオロホウ酸、酢酸と反応させたところ想定していた二つのメチル基が置換された錯体は生成せず、一当量の場合と同様にモノメチルパラジウム錯体 **6b**, **16b**, **18b** が得られた (Scheme 4-5)。

またベンゼンチオールと反応させると配位子 1b が生成する結果となり、錯体が分解して いることが示唆された。トリフルオロ酢酸、フェノール、メタノールとの反応においては 複雑な反応混合物が観測され単離同定にはいたらなかった。

イソプロピル基を有するジメチルパラジウム錯体 5a と酸との反応の場合と比較すると tert-ブチル基を有するジメチルパラジウム錯体 5b と酸との反応では複雑な反応混合物を生 成する場合が多々あった。一つの原因として考えられるのは tert-ブチル基がイソプロピル基 よりもカルボカチオンとして安定であるため脱離し易いということである。二当量のトリ フルオロメタンスルホン酸との反応において時間経過と共に tert-ブチル基が脱離した錯体 23b が生成していることから反応混合物のうちのいくつかは tert-ブチル基が脱離した錯体 である可能性が高いのではないかと考えられる。またモノメチル錯体のメチル基の反応性 にも差が見られる。一当量の塩酸及びトリフルオロメタンスルホン酸との反応において tert-ブチル基を有する錯体ではメチルクロロ錯体 6b とメチルテトラフルオロボラート錯体 16b が合成されたものの、二当量の場合においても同様のモノメチル錯体が生成することが明 らかとなっている。イソプロピル基を有するジメチルパラジウム錯体 5a の系においては一 当量において生成物は類縁体 6a であるものの二当量では二つのメチル基が置換した錯体 3a が生成すると明らかになっている。

4-5. まとめ

terr-ブチル基を有する三脚型四座配位子1bを用いてカチオン性クロロパラジウム錯体4b, 11bを合成した。また錯体4bを用いてジメチルパラジウム錯体5bを合成した。これらはイ ソプロピル基を有する三脚型四座配位子1aを有するパラジウム錯体と同様の反応であった。 錯体5bと酸との反応においては塩酸、トリフルオロメタンスルホン酸、テトラフルオロホ ウ酸、酢酸を1当量用いた場合にはイソプロピル類縁体であるジメチルパラジウム錯体5a の場合と同様にモノメチルパラジウム錯体が得られた。一方トリフルオロメタンスルホン 酸を2当量用いた場合においては2つのメチル基が置換されたカチオン性パラジウム錯体 13bらしきピークは観測されたものの、同定にはいたらず、また溶媒と共存させ時間が経過 すると tert-ブチル基が脱離することが示唆された。塩酸とテトラフルオロホウ酸を二当量用 いた場合においては一当量の場合と同様のモノメチルパラジウム錯体が得られた。ベンゼ ンチオールを用いた場合においては配位子が、トリフルオロ酢酸やフェノール、メタノー ルを用いた場合においては複雑な反応混合物が観測され、5aと5bでは反応性や錯体の安定 性に差があることが示された。

4-6. 実験項

4-6-1. [PdClP(C₆H₄-2-SC(CH₃)₃)₃]BF₄ (4b)の合成

フラスコにトリス(*tert*-ブチルチオフェニル)ホスフィン (**1b**) 2.120 g (4.02 mmol)、[ビスベ ンゾニトリルジクロロパラジウム(Ⅱ)] 1.413 g (3.68 mmol)、NaBF₄ 4.782 g (43.6 mmol)、ジク ロロメタン 50 ml を加え、室温で1日間撹拌し、減圧下溶媒を留去した。得られた固体をク ロロホルム/ヘキサンにより再沈殿させ、赤色固体を得た。収量は 2.705 g (97%)であった。 Red solid, 145℃ (decmp.)

¹H NMR (CDCl₃, 400 MHz): δ 1.26 (s, 27 H), 7.70 (t, ³*J*_{HH} = 7.6 Hz, 3 H), 7.79 (dd, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 3.0 Hz, 3 H), 7.96 (td, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 2.0 Hz, 3 H), 8.53 (dd, ³*J*_{HH} = 7.6 Hz, ³*J*_{HP} = 9.7 Hz, 3 H) ppm.

¹⁹F NMR (CDCl₃, 389 MHz): δ [-152.6, -152.6] (s, 4 F) ppm.

³¹P NMR (CDCl₃, 162 MHz): δ 104.6 (s) ppm.

Anal. Calcd for C₃₀H₃₉BClF₃PPdS₃ • H₂O: C, 46.58; H, 5.34%. Found: C, 46.73; H, 5.16%.

4-6-2. [PdClP(C₆H₄--2-SC(CH₃)₃)₃]CF₃SO₃ (11b)の合成

フラスコにトリス(*tert*-ブチルチオフェニル)ホスフィン (**1b**) 0.112 g (0.21 mmol)、[ビスベ ンゾニトリルジクロロパラジウム(II)] 0.068 g (0.18 mmol)、ナトリウムトリフラート 0.367 g (2.13 mmol)、ジクロロメタン 5 ml を加え、0 度で1日間撹拌し、減圧下溶媒を留去した。 得られた固体をクロロホルム/ヘキサンにより再沈殿させ、赤色固体を得た。収量は 0.120 g (81%)であった。

Red solid, 149°C (decmp.)

¹H NMR (CDCl₃, 400 MHz): δ 1.26 (s, 27 H), 7.70 (td, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 1.4 Hz, 3 H), 7.80 (dd, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HH} = 3.4 Hz, 3 H), 7.97 (td, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HH} = 2.5 Hz, 3 H), 8.63 (dd, ³*J*_{HH} = 7.4 Hz, ³*J*_{HP} = 9.6 Hz, 3 H) ppm.

¹⁹F NMR (CDCl₃, 389 MHz): δ -77.9 (s) ppm.

³¹P NMR (CDCl₃, 162 MHz): δ 104.6 (s) ppm.

Anal. Calcd for C₃₁H₃₉ClF₃O₃PPdS₄ • H₂O: C, 44.55; H, 4.94%. Found: C, 44.24; H, 4.59%.

4-6-3. [Pd(CH₃)₂P(C₆H₄-2-SC(CH₃)₃)₃] (5b)の合成

アルゴン置換をしたフラスコに[クロロトリス(tert-ブチルチオフェニル)ホスフィンパラ ジウム(II)]テトラフルオロボーレート (**4b**) 0.106 g (0.16 mmol)、ベンゼン 5ml を加え、メチ ルリチウム 1 ml (0.42 mmol)を滴下した。室温で 15 分撹拌し溶媒を留去した。目的物をベン ゼンに溶解させ固体を吸引ろ過により取り除いた後再度溶媒を留去し無色結晶を得た。収 量は 0.082 g (75%)であった。

Colorless crystal, 180°C (decmp.)

¹H NMR (CDCl₃, 400 MHz): δ 1.22 (s, 27 H), 1.28 (d, ³*J*_{HP} = 7.1 Hz, 3 H), 1.44 (d, ³*J*_{HP} = 8.0 Hz, 3 H), 6.82 (t, ³*J*_{HH} = 7.6 Hz, 3 H), 6.92 (t, ³*J*_{HH} = 7.6 Hz, 3 H), 7.30 (t, ³*J*_{HH} = 7.6 Hz, 3 H), 7.57 (dd, ³*J*_{HH} = 7.6 Hz, ³*J*_{HP} = 3.7 Hz, 3 H) ppm.

³¹P NMR (CDCl₃, 162 MHz): δ 34.5 (s) ppm.

Anal. Calcd for C₃₂H₄₅PPdS₃: C, 57.94; H, 6.84%. Found: C, 57.82; H, 6.60%.

4-6-4. [PdCl(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃] (6b)の合成

フラスコに[ジメチルトリス(tert-ブチルチオフェニル)ホスフィンパラジウム(Ⅱ)] (5b) 0.046 g (0.069 mmol)、ベンゼン 3 ml を加え、塩酸 5 µl を滴下した (0.057 mmol)。室温で 30 分撹拌し、溶媒を留去した。橙色固体を収量 0.030 g 得た。NMR により目的物の生成が示 唆されたものの、元素分析の値が大きくずれているため単離にはいたっていない。

Orange solid, 184°C (decmp.)

¹H NMR (CDCl₃, 400 MHz): δ 1.20 (s, 27 H), 1.64 (d, ³*J*_{HP} = 3.2 Hz, 3 H), 1.49 (s, 3 H) , 6.82 (t, ³*J*_{HH} = 7.4 Hz, 3 H) , 6.91 (t, ³*J*_{HH} = 7.4 Hz, 3 H) , 7.46 (dd, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HH} = 3.8 Hz, 3 H), 7.98 (dd, ³*J*_{HH} = 7.4 Hz, ³*J*_{HP} = 11.0 Hz, 3 H) ppm.

³¹P NMR (CDCl₃, 162 MHz): δ 56.4 (s) ppm.

Anal. Calcd for C₃₁H₄₂ClPPdS₃: C, 54.46; H, 6.19%. Found: C, 52.83; H, 5.89%.

4-6-5. [Pd(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃]CF₃SO₃ (12b)の合成

フラスコに[ジメチルトリス(*tert*-ブチルチオフェニル)ホスフィンパラジウム(II)] (5b) 0.058 g (0.087 mmol)、ベンゼン 1 ml を加え、ベンゼン 2 ml にトリフルオロメタンスルホン 酸 0.0065 ml (0.073 mmol) を加えたものを滴下した。室温で 30 分撹拌し、析出した黄色固 体を吸引ろ過により得た。収量は 0.047 g であった。NMR により目的物と思われるピーク が以下の通り観測されたものの ¹H NMR において 8.1–8.5 ppm.に別の化合物と考えられる目 的物の 10%程度の積分比のピークが観測され、単離にはいたっていない。

Yellow solid, 105.6 °C (decomp.)

¹H NMR (Acetone- d_6 , 400 MHz): δ 0.89 (d, ³ J_{HP} = 8.7 Hz, 3 H), 1.17 (s, 27 H), 7.77 – 7.87 (m, 6 H), 8.03 (dd, ³ J_{HH} = 7.6 Hz, ⁴ J_{HH} = 3.7 Hz, 3 H), 8.67 (t, ³ J_{HH} = 7.6 Hz, 3 H), ppm.

¹⁹F NMR (Acetone-*d*₆, 389 MHz): δ -78.7 (s) ppm.

³¹P NMR (Acetone-*d*₆, 162 MHz): δ 93.7 (s) ppm.

4-6-6. [Pd(CF₃SO₃)P(C₆H₄-2-SC(CH₃)₃)₃]CF₃SO₃ (13b)の合成検討

フラスコに[ジメチルトリス(*tert*-ブチルチオフェニル)ホスフィンパラジウム(II)] (5b) 0.044 g (0.063 mmol)、ベンゼン 2 ml を加え、トリフルオロメタンスルホン酸 0.014 ml (0.15 mmol)を滴下した。室温で 30 分撹拌し、析出した赤色固体を吸引ろ過により得た。

4-6-7. [Pd(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃] BF₄ (16b)の合成

フラスコに[ジメチルトリス(*tert*-ブチルチオフェニル)ホスフィンパラジウム(II)] (5b) 0.054 g (0.081 mmol)、ベンゼン 5 ml を加え、テトラフルオロホウ酸水溶液 0.0115 ml (0.072 mmol)を滴下した。室温で1日撹拌し、析出した黄色固体を吸引ろ過により得た。収量は 0.043 g であった。NMR により目的物と思われるピークが以下の通り観測されたものの¹H NMR において 7.4–8.5 ppm.に別の化合物と考えられる目的物の 20%程度の積分比のピークが複数観測され、単離にはいたっていない。

Yellow solid, 105.6 $^{\circ}$ C (decomp.).

¹H NMR (Acetone- d_6 , 400 MHz): δ 0.86 (d, ³ J_{HP} = 8.9 Hz, 3 H), 1.14 (s, 27 H), 7.74 – 7.85 (m, 6 H), 8.00 (dd, ³ J_{HH} = 7.2 Hz, ⁴ J_{HH} = 3.5 Hz, 3 H), 8.63 (t, ³ J_{HH} = 7.2 Hz, 3 H), ppm.

¹⁹F NMR (Acetone-*d*₆, 389 MHz): δ [-152.6, -152.6] (s, 4 F) ppm.

³¹P NMR (Acetone-*d*₆, 162 MHz): δ 93.7 (s) ppm.

4-6-8. [Pd(CH₃COO)(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃] (18b)の合成

フラスコに[ジメチルトリス(*tert*-ブチルチオフェニル)ホスフィンパラジウム(Ⅱ)] (5b) 0.052 g (0.078 mmol)、ベンゼン 5 ml を加え、酢酸 0.004 ml (0.070 mmol)を滴下した。室温で 1 日撹拌し、析出した橙色固体を吸引ろ過により得た。収量は 0.040 g (81%)であった。 Orange solid, 133.5 ℃ (decomp.). ¹H NMR (benzene- d_6 , 400 MHz): δ 1.12 (s, 27 H), 1.41 (d, ${}^{3}J_{HP} = 2.3$ Hz, 3 H), 1.49 (s, 3 H), 6.81-6.92 (m, 6 H), 7.38 (ddd, ${}^{3}J_{HH} = 7.3$ Hz, ${}^{4}J_{HH} = 3.9$ Hz, ${}^{4}J_{HP} = 1.4$ Hz, 3 H), 8.22 (brt, ${}^{3}J_{HH} = 9.0$ Hz, 3 H), ppm.

 ^{31}P NMR (benzene-d₆, 162 MHz): δ 58.1 (s) ppm.

Anal. Calcd for C₃₃H₄₅O₂PPdS₃ • 3/2 H₂O: C, 53.98; H, 6.59%. Found: C, 53.94; H, 6.36%.

参考文献

a) N. Takeda, Y. Tanaka, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, 83, 157-164 (2010);
b) N. Takeda, Y. Tanaka, R. Oma, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, 89, 922-930 (2016).

第五章

錯体の構造

5-1. 序

合成した錯体の構造を明らかにするために再結晶により単結晶を作成し、X線結晶構造解 析により結晶中での構造を明らかにした。本章ではそれらの構造の詳細について比較、議 論を行う。

また、1-2-2 (Figure 1-3)において述べたように、NS₃型三脚型四座配位子を有する錯体に おいて、溶液中チオエーテル部位の分子内配位子交換反応が進行すると中島らによって報 告されている¹⁾。本錯体においてもチオエーテル部位の分子内配位子交換反応が進行してい るとNMR より示唆されため、温度可変 NMR を測定し、その動的挙動について検討した。 さらに、NMR 及び X 線結晶構造解析から NMR の値と構造には密接な関係があると示唆さ れたため、NMR より構造の推定を行った。

5-2. X線結晶構造解析による結晶中での構造

ニッケル錯体 10a 及びパラジウム錯体 3a、5b、6a、11a、11b、12b、13a、15a、17a、18a について X 線結晶構造解析によりその結晶中での構造を明らかとした。

まずニッケル錯体について述べる。ニッケル錯体 10a は、エックス線結晶構造解析により、その構造が明らかとなった(Figure 5-1)。以下にその金属周りの結合長と結合角並びに比較のため PS₃型三脚型四座配位子を有するテトラフルオロホウ酸ニッケル錯体 2a の結果を示す(Table 5-1)。2a はすでに X 線結晶構造解析により構造が明らかとされている²⁾。

Figure 5-1. 錯体 10a の ORTEP 図と 2a の構造.

	10a	2a ²⁾
Ni(1)–P(1)	2.1174(15)	2.1108(7)
Ni(1)–S(1)	2.3095(17)	2.3510(7)
Ni(1)–S(2)	2.2552(15)	2.2454(7)
Ni(1)–S(3)	2.2565(18)	2.2678(7)
Ni(1)-Cl(1)	2.2476(15)	2.2437(7)
P(1)-Ni(1)-S(1)	88.47(6)	87.50(3)
P(1)–Ni(1)–S(2)	88.42(6)	87.23(3)
P(1)–Ni(1)–S(3)	88.07(6)	86.98(2)
P(1)-Ni(1)-Cl(1)	177.82(7)	178.60(3)
S(1)–Ni(1)–S(2)	116.08(6)	119.03(3)
S(2)–Ni(1)–S(3)	122.69(7)	130.74(3)
S(3)–Ni(1)–S(1)	120.97(6)	109.53(3)

Table 5-1. ニッケル錯体 2a, 10a の結合長 (Å)、結合角 (°)

²⁾: N. Takeda, Y. Tanaka, F. Sakakibara, M. Unno, *Bull. Chem. Soc. Jpn.*, 83, 157-164 (2010).

両錯体とも五配位構造をとり、金属周りの構造に大きな違いは無い。じっさいに NMR に おいてもリンやプロトンのシフト値に大きな変化は見られなかった。一つのチオエーテル-ニッケル結合が長く(Table 5-1、Ni(1)-S(1) 2.3095Å)、その対面の角が広くなっていること (Table 5-1、S(2) –Ni(1)–S(1) 122.69°)、三つの硫黄からなる平面よりニッケル原子が塩素原子 側によっている構造をとっている(Table 5-1、P–Ni–S < 90°)ことから、ゆがんだ三方両錐型 構造をとっていることがわかる。

続いてパラジウム錯体について述べる。3aの平面四配位構造の異性体及び4a、5aについてはすでにX線結晶構造解析による構造が報告されている²⁾。本研究において著者は、錯体3aは再結晶条件の違いにより平面四配位構造とカチオン性三方両錐型構造が作り分けられることを見出した。ヘキサンと酢酸エチルを用いて再結晶を行うと平面四配位構造が、ヘキサンとクロロホルムを用いて水を添加し再結晶を行うと三方両錐型構造が生成する。この三方両錐型構造を形作る際に系中の水がカウンターアニオンであるクロロの周りに集まり、カウンターアニオンを安定化することがX線結晶構造解析により明らかとなった(Figure 5-2)。再結晶条件の違いにより異なる錯体が観測される例はほとんど無く、2013年にArenaza-Corona らが1,10-diaza-18-crown-6を有するジクロロパラジウム錯体のトランス-シン、トランス-アンチ、シス-シンの3種類の錯体を作り分けたものが報告されているが³⁾、四配位パラジウム錯体と5配位パラジウム錯体のつくりわけはこれまでに報告されていない。この結果は、中性の四配位パラジウム錯体とカチオン性5配位パラジウム錯体の平衡を再結晶溶媒により制御して結晶化させた初めての例であり、極めて興味深い。

カチオン性パラジウム錯体 3a、11a、11b、12b、13a、15a、17a 並びにジカチオン性パラ ジウム錯体 18a の構造 (Figure 5-2) とそれらのパラジウム周りの結合長と結合角 (Table 5-2) を以下に示す。比較のため 4a の結果 ²⁾も併記する。

Figure 5-2. カチオン性パラジウム錯体 3a、11a、11b、12b、13a、15a、およびジカチオン性 パラジウム錯体 17a の ORTEP 図と 4a の構造.

Table 5-2. カチオン性パラジウム錯体 3a、4a、11a、11b、12b、13a、15a、およびジカチオン性パラジウム錯体 17a の結合長(Å)と結合角(°)

	3a	4a ²⁾	11a	11b	12b	13a	15a	17a
Pd(1)-L(1)/Å	2.3893(17)	2.3768 (11)	2.3854 (10)	2.359(2)	2.108(5)	2.152(4)	2.105(5)	2.114(2)
Pd(1)–P(1)/Å	2.1754(16)	2.1700 (11)	2.1805 (9)	2.1603(19)	2.2245(12)	2.1619(15)	2.1726(19)	2.1723(7)
Pd(1)–S(1)/Å	2.4663(14)	2.5840 (11)	2.6093 (10)	2.4392(18)	2.4437(8)	2.6159(17)	2.4783(19)	2.3495(7)
Pd(1)–S(2)/Å	2.4628(14)	2.3893 (12)	2.3798 (9)	2.5024(19)	-	2.3461(15)	2.3970(19)	2.3319(7)
Pd(1)–S(3)/Å	2.3988(17)	2.3685 (12)	2.3452 (11)	2.499(2)	-	2.4140(15)	2.445(2)	3.104
P(1)-Pd(1)-L(1)/°	178.79(6)	179.54 (4)	178.33 (4)	178.79(8)	180.0	172.78(15)	172.02(14)	177.30(7)
S(1)-Pd(1)-S(2)/°	112.22(5)	106.62 (4)	107.43 (3)	124.10(6)	119.295(5)	116.80(6)	118.44(6)	164.37(2)
S(2)-Pd(1)-S(3)/°	124.07(5)	135.03 (4)	133.09 (4)	115.00(6)	119.297(5)	133.68(6)	124.56(7)	-
S(1)-Pd(1)-S(3)/°	122.30(4)	116.59 (4)	118.26 (4)	118.53(7)	119.295(5)	108.16(6)	115.64(7)	-
P(1)-Pd(1)-S(1)/°	85.85(5)	84.38 (4)	84.77 (3)	85.37(7)	85.157(18)	83.88(6)	85.73(6)	87.61(3)
P(1)-Pd(1)-S(2)/°	86.44(6)	86.33 (4)	87.41 (3)	84.91(7)	-	86.68(6)	86.55(7)	84.72(3)
P(1)-Pd(1)-S(3)/°	85.91(5)	86.05 (4)	84.87 (4)	84.31(7)	-	87.54(6)	86.04(7)	-
L(1)-Pd(1)-S(1)/°	93.59(5)	94.33(4)	96.04(4)	93.46(7)	94.843(18)	102.46(15)	99.63(14)	93.23(7)
L(1)-Pd(1)-S(2)/°	92.96(6)	95.22(4)	90.96(3)	96.03(8)	94.841(18)	87.35(14)	85.70(14)	93.85(7)
L(1)-Pd(1)-S(3)/°	95.30(5)	93.57(4)	94.01(4)	95.98(8)	94.841(18)	93.66(14)	96.82(15)	-

²⁾: N. Takeda, Y. Tanaka, F. Sakakibara, M. Unno, *Bull. Chem. Soc. Jpn.*, 83, 157-164 (2010).

これらの錯体はジカチオン性の錯体 17a をのぞき三方両錐形構造を有する。錯体 3a、4a、 11a はそれぞれパラジウム上にクロロ基を有し、カウンターアニオンがそれぞれクロロ、テ トラフルオロボーレート、トリフラートのものである。各錯体のパラジウム上のクロロ基 とパラジウムの距離はカウンターアニオンの違いではほぼ変わらないことが明らかとなっ た。11a と 11b はチオエーテル上の置換基がイソプロピル基と tert-ブチル基である。パラジ ウムーチオエーテル間の結合距離に着目すると、11b は結合距離が長くなっていることが分 かる。また 11b ではの S-Pd-S 結合角がより 120 度に近づいている。さらにクロロとパラジ ウム及びリンとパラジウムの結合距離が短くなっている。これは tert-ブチル基の立体障害に より硫黄原子とパラジウムの結合が弱くなったことに起因すると考えられる。12b は錯体中 心に三回対称軸が存在しているため、3つの硫黄原子は等価である。13a、15a は共に 4a、 11a と同様な傾向をしめしていることが明らかとなった。

ジカチオン性錯体 17a は S-Pd-S 結合間の角が 164 度と平面四配位の錯体としては小さい。 一方リンと酸素間の角は 177 度とほぼ直線であり、四面体構造ではないことがわかる。金 属と結合していない硫黄とパラジウムとの距離は 3.104 Å であり、ファンデルワールス半径 ⁴⁾の和である 3.85 Å よりも小さく相互作用があることが示唆される。この相互作用により、 本錯体は平面四配位構造が三方両錐型構造の方へ近づくようにしてゆがんだ構造となった と考えられる。

いずれの錯体においても Pd-P の結合距離は一般的な Pd-P(Ph)3の結合距離の 2.308Å より も短いことが明らかとなった。加えて Pd-S の結合距離は一般的な Pd-SR2 の結合距離の 2.295Å よりも長いことが明らかとなった ⁵⁾。さらに P-Pd-S 結合間の結合角はいずれも 90 度を下回っている。リンと硫黄がベンゼン環で繋がれているため、その成す角や距離が束 縛される。パラジウムを挟んだリンと硫黄の結合角が 90 度になるとリンとパラジウムが近 づきすぎるためにこのような現象が起こっていると考えられる。イソプロピル基を有する 錯体では一つの Pd-S の結合長が長くその対面の角が広くなる傾向があったが、tert-ブチル 基を有する系では Pd-S の結合長は全体的に長めになったうえでそれぞれの差が小さくなり、 3 つの S-Pd-S 結合間の角もほぼ同じ値となっている。これは tert-ブチル基間やパラジウム 上のクロロ基やメチル基との立体反発によりチオエーテル部位がパラジウムから離れたた めであると考えている。

最後に中性錯体について述べる。比較のため、5aの結果¹⁾も併記する(Table 5-3, Figure 5-3)。

	5b	5a	6a	18a
Pd(1)–L(1)/Å	2.0553(17)	2.067(6)	2.058(9)	2.0448(18)
Pd(1)–L(2)/Å	2.1039(16)	2.088(6)	2.371(3)	2.1124(13)
Pd(1)–S(1)/Å	2.3761(6)	2.3894(15)	2.405(3)	2.4104(5)
Pd(1)–P(1)/Å	2.3234(5)	2.3107(14)	2.230(3)	2.2159(5)
$P(1)-Pd(1)-L(2)/^{\circ}$	178.24(5)	177.5(2)	176.47(11)	170.76(4)
$S(1)-Pd(1)-L(1)/^{\circ}$	167.59(5)	172.90(19)	174.3(3)	175.96(6)
$P(1)-Pd(1)-S(1)/^{\circ}$	86.29(2)	84.27(5)	86.33(9)	85.627(18)
$P(1)-Pd(1)-L(1)/^{\circ}$	97.74(5)	98.2(2)	94.7(3)	94.93(6)
L(2)-Pd(1)-L(1)/°	84.01(7)	84.2(3)	88.1(3)	85.40(7)
$S(1)-Pd(1)-L(2)/^{\circ}$	91.96(5)	93.2(2)	91.16(9)	93.41(4)

Table 5-3. 中性パラジウム錯体 5a、5b、6a、18a の結合長 (Å) と結合角 (°)

Figure 5-3. 中性パラジウム錯体 5b、6a、18aの ORTEP 図と 5aの構造.

これらの錯体は平面四配位構造をとっている。まず 5a と 5b を比較すると 5a の方が S-Pd-C

の角が広くなっている。5b はチオエーテル上に tert-ブチル基を有しておりイソプロピル基 よりもより嵩高くなっているため、その立体障害により、より構造がゆがんだと考えられ る。また両錯体ともリンのトランス位の炭素とパラジウムの結合が硫黄のトランス位の炭 素との結合距離より長くなっている。これはリンと硫黄のトランス影響の違いのためであ ると考えられる。6a は P(1)-Pd(1)-Cl(1)の角度及び S(1)—Pd(1)-C(1)の角度がほぼ 180 度であ りパラジウム周りの角がすべてほぼ 90 度であることから平面四配位構造であるといえる。 18a は P(1)-Pd(1)-O(1)の角度及び S(1)—Pd(1)-C(1)の角度がほぼ 180 度でありパラジウム周り の角がすべてほぼ 90 度であることから平面四配位構造であるといえる。

Pd-Pの結合距離は一般的な Pd-P(Ph)₃の結合距離の 2.308Å と比較し錯体 5 では長く、錯体 18a では短くなっていることが明らかとなった。加えて Pd-S の結合距離は一般的な Pd-SR₂の結合距離の 2.295Å よりも長いことが明らかとなった⁵。特に錯体 18a では錯体 5 と比較してもより長くなっている。これはメチル基とアセチル基の大きさの違いによるイソプロピル基との立体反発の大きさの違いに起因すると考えられる。また錯体 5a と 5b でもPd-S 結合の結合距離に差ができた。これはチオエーテル上の tert-ブチル基とイソプロピル 基の大きさの違いによるメチル基との立体反発の大きさの違いに起因すると考えられる。

5-3. 溶液中での構造

パラジウム錯体 5a、13a、白金錯体 9a については温度可変 NMR を測定し、溶液中での 錯体の挙動について明らかにすることを試みた。合成したほとんどの錯体は ¹H NMR にお いてイソプロピル基に由来するピークが 1 種類である。構造を考えると、チオエーテル部 位が反転しない限り金属に配位しているチオエーテルの同一イソプロピル基の 2 つのメチ ル基は非等価に観測されるはずである(Figure 5-4)。

Figure 5-4. イソプロピル基状のメチル基の非等価性.

また 4 配位の場合、金属に結合しているチオエーテル上のイソプロピル基の 2 つのメチル 基は非等価に観測される(*i*-Pr₁)はずであり、残りの二種類のイソプロピル基(*i*-Pr₂, *i*-Pr₃)が別 に観測されるはずである(Figure 5-5)。

Figure 5-5. 中性錯体の3つのイソプロピル基の非等価性.

まず錯体 5a の-90~100 ℃ での ¹H および ³¹P NMR の結果を以下に示す(Figure 5-6)。

Figure 5-6. ジメチルパラジウム錯体 5a の温度可変 NMR.

まず¹H NMR に着目する。室温では同一積分強度で観測されるイソプロピル基の二つのメ チル基に由来する 1.07 ppm と 1.15 ppm の二つのピークが 60℃付近で 1.10 ppm の 1 本にな った。また–90℃付近でイソプロピル基のメチル基のピークが約 0.9 ppm から約 1.3 ppm に かけて大きくブロードした。室温では、一つのイソプロピル基の二つのメチル基が非等価 かつ三つのイソプロピル基が等価に観測されたと考えられ、そのためには、イソプロピル 基が同一方向を向くように配位子交換反応が起こる必要がある(Scheme 5-1)。

Scheme 5-1. ジメチルパラジウム錯体 5a の分子内配位子交換反応.

イソプロピル基は嵩高く、イソプロピル基同士が向き合うような形での配位子交換反応 (Figure 5-1, B ← C)においては立体障害となると考えられ、このことが、室温でイソプロピ ル基が常に同一方向を向く形で配位子交換反応が起こる(Figure 5-1, A ← B)原因であると 考えられる。また、この現象は 60℃を超えると起こらなくなり、イソプロピル基の向きが ランダムになることが NMR より示唆された。さらに、-90℃よりも温度を下げると配位子 交換反応自体が緩やかとなり配位しているチオエーテル上のイソプロピル基とそれ以外の イソプロピル基や配位子交換反応の中間体があらわれると考えられる。このことは-90℃に おいて各種 NMR が大きくブロードし、¹H NMR においてイソプロピル基のピークがほぼ観 測できなくなったことから示唆される。

中性クロロメチル錯体 **6a** (Figure 5-8)の NMR を−60 ~ 60 °C において測定したところ、¹H NMR 及び ³¹P NMR においては温度の低下に伴いピークのブロード化が観測された (Figure 5-7)。

Figure 5-7. カチオン性ジトリフラート錯体 6a の温度可変 NMR.

Figure 5-8. 中性クロロメチル錯体 6a.

¹H および³¹P NMR より錯体 **6a**(Figure 5-8)ではチオエーテル部位の反転がすばやく起こっていることが示唆された。

カチオン性ジトリフラート錯体 **13a** (Figure 5-10)の NMR を–90 ~ 20 ℃ において測定した ところ、¹H NMR においては温度の低下に伴いピークのブロード化が観測された (Figure 5-9)。しかし³¹P NMR はほぼ変化無し、また ¹⁹F NMR においては温度の低下に伴いピーク がシャープになった。

Figure 5-9. カチオン性ジトリフラート錯体 13a の温度可変 NMR.

Figure 5-10. カチオン性ジトリフラート錯体 13a.

¹H および ³¹P NMR より錯体 **13a**(Figure 5-8)ではチオエーテル部位の反転がすばやく起こっ ていることが示唆された。一方 ¹⁹F NMR より錯体 **13a** では, Pd 上に配位している→OTf と遊 離した→OTf との間での交換反応が, –90 ℃ においても十分に速いか、溶液中では水や溶媒 がパラジウム上に配位しジカチオン錯体として溶液中で存在しているものと考えられる。

白金錯体 9a であるが、まず ¹⁹⁵Pt{¹H} NMR 及び ³¹P{¹H} NMR に着目する(Figure 5-9)。こ れらの核は錯体中に一個しか存在しないため、ピークの本数(種類)がそのまま観測できてい る錯体の種類に直結し、 ¹⁹⁵Pt と ³¹P はカップリングして、 ¹⁹⁵Pt{¹H} NMR ではダブレットと して、 ³¹P{¹H} NMR ではサテライトピークとして観測され、それらのカップリング定数が 同一になるはずである。

Figure 5-11. 白金錯体 9a の温度可変 NMR.

これらのNMRを見てみると-60℃において二種類のピークが観測された。また³¹P{¹H} NMR においては 60℃でピークが一本となり、シャープなものとなったことから、-60℃で観測さ れた二種類の錯体が平衡状態にあると考えた。今回、-60℃で観測された構造を推定するに 当たり、考えられる四配位並びに五配位の構造を以下の図のように考えた(Figure 5-10)。分 子の構造式を上段に示す。またこの錯体は、硫黄上に 2 組の非共有電子対を持つため、イ ソプロピル基の向きによる構造異性体が存在する。Cl-Pt-P 軸から見た構造異性体の模式図 を下段に示す。PP₃型三脚型四座配位子を有する白金錯体において四配位構造の ³¹P NMR は 50~80 ppm に観測⁶され、三方両錐型構造のアピカル位のリンは ³¹P NMR において 120~ 160 ppm に観測されると報告されている ⁷。

Figure 5-12. 四配位・五配位の構造とそのときの金属周りの構造.

このことから、この錯体は四配位構造 A と B の間の平衡状態にあるのではないかと推定した。また、-60℃において ³¹P{¹H} NMR で 46.8 ppm (¹J_{PPt} = 3604 Hz)と 51.0 ppm (¹J_{PPt} = 3592 Hz) にピークが観測され、¹⁹⁵Pt{¹H} NMR において-4503 ppm (¹J_{PP} = 3593 Hz)と-4384 ppm (¹J_{PP} = 3646 Hz)に観測された(Figure 5-8)。カップリング定数がおおよそ一致したので 46.8 ppm と-4384 ppm が、51.00 ppm と-4503 ppm が対応すると考えられる。続いて、¹³C と ¹H の NMR について考察する。まず ¹³C{¹H} NMR についてみてみると、イソプロピルのメチルに由来 すると考えられるピークが 7 本 21.0 ppm, 21.4 ppm, 21.9 ppm, 22.2 ppm, 22.4 ppm, 23.5 ppm に観測された。このことから観測されているイソプロピル基は 4 種ではないかと考えられる。¹H NMR については、-60℃においてイソプロピル基に由来するピークが 4 組 0.56 ppm, 1.20 ppm, 3.34 ppm と 0.87 ppm, 1.21 ppm, 3.44 ppm と 1.27 ppm, 1.29 ppm, 2.67 ppm と 1.41 ppm, 1.55 ppm, 4.33 ppm に観測された(Figure 5-8)。各組の同定は積分強度を用いておこ なった。これは ¹³C{¹H} NMR の結果とほぼ一致しており、イソプロピル基のメチンプロト

ンとメチルプロトンは全て非等価と考えられる。-60 °C においては, A と B の構造が観測 されたのではないかと考えられる。

³¹P{¹H} NMR より、60℃で観測された 50.0 ppm のピークは、-60℃で観測された 51.0 ppm のピークによっていることがわかっている。このことは、溶液中において-60℃で観測された 51.00 ppm のピークに由来する構造を主としてとっていることを示唆している。

5-4. X線結晶構造解析がされていないパラジウム錯体の構造推定

現在 X 線結晶構造解析がされているパラジウム錯体は ³¹P NMR において次のケミカルシ フト値を示している(Figure 5-11)。まずカチオン性であり三方両錐型構造を示している錯体 が 76.9 ppm(3a)、81.8 ppm(4a)、81.5 ppm(11a)、104.6 ppm(11b)、93.7 ppm(12b)、81.1 ppm(13a)、 84.2 ppm(15a)であり、三脚型四座配位子以外に二つの配位子を有する平面四配位構造である 中性錯体が 30.8 ppm(5a)、34.5 ppm(5b)、44.8 ppm(6a)、47.7 ppm(18a)、である。

Comp.	³¹ P NMR (ppm)	³ J _{HP} (Hz)	Structure	Charge	Comp.	³¹ P NMR (ppm)	³ J _{HP} (Hz)	Structure	Charge
2a ^a	102.3	_	TBP	+					
3a ^a	72.9	_	TBP, SP	^{oc} +, 0 ^c					
4a ^a	81.7	_	TBP	+	4b	81.7	_	TBP	+
5a	30.8	_	SP	0	5b	30.8	7.1, 8.0	SP	0
6a	44.7	3.2	SP	0	6b	56.4	3.2	SP	0
7a a	50.3	—	SP	0					
8a ^b	72.0	_	TBP	0	8b ^b	72.8	_	TBP	0
9a ^b	49.9	_	SP	0	9b ^b	47.9	_	SP	0
10a	103.3	_	TBP	+					
11a	81.5	_	TBP	+	11b	104.6	_	TBP	+
12a	69.0	8.5	TBP	+	12b	93.7	8.8	TBP	+
13a	81.1	_	TBP	+					
14a	43.3	1.6	SP	0					
15a	84.2	—	TBP	+					
16a	69.6	8.5	TBP	+	16b	93.7	8.9	TBP	+
17a	81.6	_	SP	2+					
18a	47.7	2.4	SP	0	18b	58.1	2.3	SP	0
19a	37.5	5.1	SP	0					
20a	39.3	23	SP	0					

Table 5-4. 錯体の構造と NMR のケミカルシフト値

TBP : Trigonal Bipyramidal Structure, SP : Square Planer Structure

^a : N. Takeda, Y. Tanaka, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, **83**, 157-164 (2010)., ^b : N. Takeda, Y. Tanaka, R. Oma, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, **89**, 922-930 (2016)., ^c : Change Structure by Condition of Recrystallization

このことから、70-100 ppm 付近に³¹P NMR のピークを有する錯体はカチオン性で三方両錐 型構造をとっていると推定できる。これに当てはまる錯体は 4b、12a、13b、16a、16b であ る。一方 30-50 ppm 付近に ³¹P NMR のピークを有する錯体は平面四配位構造である中性錯 体であると推定できる。これに当てはまる錯体は 6b、18b、19a、20a である。加えてモノ メチル錯体においては ¹H NMR においてパラジウム上のメチル基のピークが配位子のリン とカップリングすることによりダブレットとして観測される。酸との反応によるモノメチ ル錯体の生成ではリンのトランス効果によりリンのトランス位に存在するメチル基が選択 的に置換することが予想される。平面四配位構造の場合、メチル基はリンの cis 位に存在す る。一方三方両錐型構造の場合メチル基はリンの trans 位に移動する。X 線結晶構造解析に より構造が明らかになっているパラジウム錯体では、パラジウム上のメチル基のダブレッ トのカップリング定数が平面四配位構造の場合およそ 2-5 Hz に、三方両錐型構造の場合お よそ 8 Hz になる(Table 5-4)。いずれの錯体も¹H NMR においてチオエーテル上の置換基が等 価に存在することから溶液中において、分子内のチオエーテル間で配位子交換反応が起こ っていると推測される。

5-5. まとめ

ニッケル錯体 10a 及びパラジウム錯体 3a、5b、6a、11a、11b、12b、13a、15a、17a、18a について X 線結晶構造解析により構造を明らかとした。結果として 10a、3a、11a、11b、12b、 13a、17a は三方両錐型の構造、5b、15a、18a は平面四配位型の構造であることが明らかと なった。錯体 3a に関しては、再結晶条件の違いにより平面四配位構造と三方両錐型構造の 単結晶が得られると明らかとなった。この原因は水が再結晶溶媒に含まれるとカウンター アニオンとしての塩化物イオンを安定化することにより 5 配位三方両錐型構造が安定に生 成することに由来すると考えられる。錯体 5a、13a、8a について測定した温度可変 NMR に おいてはチオエーテル部位の反転と分子内配位子交換反応が溶液中で起こっていると示唆 された。X 線結晶構造解析の結果と各種 NMR の測定から ³¹P NMR のケミカルシフト値及び ¹H NMR におけるパラジウム上のメチル基のリンとのカップリング定数と構造の間には関 係があることが示唆され、NMR の値から錯体の構造を推定できることが示唆された。

5-6. 実験項

5-6-1. [PtCIP(C₆H₄-2-SCH(CH₃)₂)₂(C₆H₄-2-S)]の温度可変 NMR

重クロロホルムを溶媒とし 60℃、室温、-60℃において NMR を測定した。

r.t.

¹H NMR (400 MHz, CDCl₃): δ 1.26 (brs, 6H), 1.33 (brs, 6H), 3.657 (bes, 2H), 6.93-6.99 (m, 1H), 7.20-7.26 (m, 1H), 7.30-7.46 (m, 4H), 7.46-7.55 (m, 4H), 7.621 (brs, 2H).

¹³C NMR (150.02 MHz, CDCl₃): δ 22.0 (s, CH₃), 22.8 (s, CH₃), 44.0 (brs, CH), 122.5 (d, $J_{CP} = 7$ Hz, CH), 129.2 (brs, CH), 129.6 (brs, CH), 129.6 (d, $J_{CP} = 16$ Hz, CH), 131.3 (brs, CH), 132.7 (s, CH),

132.8 (brs, CH), 134.6 (brs, CH), 141.5 (d, $J_{CP} = 16$ Hz, C), 160.0 (d, $J_{CP} = 24$ Hz, C).

³¹P NMR (162 MHz, CDCl₃): δ 49.9 (s, ¹*J*_{PPt} = 3583 Hz).

¹⁹⁵Pt NMR (MHz, CDCl₃): 解析不能

-60°C

¹H NMR (600 MHz, CDCl₃): δ 0.56 (brd, ³*J*_{HH} = 6 Hz, 3 H), 0.87 (brd, ³*J*_{HH} = 6 Hz, 1.7 H), 1.20 (brd, ³*J*_{HH} = 6 Hz, 3 H), 1.21 (brd, ³*J*_{HH} = 6 Hz, 1.7 H), 1.27 (brd, ³*J*_{HH} = 6 Hz, 2 H), 1.30 (brd, ³*J*_{HH} = 6 Hz, 2 H), 1.41 (brd, ³*J*_{HH} = 6 Hz, 3H), 1.55 (brd, ³*J*_{HH} = 6 Hz, 3H), 2.67 (brt, ³*J*_{HH} = 6 Hz, 0.6 H), 3.34 (brt, ³*J*_{HH} = 6 Hz, 1 H), 3.44 (brt, ³*J*_{HH} = 6 Hz, 0.7 H), 4.33 (brt, ³*J*_{HH} = 6 Hz, 1 H) 6.77-7.99 (m, 19.8 H).

¹³C NMR (150.02 MHz, CDCl₃): δ 21.0 (s), 21.4 (s), 21.8 (s), 21.9 (s), 22.2 (s), 22.4 (s), 23.5 (s), 40.2 (s), 40.8 (s), 46.0 (s), 49.7 (s), 122.6 (s), 127.0-136.0 (m), 139.3-141.7 (m), 157.6 (d, $J_{CP} = 22$ Hz), 159.288 (d, $J_{CP} = 24$ Hz).

³¹P NMR (243 MHz, CDCl₃): $\delta 46.8$ (s, ¹*J*_{PPt} = 3605 Hz), 51.0 (s, ¹*J*_{PPt} = 3592 Hz).

¹⁹⁵Pt NMR (129 MHz, CDCl₃): δ -4503 (d, ¹*J*_{PtP} = 3594 Hz), -4384 (d, ¹*J*_{PtP} = 3647 Hz).

60°C

¹H NMR (600 MHz, CDCl₃): δ 1.22 (brd, ³*J*_{HH} = 6.6 Hz, 6H), 1.26 (brd, ³*J*_{HH} = 6.6 Hz, 6H), 3.53 (bes, 2H), 6.90-6.95 (m, 1H), 7.14-7.19 (m, 1H), 7.31-7.51 (m, 8H), 7.56-7.60 (m, 2H).

¹³C NMR (150.02 MHz, CDCl₃): δ 22.1 (s, CH₃), 22.9 (s, CH₃), 44.8 (brs, CH), 122.4 (d, $J_{CP} = 9$ Hz, CH), 127.5 (d, $^{1}J_{CP} = 75$ Hz, C), 129.1 (brs, CH), 129.7 (d, $J_{CP} = 11$ Hz, CH), 131.3 (s, CH), 132.6 (s, CH), 132.7 (s, CH), 133.0 (brs, CH), 134.7 (brd, $J_{CP} = 6$ Hz, CH), 135.5 (d, $^{1}J_{CP} = 68$ Hz, C), 141.9 (brd, $^{2}J_{CP} = 16$ Hz, C), 160.6 (brd, $^{2}J_{CP} = 22$ Hz, C).

³¹P NMR (243 MHz, CDCl₃): δ 50.0 (s, ¹*J*_{PPt} = 3566 Hz).

¹⁹⁵Pt NMR (129 MHz, CDCl₃):解析不能

5-6-2. 再結晶及び X 線結晶構造解析

X-線結晶構造解析に使用する単結晶は再結晶により作成した。Table 5-4 に使用した溶媒及 び構造解析と精密化に使用したソフトウェアを、Table 5-5 に各結晶の結晶データを記載し た。錯体 11a, 13a に関しては、回析装置に Rigaku RAXIS-IV++を用い、MoK α (λ = 0.71070 Å) を線源として X 線を照射して反射を測定した。3a、5b、6a、10a、11b、12b、15a、17a、18a に関しては、Rigaku VariMax with an XtaLAB P200 diffractometer を用い、MoK α (λ = 0.71075 Å) を線源として X 線を照射して反射を測定した。構造解析は Table 5-4 に示した方法により行 い、精密化は F^2 に関するフルマトリックスによる最小二乗法でおこなった。
Table 5-5. 錯体 **3a、5b、6a、10a、11a、11b、12b、13a、15a、17a、18a**の再結晶条件と構造解析および精密化に使用したソフト

Complex	Solvents	Structure Analysis	Refinement
[NiCIP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CF ₃ COO (10a)	CH_2Cl_2 / hexane	SHELXS-97 ⁸⁾	SHELXL-2014 ⁹⁾
[PdCIP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CI (3a)	CHCl ₃ / hexane / H ₂ O	SHELXT ¹⁰⁾	SHELXL-2014 ⁹⁾
[Pd(CH ₃) ₂ P(C ₆ H ₄ -2-SC(CH ₃) ₃) ₃] (5b)	benzene / hexane	SHELXT ¹⁰⁾	SHELXL-2017 ⁹⁾
[PdCI(CH ₃)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃] (6a)	benzene / hexane	SHELXT ¹⁰⁾	SHELXL-2014 ⁹⁾
[PdCIP(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃]CF ₃ SO ₃ (11a)	CH_2Cl_2 / hexane	SHELXS-97 ⁸⁾	SHELXL-97 ⁸⁾
[PdCIP(C ₆ H ₄ -2-SC(CH ₃) ₃) ₃]CF ₃ SO ₃ (11b)	CH ₂ Cl ₂ / hexane	SHELXT ¹⁰⁾	SHELXL-2017 ⁹⁾
[Pd(CH ₃)P(C ₆ H ₄ -2-SC(CH ₃) ₃) ₃]CF ₃ SO ₃ (12b)	acetone / hexane	SHELXT ¹⁰⁾	SHELXL-2014 ⁹⁾
$[Pd(CF_3SO_3)P(C_6H_4-2-SCH(CH_3)_2)_3]CF_3SO_3$ (13a)	acetone / hexane	SHELXS-97 ⁸⁾	SHELXL-97 ⁸⁾
$[Pd(CF_{3}CO_{2})P(C_{6}H_{4}\text{-}2\text{-}SCH(CH_{3})_{2})_{3}]CF_{3}CO_{2} \ (\textbf{15a})$	benzene / hexane	SHELXT ¹⁰⁾	SHELXL-2014 ⁹⁾
[Pd(OH ₂)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃](BF ₄) ₂ (17a)	acetone / hexane	SHELXT ¹⁰⁾	SHELXL-2014 ⁹⁾
[Pd(CH ₃)(CH ₃ CO ₂)P(C ₆ H ₄ -2-SCH(CH ₃) ₂) ₃] (18a)	benzene / hexane	SHELXS-97 ⁸⁾	SHELXL-2014 ⁹⁾

⁸⁾: G. M. Sheldrick, SHELXS-97 and SHELXL-97, Program for the Refinment of Crystal Structures, University of Göttingen: Göttingen, Germany, (1997).

⁹⁾: G. M. Sheldrick, *Acta Cryst.*, **C71**, 3-8 (2015).

¹⁰⁾: G. M. Sheldrick, *Acta Cryst.*, **A71**, 3-8 (2015).

Table 5-6. 錯体 **3a、5b、6a、10a、11a、11b、12b、13a、15a、17a、18a**のX線結晶構造解 析の結晶データ

	3a	5b	6a	10a	11a	11b
Empirical formula	[C27H33ClPPdS3]Cl+2	H ₂ O C ₂₅ H ₄₈ O ₂ PPdS ₂	[C28H26ClPPdS2]	[C27H22PNiS2]CO2F2S	[C27H33ClPPdS3]CO3F3S	[C30H39ClPPdS3]CO3F3S
Formula weight	698.01	702.28	641.57	727 91	775.60	817.68
Temperature/K	123	123	130(2)	120	173.1500	123(2)
Crysstal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Engage group	Co	P2	D 1	P2	P7	P7
space group	22.051(4)	17 404(5)	F-1 0.501(2)	12 1/c	13 5567(10)	10.1585(10)
a/A	23.951(4)	17.494(5)	9.391(3)	13.428(3)	14.0721(11)	14.124(2)
b/A	15.104(2)	9.910(2)	11.181(5)	14.008(3)	14.0721(11)	14.124(3)
c/A	19.468(3)	20.594(5)	15.130(5)	17.110(3)	17.2619(15)	25.075(5)
a/°	90	90	77.561(17)	90	90	90
βſ°	96.864(4)	102.325(7)	88.097(19)	93.164(4)	92.7026(9)	94.340(4)
γ/°	90	90	65.473(14)	90	90	90
V/Å ³	6066.3(17)	3488.0(15)	1438.6(8)	3213.5(11)	3289.4(5)	3587.4(12)
Z	8	4	2	4	4	4
D _{calcd} /Mgm ⁻³	1.529	1.337	1.481	1.394	1.566	1.514
μ (MoKa)/mm ⁻¹	1.071	0.780	1.027	0.840	0.994	0.915
Crystal size/mm3	0.20 X 0.20 X 0.08	0.30 X 0.15 X 0.10	0.30 X 0.10 X 0.010	0.30 X 0.13 X 0.07	0.2000 X 0.2000 X 0.2000	0.100 X 0.100 X 0.020
θ range	2.833 to 27.484°	3.147 to 27.500°	2.640 to 27.497°	2.744 to 27.490°	2.36 to 25.50°	3.046 to 27.499°
No. of reflns meased	48172	55871	23563	52001	22252	57801
No. of indep reflns	13301	7985	6575	7459	5740	8231
R _{int}	0.0799	0.0593	0.1554	0.096	0.0154	0.1643
Completeness	99.8 %	99.8%	99.5%	99.7%	94.1%	99.8%
Data/restraints/parameters	13301/10/675	7985/0/361	6575/0/314	7459/0/351	5740/0/371	8231/0/397
Goodness-of-fit on F^2	1.016	1.079	1.155	0.991	1.064	0.925
Final R indices $[I > 2\sigma(I)]^{a}$	$R_1 = 0.0419$	$R_1 = 0.0238$	$R_1 = 0.0870$	$R_1 = 0.0248$	$R_1 = 0.0458$	$R_1 = 0.0735$
Final R indices $[I > 2\sigma(I)]^{a}$	$\dot{wR}_2 = 0.1028$	$wR_2 = 0.0700$	$wR_2 = 0.1609$	$wR_2 = 0.0572$	$wR_2 = 0.1119$	$wR_2 = 0.1587$
R indices (all data) ^{a)}	$R_1 = 0.0441$	$R_1 = 0.0257$	$R_1 = 0.1632$	$R_1 = 0.0301$	$R_1 = 0.0459$	$R_1 = 0.1700$
R indices (all data) ^{a)}	$\dot{wR}_2 = 0.1039$	$wR_2 = 0.0705$	$\dot{wR}_2 = 0.2020$	$wR_2 = 0.0579$	$wR_2 = 0.1121$	$wR_2 = 0.1962$
Largest diff./e Å-3 peak and hole	1.096 and -0.944	0.542 and -0.598	2.634 and -0.858	0.814 and -0.697	1.271 and -1.090	2.545 and -0.817
	12b	13a	15a	1	.7a 18a	
Empirical formula	[C31H42PPdS3]CO3F3S	[C28H33O3F3PPdS4]CO3F	3S [C29H33O2F3PPdS2	3]C2O3F3 [C27H35OPPd	IS ₃]B ₂ F ₈ [C ₃₀ H ₃₉ O ₂ PPdS ₃]	•H ₂ O
Formula weight	797.26	889.22	817.12	787.72	683.18	-
Temperature/K	123(2)	173.1500	123	120	123	
Crysstal system	Trigonal	Triclinic	Triclinic	Triclinic	Monoclinic	
Space group	R-3c	P-1	P-1	P-1	P21/c	
al Å	14.572(3)	12.5640(9)	10,788(4)	11.2068(7)	17.2288(19)	
6/Å	14.572(3)	13,4990(11)	12,198(5)	12.2394(10)	9.6579(7)	
clÅ	58.345(13)	22.0921(17)	13.614(4)	13,9814(14)	20.616(2)	
c/A a ^{/0}	90	91.103(7)	90.611(6)	83.089(8)	90	
0.12 0.12	90	106 452(8)	91 164(9)	70,900(7)	108 3960(18)	
<i>p</i> /	120	90 437(7)	110 187(10)	65.810(6)	90	
V/Å 3	10729(5)	3592 4(5)	1680 8(11)	1652 8(3)	3255 1(5)	
7	12	4	2	2	4	
D (Mam ⁻³	1 481	1 644	1 615	1 573	1 394	
w M - K-) (m m ⁻¹	0.844	0.923	0.855	0.866	0.840	
Crustel size (mm ³	0.000 X 0.080 X 0.010	0.1500 X 0.0500 X 0.0500	0.05 X 0.04 X 0.01	0.12 X 0.04 X	0.040	7
A range	3 226 to 27 481°	2 25 to 25 50°	3 133 to 27 494°	2 957 to 27 4	$2.0.01 = 0.50 \times 0.15 \times 0.00$ $84^{\circ} = 2.744 \text{ to } 27.490^{\circ}$	/
No. of roflog maggad	55615	24507	27724	27/37	52001	
No. of indep reflps	2730	12/00	7617	7555	7459	
	0.0884	0.0300	0 1381	0.0585	0.0860	
Completeness	99.8%	93.2%	99.2%	99.5%	99.7%	
Data/restraints/parameters	2739/16/169	12499/0/865	7617/0/415	7555/20/470	7459/0/351	
Coodpass of fit on F^2	0.966	1 255	0.030	0.963	0.991	
Final <i>R</i> indices $[I > 2\sigma/I)^{(a)}$	$R_{\star} = 0.0346$	$R_{i} = 0.0800$	$R_{\star} = 0.0745$	$R_{1} = 0.0374$	$R_{\star} = 0.0248$	
Final R indices $[I > 2\sigma(1)]^{n/2}$	$wR_{a} = 0.0340$	$wR_{a} = 0.1385$	$wR_{0} = 0.0745$	$m_1 = 0.0074$ $wR_0 = 0.0818$	$wR_{a} = 0.0572$	
P indices (all data) ^a	$R_{1} = 0.0631$	$R_1 = 0.0849$	$R_1 = 0.1317$ $R_2 = 0.1471$	$R_{1} = 0.0513$	$R_{1} = 0.0301$	
R indices (all data) ^a	$wR_{a} = 0.0031$	$wR_{a} = 0.1410$	$wR_{a} = 0.1783$	$wR_0 = 0.0876$	$wR_{a} = 0.0579$	
r mulees (an uata)	0.826 1 217	1 220 and 0.025	2.124 and 0.767	0.070 and 0	546 0.814 and 0.607	

参考文献

1) K. Nakajima, T. Kajino, M. Nonoyama, M. Kojima, Inorganica Chemica Acta, 312, 67-73(2001).

2) a) N. Takeda, Y. Tanaka, F. Sakakibara, and M. Unno, Bull. Chem. Soc. Jpn., 83, 157-164 (2010);

b) N. Takeda, Y. Tanaka, R. Oma, F. Sakakibara, and M. Unno, *Bull. Chem. Soc. Jpn.*, **89**, 922-930 (2016).

3) A. Arenaza-Corona, D. Morales-Morales, I. F. Hernández-Ahuactzi, V. Barba, *Cryst. Eng. Comm.*, **20**, 6733-6740 (2018).

4) S. S. Batsabov, Translated from Neorganicheskie Materialy, 37, 1031–1046 (2001).

5) A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor, *J. Chem. Soc.*, *Dalton Trans.*, **12**, S1-S83 (1989).

6) a) S. Aizawa, T. Kawamoto, Y. Asai, C. Ishimura, J. Organomet. Chem., 695, 1253-1260 (2010);

b) D. Ferna'ndez-Anca, M. I. Garcı'a-Seijo, M. E. Garcı'a-Ferna'ndez, *RSC Adv.*, **2**, 1404–1415 (2012).

7) D. Ferna'ndez, M. I. Garc'ıa-Seijo, . Ke'gl, G. Pet_ocz, La. Kolla'r, M. E. Garcı'a-Ferna'ndez, *Inorg. Chem.*, **41**, 4435-4443 (2002).

8) G. M. Sheldrick, SHELXS-97 and SHELXL-97, Program for the Refinment of Crystal Structures, University of Göttingen: Göttingen, Germany, (1997).

9) G. M. Sheldrick, Acta Cryst., C71, 3-8 (2015).

10) G. M. Sheldrick, Acta Cryst., A71, 3-8 (2015).

第六章

結論

6-1. PS3型三脚型四座配位子を有する10族金属錯体の合成

イソプロピル基を有する PS₃型三脚型四座配位子 1a を用いて合成されたジメチルパラジ ウム錯体 5a と、pKa の低い酸(HCl、TfOH、CF₃COOH、HBF₄)との反応においては、酸の当 量により一つのメチル基が置換したモノメチルパラジウム錯体 6a、12a、14a、16a と二つ のメチル基が置換したカチオン性パラジウム錯体 3a、13a、15a、17a が生成すると明らか になった。pKa の高い酸(AcOH、PhSH、PhOH)との反応では、酸の当量によらず、一つの メチル基が置換したモノメチル錯体 18a、19a、20a が生成すると明らかになった(Figure 6-1)。 当初目的としたカチオン性メチルパラジウム錯体に関しては 12a, 16a の合成に成功した。 錯体 17a はパラジウム上に水が配位したジカチオン性錯体であった。

tert-ブチル基を有する三脚型四座配位子 lb を用いてカチオン性クロロパラジウム錯体 4b, 11b を合成した(Figure 6-1)。また錯体 4b と MeLi との反応によりジメチルパラジウム錯体 5b を合成した。これらはイソプロピル基を有する三脚型四座配位子 la を有するパラジウム 錯体と同様の反応であった。錯体 5b と酸との反応においては塩酸、トリフルオロメタンス ルホン酸、テトラフルオロホウ酸、酢酸を1当量用いた場合にはイソプロピル類縁体であ るジメチルパラジウム錯体 5a の場合と同様にモノメチルパラジウム錯体が得られた。一方 トリフルオロメタンスルホン酸を 2 当量用いた場合においては 2 つのメチル基が置換され たカチオン性パラジウム錯体らしきピークは観測されたものの、同定にはいたらず、また 溶媒と共存させ時間が経過すると tert-ブチル基が脱離することが示唆された。HCI とテトラ フルオロホウ酸を二当量用いた場合においては一当量の場合と同様のモノメチルパラジウ ム錯体が得られた。ベンゼンチオールを用いた場合においては配位子 1b が、トリフルオロ 酢酸やフェノール、メタノールを用いた場合においては複雑な反応混合物が観測され、5a と 5b では反応性や錯体の安定性に差があることが示された。

Figure 6-1. 本研究で合成した各種 10 族金属錯体.

6-2. PS3型三脚型四座配位子を有する10族金属錯体の反応性

合成した種々の錯体について触媒活性を検討したところアルケンの重合ではなくアルケンの異性化に触媒活性を示し、特にカチオン性パラジウム錯体 1a、12a、13a、15a、16a が合成した錯体の中では良い活性を示した。4-フェニル-1-ブテンの 1-フェニル-1-ブテンへの異性化反応では、いずれの錯体においても確認できる範囲において生成物は完全に E 体が選択的に得られた。本錯体は触媒活性としてはそれほど高くは無いものの E 体が 100%の選択性で得られるという特徴を有している。

錯体 3a のイソプロピル基の脱離反応に関して反応速度測定を行ったところ一次反応で進行することが示唆された。

6-3. PS3型三脚型四座配位子を有する10族金属錯体の構造

錯体 5a、6a、13a、7a の温度可変 NMR によりチオエーテル部位での配位子交換反応が観 測されたという結果は既知の NS₃ 型三脚型四座配位子を有する錯体 ¹⁾と同様の結果であっ た。

X線結晶構造解析により三方両錐型構造を有するいずれの錯体においても Pd-P間の結合 距離は一般的な Pd-PPh3の結合距離よりも短くなり、Pd-S間の結合距離は一般的な Pd-SR2 の結合距離よりも長いことが明らかとなった。平面四配位構造を有する錯体では、ジメチ ルパラジウム錯体5では Pd-P間の結合距離は一般的な Pd-PPh3の結合距離よりも長くなり、 メチルアセテートパラジウム錯体 18a では短くなっている。一方でいずれの錯体において も Pd-S間の結合距離は一般的な Pd-SR2の結合距離よりも長いことが明らかとなった。さら に平面四配位錯体5では錯体3aの平面四配位構造の場合と同様にリンのトランス位に位置 する原子とパラジウム間の結合距離がチオエーテルのトランス位に位置する原子とパラジ ウム間の結合距離よりも長くなることが確認された。これはリンとチオエーテルのトラン ス影響の強さの違いに起因すると考えられる。ジクロロパラジウム錯体3aは結晶溶媒の違 いにより中性の平面四配位構造とカチオン性の五配位三方両錐型構造の結晶を作り分けら れることが明らかとなった。このような挙動はほとんど報告例が無く興味深い現象である。

tert-ブチル基を有する錯体はイソプロピル基を有する錯体と比べて置換基間の立体反発 により全体的に Pd-S 間の結合距離が伸び、それに伴って三つの Pd-S 間の結合距離の差が 縮まっていることが観測された。

6-4. まとめ・展望

ジメチルパラジウム錯体 5a に各種プロトン酸を作用させる事により種々のパラジウム錯体を合成し、その触媒活性を明らかにした。触媒反応においてはカチオン性パラジウム錯体 1a、12a、13a、15a、16a がアルケンの異性化反応に対して活性を示した。また配位子 1b を有する種々のパラジウム錯体を、配位子 1a を用いた場合と類似の反応で合成し、ジメチルパラジウム錯体 5b と酸との反応において 5a とは反応性や錯体の安定性に差が認められ ルことを明らかにした。PS3型三脚型四座配位子を有する遷移金属錯体がアルケンの異性化反応に触媒活性を有することが示され、さらに選択性が発現したことから、今後チオエーテル部位を有する三脚型四座配位子を用いた種々の錯体の更なる合成や反応性、触媒活性の検討が行われると考えている。

参考文献

1) K. Nakajima, T. Kajino, M. Nonoyama, M. Kojima, Inorganica Chemica Acta, 312, 67-73(2001).

第七章

各種錯体の

NMR・IR チャート及び

X-線結晶構造解析結果

[PdClP(C₆H₄-2-SCH(CH₃)₂)₃]Cl (**3**a)

Table 7-1.	Х	線結晶構造解析の結果
-------------------	---	------------

Identification and	ro1610a	
Empirical formula	$C_{27}H_{37}Cl_2O_2PPdS_3$	
Formula weight	698.01	
Temperature	123 K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	Cc	
Unit cell dimensions	a = 23.951(4) Å	<i>a</i> = 90°.
	b = 13.104(2) Å	<i>b</i> =96.864(4)°.
	c = 19.468(3) Å	$g = 90^{\circ}$.
Volume	6066.3(17) Å3	
Ζ	8	
Density (calculated)	1.529 Mg/m3	
Absorption coefficient	1.071 mm-1	
<i>F</i> (000)	2864	
Crystal size	0.20 x 0.20 x 0.08 r	nm3
Theta range for data collection	2.833 to 27.484°.	
Index ranges	-30<=h<=31, -17<=	= <i>k</i> <=17, -25<= <i>l</i> <=25
Reflections collected	48172	
Independent reflections	13301 [$R(int) = 0.0$	799]
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Numerical	
Max. and min. transmission	0.931 and 0.814	
Refinement method	Full-matrix least-sq	uares on F2
Data / restraints / parameters	13301 / 10 / 675	
Goodness-of-fit on F2	1.016	
Final R indices [I>2sigma(I)]	R1 = 0.0419, wR2 =	= 0.1028
R indices (all data)	R1 = 0.0441, wR2 = 0.1039	
Absolute structure parameter	0.5	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.096 and -0.944 e.	Å-3

atom	X	У	Z	U(eq)
Pd(1)	3663(1)	4840(1)	3568(1)	20(1)
Cl(1)	3608(1)	4815(1)	2335(1)	35(1)
P(1)	3705(1)	4895(1)	4690(1)	17(1)
C(1)	4018(2)	6089(4)	5016(3)	20(1)
C(2)	3993(2)	6415(4)	5695(3)	26(1)
C(3)	4286(3)	7271(4)	5934(3)	28(1)
C(4)	4600(3)	7818(4)	5511(3)	29(1)
C(5)	4612(3)	7527(4)	4824(3)	26(1)
C(6)	4315(2)	6663(4)	4577(3)	21(1)
S(1)	4298(1)	6325(1)	3684(1)	21(1)
C(7)	5042(2)	6003(4)	3638(3)	27(1)
C(8)	5268(3)	5240(5)	4173(4)	40(2)
C(9)	5095(3)	5641(6)	2910(3)	43(2)
C(10)	4139(2)	3869(4)	5088(3)	19(1)
C(11)	4303(2)	3813(4)	5805(3)	23(1)
C(12)	4601(2)	2974(4)	6081(3)	26(1)
C(13)	4753(3)	2196(4)	5653(3)	28(1)
C(14)	4614(3)	2275(4)	4948(3)	28(1)
C(15)	4312(2)	3102(4)	4663(3)	21(1)
S(2)	4178(1)	3212(1)	3742(1)	21(1)
C(16)	3709(3)	2108(4)	3543(3)	29(1)
C(17)	3158(3)	2240(5)	3850(3)	35(1)
C(18)	3646(3)	1974(5)	2767(3)	43(2)
C(19)	3007(2)	4792(4)	4950(3)	18(1)
C(20)	2904(2)	4655(4)	5637(3)	23(1)
C(21)	2358(3)	4684(4)	5806(3)	27(1)
C(22)	1912(3)	4825(4)	5290(3)	30(1)
C(23)	2006(3)	4924(4)	4604(4)	26(1)
C(24)	2553(3)	4912(3)	4436(3)	19(1)
S(3)	2664(1)	5003(1)	3550(1)	19(1)
C(25)	2397(2)	6307(4)	3358(3)	26(1)
C(26)	2761(3)	7106(4)	3751(3)	37(1)
C(27)	2335(3)	6442(5)	2581(3)	38(2)
Pd(2)	7073(1)	4982(1)	6398(1)	25(1)

Table 7-2. 原子座標と等方性温度因子

Cl(2)	7082(1)	5073(1)	7623(1)	43(1)
P(2)	7066(1)	4927(1)	5280(1)	18(1)
C(42)	8219(3)	4916(4)	5576(4)	25(1)
S(5)	8102(1)	5036(1)	6452(1)	27(1)
C(43)	8434(3)	6279(5)	6653(4)	47(2)
C(44)	8130(3)	7143(5)	6255(3)	38(1)
C(45)	8538(4)	6382(7)	7400(4)	71(3)
C(46)	6757(2)	6073(4)	4886(3)	19(1)
C(47)	6737(2)	6285(4)	4178(3)	23(1)
C(48)	6443(2)	7112(4)	3885(3)	27(1)
C(49)	6171(3)	7769(4)	4299(3)	30(1)
C(50)	6198(3)	7592(4)	5006(3)	28(1)
C(51)	6488(2)	6742(4)	5302(3)	21(1)
S(6)	6557(1)	6592(1)	6212(1)	24(1)
C(52)	5811(2)	6479(5)	6375(3)	31(1)
C(53)	5577(3)	5436(6)	6225(3)	38(1)
C(54)	5776(3)	6822(6)	7112(3)	50(2)
Cl(3)	4883(1)	10194(2)	3556(1)	52(1)
O(1)	6107(2)	10517(6)	3080(3)	66(2)
O(2)	5433(3)	9573(4)	5043(5)	71(2)
Cl(4)	5882(1)	10458(2)	6526(1)	48(1)
O(3)	4709(2)	9469(6)	6856(3)	69(2)
C(28)	6648(2)	3856(4)	4918(3)	20(1)
C(29)	6523(2)	3676(4)	4208(3)	22(1)
C(30)	6222(2)	2824(4)	3975(3)	26(1)
C(31)	6027(3)	2148(4)	4436(3)	29(1)
C(32)	6138(3)	2311(4)	5142(3)	26(1)
C(33)	6449(2)	3175(4)	5382(3)	20(1)
S(4)	6590(1)	3350(1)	6289(1)	22(1)
O(4)	5261(3)	11832(5)	7665(3)	71(2)
C(34)	7065(3)	2248(4)	6496(3)	26(1)
C(35)	7609(2)	2345(4)	6187(3)	29(1)
C(36)	7143(3)	2140(5)	7272(3)	40(2)
C(37)	7775(3)	4802(4)	5050(3)	23(1)
C(38)	7889(3)	4637(4)	4373(3)	27(1)
C(39)	8436(3)	4623(5)	4221(3)	33(1)

C(40)	8877(3)	4757(5)	4735(4)	35(2)
C(41)	8776(3)	4886(4)	5407(4)	34(2)

Table 7-3. 結合距離[Å].

atom-atom	distance / Å	
Pd(1)-P(1)	2.1754(16)	
Pd(1)-Cl(1)	2.3893(17)	
Pd(1)-S(3)	2.3988(17)	
Pd(1)-S(1)	2.4628(14)	
Pd(1)-S(2)	2.4663(14)	
P(1)-C(19)	1.810(6)	
P(1)-C(10)	1.815(5)	
P(1)-C(1)	1.817(5)	
C(1)-C(6)	1.395(7)	
C(1)-C(2)	1.397(7)	
C(2)-C(3)	1.375(8)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.380(8)	
C(3)-H(3)	0.9500	
C(4)-C(5)	1.394(8)	
C(4)-H(4)	0.9500	
C(5)-C(6)	1.392(8)	
C(5)-H(5)	0.9500	
C(6)-S(1)	1.788(6)	
S(1)-C(7)	1.845(6)	
C(7)-C(8)	1.496(9)	
C(7)-C(9)	1.515(8)	
C(7)-H(7)	1.0000	
C(8)-H(8)	0.9800	
C(8)-H(8A)	0.9800	
C(8)-H(8B)	0.9800	
C(9)-H(9)	0.9800	
C(9)-H(9A)	0.9800	
C(9)-H(9B)	0.9800	
C(10)-C(15)	1.395(7)	
C(10)-C(11)	1.406(7)	

C(11)-C(12)	1.384(8)
C(11)-H(11)	0.9500
C(12)-C(13)	1.392(8)
C(12)-H(12)	0.9500
C(13)-C(14)	1.378(9)
C(13)-H(13)	0.9500
C(14)-C(15)	1.381(8)
C(14)-H(14)	0.9500
C(15)-S(2)	1.791(6)
S(2)-C(16)	1.844(6)
C(16)-C(18)	1.510(9)
C(16)-C(17)	1.521(9)
C(16)-H(16)	1.0000
C(17)-H(17)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(18)-H(18)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(19)-C(24)	1.396(9)
C(19)-C(20)	1.401(7)
C(20)-C(21)	1.387(8)
C(20)-H(20)	0.9500
C(21)-C(22)	1.387(10)
C(21)-H(21)	0.9500
C(22)-C(23)	1.387(10)
C(22)-H(22)	0.9500
C(23)-C(24)	1.388(10)
C(23)-H(23)	0.9500
C(24)-S(3)	1.779(6)
S(3)-C(25)	1.847(5)
C(25)-C(26)	1.510(8)
C(25)-C(27)	1.512(8)
C(25)-H(25)	1.0000
C(26)-H(26)	0.9800
C(26)-H(26A)	0.9800

C(26)-H(26B)	0.9800
C(27)-H(27)	0.9800
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
Pd(2)-P(2)	2.1756(17)
Pd(2)-Cl(2)	2.385(2)
Pd(2)-S(4)	2.4287(14)
Pd(2)-S(6)	2.4481(14)
Pd(2)-S(5)	2.457(2)
P(2)-C(46)	1.805(5)
P(2)-C(37)	1.815(6)
P(2)-C(28)	1.816(6)
C(42)-C(37)	1.393(9)
C(42)-C(41)	1.411(11)
C(42)-S(5)	1.769(7)
S(5)-C(43)	1.834(7)
C(43)-C(45)	1.451(10)
C(43)-C(44)	1.510(10)
C(43)-H(43)	1.0000
C(44)-H(44)	0.9800
C(44)-H(44A)	0.9800
C(44)-H(44B)	0.9800
C(45)-H(45)	0.9800
C(45)-H(45A)	0.9800
C(45)-H(45B)	0.9800
C(46)-C(47)	1.401(7)
C(46)-C(51)	1.401(7)
C(47)-C(48)	1.380(8)
C(47)-H(47)	0.9500
C(48)-C(49)	1.392(8)
C(48)-H(48)	0.9500
C(49)-C(50)	1.389(8)
C(49)-H(49)	0.9500
C(50)-C(51)	1.400(8)
C(50)-H(50)	0.9500
C(51)-S(6)	1.772(6)

S(6)-C(52)	1.858(6)
C(52)-C(53)	1.492(9)
C(52)-C(54)	1.517(8)
C(52)-H(52)	1.0000
C(53)-H(53)	0.9800
C(53)-H(53A)	0.9800
C(53)-H(53B)	0.9800
C(54)-H(54)	0.9800
C(54)-H(54A)	0.9800
C(54)-H(54B)	0.9800
O(1)-H(1A)	0.95(3)
O(1)-H(1B)	0.95(3)
O(2)-H(2A)	0.96(3)
O(2)-H(2B)	0.96(3)
O(3)-H(3A)	0.94(3)
O(3)-H(3B)	0.95(3)
C(28)-C(33)	1.393(7)
C(28)-C(29)	1.398(7)
C(29)-C(30)	1.377(8)
C(29)-H(29)	0.9500
C(30)-C(31)	1.381(8)
C(30)-H(30)	0.9500
C(31)-C(32)	1.386(8)
C(31)-H(31)	0.9500
C(32)-C(33)	1.404(8)
C(32)-H(32)	0.9500
C(33)-S(4)	1.773(5)
S(4)-C(34)	1.853(5)
O(4)-H(4A)	0.95(3)
O(4)-H(4B)	0.94(3)
C(34)-C(35)	1.503(8)
C(34)-C(36)	1.506(8)
C(34)-H(34)	1.0000
C(35)-H(35)	0.9800
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800

C(36)-H(36)	0.9800
C(36)-H(36A)	0.9800
C(36)-H(36B)	0.9800
C(37)-C(38)	1.394(8)
C(38)-C(39)	1.378(9)
C(38)-H(38)	0.9500
C(39)-C(40)	1.375(10)
C(39)-H(39)	0.9500
C(40)-C(41)	1.370(11)
C(40)-H(40)	0.9500
C(41)-H(41)	0.9500

Table 7-4. 結合角[°]

atom-atom-atom	angle / °
P(1)-Pd(1)-Cl(1)	178.79(6)
P(1)-Pd(1)-S(3)	86.44(6)
Cl(1)-Pd(1)-S(3)	92.96(6)
P(1)-Pd(1)-S(1)	85.85(5)
Cl(1)-Pd(1)-S(1)	93.59(5)
S(3)-Pd(1)-S(1)	122.30(4)
P(1)-Pd(1)-S(2)	85.91(5)
Cl(1)-Pd(1)-S(2)	95.30(5)
S(3)-Pd(1)-S(2)	124.07(5)
S(1)-Pd(1)-S(2)	112.22(5)
C(19)-P(1)-C(10)	109.0(2)
C(19)-P(1)-C(1)	108.9(2)
C(10)-P(1)-C(1)	107.3(3)
C(19)-P(1)-Pd(1)	110.2(2)
C(10)-P(1)-Pd(1)	111.08(18)
C(1)-P(1)-Pd(1)	110.27(18)
C(6)-C(1)-C(2)	119.9(5)
C(6)-C(1)-P(1)	118.0(4)
C(2)-C(1)-P(1)	122.1(4)
C(3)-C(2)-C(1)	119.5(5)
C(3)-C(2)-H(2)	120.3
C(1)-C(2)-H(2)	120.3

C(2)-C(3)-C(4)	121.0(5)
C(2)-C(3)-H(3)	119.5
C(4)-C(3)-H(3)	119.5
C(3)-C(4)-C(5)	120.3(5)
C(3)-C(4)-H(4)	119.8
C(5)-C(4)-H(4)	119.8
C(6)-C(5)-C(4)	119.1(5)
C(6)-C(5)-H(5)	120.5
C(4)-C(5)-H(5)	120.5
C(5)-C(6)-C(1)	120.2(5)
C(5)-C(6)-S(1)	119.3(4)
C(1)-C(6)-S(1)	120.5(4)
C(6)-S(1)-C(7)	101.2(3)
C(6)-S(1)-Pd(1)	103.14(19)
C(7)-S(1)-Pd(1)	113.85(19)
C(8)-C(7)-C(9)	112.2(5)
C(8)-C(7)-S(1)	112.9(4)
C(9)-C(7)-S(1)	107.8(4)
C(8)-C(7)-H(7)	107.9
C(9)-C(7)-H(7)	107.9
S(1)-C(7)-H(7)	107.9
C(7)-C(8)-H(8)	109.5
C(7)-C(8)-H(8A)	109.5
H(8)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(9)-H(9)	109.5
C(7)-C(9)-H(9A)	109.5
H(9)-C(9)-H(9A)	109.5
C(7)-C(9)-H(9B)	109.5
H(9)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(15)-C(10)-C(11)	118.9(5)
C(15)-C(10)-P(1)	118.4(4)
C(11)-C(10)-P(1)	122.7(4)

C(12)-C(11)-C(10)	119.8(5)
C(12)-C(11)-H(11)	120.1
C(10)-C(11)-H(11)	120.1
C(11)-C(12)-C(13)	120.6(5)
C(11)-C(12)-H(12)	119.7
C(13)-C(12)-H(12)	119.7
C(14)-C(13)-C(12)	119.5(5)
C(14)-C(13)-H(13)	120.3
C(12)-C(13)-H(13)	120.3
C(13)-C(14)-C(15)	120.8(5)
C(13)-C(14)-H(14)	119.6
C(15)-C(14)-H(14)	119.6
C(14)-C(15)-C(10)	120.4(5)
C(14)-C(15)-S(2)	119.2(4)
C(10)-C(15)-S(2)	120.3(4)
C(15)-S(2)-C(16)	100.3(3)
C(15)-S(2)-Pd(1)	103.53(18)
C(16)-S(2)-Pd(1)	111.6(2)
C(18)-C(16)-C(17)	114.8(6)
C(18)-C(16)-S(2)	106.6(4)
C(17)-C(16)-S(2)	111.3(4)
C(18)-C(16)-H(16)	107.9
C(17)-C(16)-H(16)	107.9
S(2)-C(16)-H(16)	107.9
C(16)-C(17)-H(17)	109.5
C(16)-C(17)-H(17A)	109.5
H(17)-C(17)-H(17A)	109.5
C(16)-C(17)-H(17B)	109.5
H(17)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(16)-C(18)-H(18)	109.5
C(16)-C(18)-H(18A)	109.5
H(18)-C(18)-H(18A)	109.5
C(16)-C(18)-H(18B)	109.5
H(18)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5

C(24) C(17) C(20)	119.2(5)
C(24)-C(19)-P(1)	117.3(4)
C(20)-C(19)-P(1)	123.4(4)
C(21)-C(20)-C(19)	120.1(5)
C(21)-C(20)-H(20)	120.0
C(19)-C(20)-H(20)	120.0
C(20)-C(21)-C(22)	119.9(5)
C(20)-C(21)-H(21)	120.0
C(22)-C(21)-H(21)	120.0
C(23)-C(22)-C(21)	120.6(6)
C(23)-C(22)-H(22)	119.7
C(21)-C(22)-H(22)	119.7
C(22)-C(23)-C(24)	119.5(6)
C(22)-C(23)-H(23)	120.2
C(24)-C(23)-H(23)	120.2
C(23)-C(24)-C(19)	120.5(6)
C(23)-C(24)-S(3)	118.9(5)
C(19)-C(24)-S(3)	120.5(5)
C(24)-S(3)-C(25)	99.8(2)
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1)	99.8(2) 104.2(2)
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1)	99.8(2) 104.2(2) 113.9(2)
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27)	99.8(2) 104.2(2) 113.9(2) 114.1(5)
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4)
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4)
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(25)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(25) C(25)-C(26)-H(26)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 107.7
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(25) C(25)-C(26)-H(26) C(25)-C(26)-H(26A)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(25) C(25)-C(26)-H(26) C(25)-C(26)-H(26A) H(26)-C(26)-H(26A)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5 109.5
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(25) C(25)-C(26)-H(26) H(26)-C(26)-H(26A) C(25)-C(26)-H(26B)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5 109.5 109.5
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(25) C(25)-C(26)-H(26) H(26)-C(26)-H(26B) H(26)-C(26)-H(26B)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5 109.5 109.5 109.5
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(27)-C(25)-H(25) C(27)-C(25)-H(25) S(3)-C(25)-H(26) C(25)-C(26)-H(26A) H(26)-C(26)-H(26B) H(26A)-C(26)-H(26B)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5 109.5 109.5 109.5 109.5
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) C(25)-C(26)-H(26) C(25)-C(26)-H(26A) H(26)-C(26)-H(26B) H(26)-C(26)-H(26B) H(26A)-C(26)-H(26B) H(26A)-C(26)-H(26B)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C(24)-S(3)-C(25) C(24)-S(3)-Pd(1) C(25)-S(3)-Pd(1) C(26)-C(25)-C(27) C(26)-C(25)-S(3) C(27)-C(25)-S(3) C(26)-C(25)-H(25) C(27)-C(25)-H(25) C(25)-C(26)-H(26) C(25)-C(26)-H(26A) H(26)-C(26)-H(26B) H(26)-C(26)-H(26B) H(26A)-C(26)-H(26B) H(26A)-C(26)-H(26B) C(25)-C(27)-H(27) C(25)-C(27)-H(27A)	99.8(2) 104.2(2) 113.9(2) 114.1(5) 111.9(4) 107.5(4) 107.7 107.7 107.7 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

C(25)-C(27)-H(27B)	109.5
H(27)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
P(2)-Pd(2)-Cl(2)	179.08(5)
P(2)-Pd(2)-S(4)	86.36(5)
Cl(2)-Pd(2)-S(4)	94.50(5)
P(2)-Pd(2)-S(6)	86.46(5)
Cl(2)-Pd(2)-S(6)	92.80(6)
S(4)-Pd(2)-S(6)	121.32(6)
P(2)-Pd(2)-S(5)	86.09(6)
Cl(2)-Pd(2)-S(5)	93.78(8)
S(4)-Pd(2)-S(5)	119.56(5)
S(6)-Pd(2)-S(5)	117.88(5)
C(46)-P(2)-C(37)	108.5(2)
C(46)-P(2)-C(28)	107.4(3)
C(37)-P(2)-C(28)	108.9(3)
C(46)-P(2)-Pd(2)	110.54(18)
C(37)-P(2)-Pd(2)	110.7(2)
C(28)-P(2)-Pd(2)	110.60(19)
C(37)-C(42)-C(41)	119.0(7)
C(37)-C(42)-S(5)	121.6(5)
C(41)-C(42)-S(5)	119.3(6)
C(42)-S(5)-C(43)	99.8(3)
C(42)-S(5)-Pd(2)	103.2(2)
C(43)-S(5)-Pd(2)	116.2(3)
C(45)-C(43)-C(44)	117.3(7)
C(45)-C(43)-S(5)	108.3(5)
C(44)-C(43)-S(5)	112.7(5)
C(45)-C(43)-H(43)	105.9
C(44)-C(43)-H(43)	105.9
S(5)-C(43)-H(43)	105.9
C(43)-C(44)-H(44)	109.5
C(43)-C(44)-H(44A)	109.5
H(44)-C(44)-H(44A)	109.5
C(43)-C(44)-H(44B)	109.5
H(44)-C(44)-H(44B)	109.5

H(44A)-C(44)-H(44B)	109.5
C(43)-C(45)-H(45)	109.5
C(43)-C(45)-H(45A)	109.5
H(45)-C(45)-H(45A)	109.5
C(43)-C(45)-H(45B)	109.5
H(45)-C(45)-H(45B)	109.5
H(45A)-C(45)-H(45B)	109.5
C(47)-C(46)-C(51)	118.8(5)
C(47)-C(46)-P(2)	123.1(4)
C(51)-C(46)-P(2)	117.9(4)
C(48)-C(47)-C(46)	121.1(5)
C(48)-C(47)-H(47)	119.4
C(46)-C(47)-H(47)	119.4
C(47)-C(48)-C(49)	119.9(5)
C(47)-C(48)-H(48)	120.1
C(49)-C(48)-H(48)	120.1
C(50)-C(49)-C(48)	120.1(5)
C(50)-C(49)-H(49)	119.9
C(48)-C(49)-H(49)	119.9
C(49)-C(50)-C(51)	120.1(5)
C(49)-C(50)-H(50)	120.0
C(51)-C(50)-H(50)	120.0
C(50)-C(51)-C(46)	120.0(5)
C(50)-C(51)-S(6)	118.8(4)
C(46)-C(51)-S(6)	120.9(4)
C(51)-S(6)-C(52)	101.7(3)
C(51)-S(6)-Pd(2)	103.21(18)
C(52)-S(6)-Pd(2)	112.7(2)
C(53)-C(52)-C(54)	113.3(5)
C(53)-C(52)-S(6)	112.6(4)
C(54)-C(52)-S(6)	107.5(4)
C(53)-C(52)-H(52)	107.7
C(54)-C(52)-H(52)	107.7
S(6)-C(52)-H(52)	107.7
C(52)-C(53)-H(53)	109.5
C(52)-C(53)-H(53A)	109.5

H(53)-C(53)-H(53A)	109.5
C(52)-C(53)-H(53B)	109.5
H(53)-C(53)-H(53B)	109.5
H(53A)-C(53)-H(53B)	109.5
C(52)-C(54)-H(54)	109.5
C(52)-C(54)-H(54A)	109.5
H(54)-C(54)-H(54A)	109.5
C(52)-C(54)-H(54B)	109.5
H(54)-C(54)-H(54B)	109.5
H(54A)-C(54)-H(54B)	109.5
H(1A)-O(1)-H(1B)	100(10)
H(2A)-O(2)-H(2B)	113(9)
H(3A)-O(3)-H(3B)	117(10)
C(33)-C(28)-C(29)	118.9(5)
C(33)-C(28)-P(2)	117.3(4)
C(29)-C(28)-P(2)	123.8(4)
C(30)-C(29)-C(28)	120.3(5)
C(30)-C(29)-H(29)	119.9
C(28)-C(29)-H(29)	119.9
C(29)-C(30)-C(31)	120.7(5)
C(29)-C(30)-H(30)	119.7
C(31)-C(30)-H(30)	119.7
C(30)-C(31)-C(32)	120.4(5)
C(30)-C(31)-H(31)	119.8
C(32)-C(31)-H(31)	119.8
C(31)-C(32)-C(33)	119.1(5)
C(31)-C(32)-H(32)	120.5
C(33)-C(32)-H(32)	120.5
C(28)-C(33)-C(32)	120.6(5)
C(28)-C(33)-S(4)	121.6(4)
C(32)-C(33)-S(4)	117.8(4)
C(33)-S(4)-C(34)	98.9(2)
C(33)-S(4)-Pd(2)	103.46(18)
C(34)-S(4)-Pd(2)	113.2(2)
H(4A)-O(4)-H(4B)	116(10)
C(35)-C(34)-C(36)	113.5(5)

C(35)-C(34)-S(4)	112.7(4)
C(36)-C(34)-S(4)	106.9(4)
C(35)-C(34)-H(34)	107.8
C(36)-C(34)-H(34)	107.8
S(4)-C(34)-H(34)	107.8
C(34)-C(35)-H(35)	109.5
C(34)-C(35)-H(35A)	109.5
H(35)-C(35)-H(35A)	109.5
C(34)-C(35)-H(35B)	109.5
H(35)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
C(34)-C(36)-H(36)	109.5
C(34)-C(36)-H(36A)	109.5
H(36)-C(36)-H(36A)	109.5
C(34)-C(36)-H(36B)	109.5
H(36)-C(36)-H(36B)	109.5
H(36A)-C(36)-H(36B)	109.5
C(42)-C(37)-C(38)	119.5(6)
C(42)-C(37)-P(2)	117.7(5)
C(38)-C(37)-P(2)	122.8(5)
C(39)-C(38)-C(37)	120.3(6)
C(39)-C(38)-H(38)	119.9
C(37)-C(38)-H(38)	119.9
C(40)-C(39)-C(38)	120.5(6)
C(40)-C(39)-H(39)	119.7
C(38)-C(39)-H(39)	119.7
C(41)-C(40)-C(39)	120.2(6)
C(41)-C(40)-H(40)	119.9
C(39)-C(40)-H(40)	119.9
C(40)-C(41)-C(42)	120.4(7)
C(40)-C(41)-H(41)	119.8
C(42)-C(41)-H(41)	119.8

Table 7-5. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12
Pd(1)	24.3 (2) 26.3 (18) 11.1 (19) -0.1 ((18) 3.0 (15) 2.4 (2)

Cl(1)	44.5 (10)) 48.0 (10)) 12.6 (7)) -0.5 (6)	4.4 (7)	4.8 (7)
P(1)	19.6 (8)	19.4 (6)	11.3 (8)	-0.4 (5)	2.1 (6)	1.7 (5)
C(1)	24.0 (3)	19.0 (2)	17.0 (2)	-2.6 (19)	4.0 (2)	3.0 (2)
C(2)	24.0 (3)	30.0 (3)	23.0 (3)	-2.0 (2)	5.0 (2)	4.0 (2)
C(3)	35.0 (3)	25.0 (3)	24.0 (3)	-8.0 (2)	4.0 (2)	7.0 (2)
C(4)	32.0 (3)	22.0 (3)	31.0 (3)	-7.0 (2)	3.0 (2)	1.0 (2)
C(5)	31.0 (3)	19.0 (2)	30.0 (3)	-2.0 (2)	5.0 (2)	-2.0 (2)
C(6)	21.0 (3)	22.0 (2)	22.0 (3)	0.0 (2)	5.0 (2)	3.0 (2)
S(1)	24.4 (7)	21.7 (6)	16.1 (6)	1.8 (4)	4.1 (5)	-0.7 (5)
C(7)	25.0 (3)	31.0 (3)	26.0 (3)	-4.0 (2)	12.0 (2)	-1.0 (2)
C(8)	21.0 (3)	59.0 (4)	43.0 (4)	2.0 (3)	7.0 (3)	7.0 (3)
C(9)	46.0 (4)	52.0 (4)	34.0 (3)	-2.0 (3)	20.0 (3)	3.0 (3)
C(10)	22.0 (3)	21.0 (2)	14.0 (2)	3.0 (19)	1.0 (2)	0.0 (19)
C(11)	28.0 (3)	24.0 (3)	17.0 (2)	-3.5 (19)	2.0 (2)	0.0 (2)
C(12)	24.0 (3)	34.0 (3)	18.0 (2)	0.0 (2)	-2.0 (2)	0.0 (2)
C(13)	27.0 (3)	29.0 (3)	28.0 (3)	4.0 (2)	-2.0 (2)	7.0 (2)
C(14)	34.0 (3)	21.0 (3)	29.0 (3)	0.0 (2)	0.0 (2)	6.0 (2)
C(15)	24.0 (3)	21.0 (2)	17.0 (3)	1.0 (19)	1.0 (2)	3.0 (2)
S(2)	25.0 (7)	21.2 (6)	16.7 (6)	-2.4 (5)	3.6 (5)	2.7 (5)
C(16)	37.0 (3)	21.0 (2)	27.0 (3)	1.0 (2)	-5.0 (2)	0.0 (2)
C(17)	36.0 (3)	30.0 (3)	37.0 (3)	3.0 (2)	-1.0 (3)	-4.0 (3)
C(18)	58.0 (4)	41.0 (4)	28.0 (3)	-14.0 (3)	-5.0 (3)	0.0 (3)
C(19)	21.0 (3)	19.0 (2)	14.0 (2)	-0.9 (18)	5.0 (2)	-1.3 (19)
C(20)	31.0 (3)	25.0 (3)	16.0 (2)	1.0 (2)	7.0 (2)	-3.0 (2)
C(21)	35.0 (3)	27.0 (3)	20.0 (3)	2.0 (2)	9.0 (2)	-1.0 (2)
C(22)	34.0 (3)	27.0 (3)	30.0 (3)	1.0 (2)	17.0 (3)	0.0 (2)
C(23)	21.0 (3)	28.0 (3)	30.0 (4)	1.0 (2)	4.0 (3)	-1.0 (2)
C(24)	21.0 (3)	18.0 (2)	19.0 (3)	1.4 (17)	3.0 (2)	-1.8 (18)
S(3)	21.2 (8)	21.1 (6)	14.8 (7)	-2.3 (4)	0.6 (6)	0.1 (4)
C(25)	30.0 (3)	24.0 (3)	26.0 (3)	3.0 (2)	3.0 (2)	9.0 (2)
C(26)	40.0 (4)	22.0 (3)	48.0 (4)	-1.0 (3)	4.0 (3)	4.0 (2)
C(27)	44.0 (4)	47.0 (4)	25.0 (3)	16.0 (3)	11.0 (3)	17.0 (3)
Pd(2)	35.2 (3)	28.2 (2)	10.8 (2)	-0.4 (13)	2.4 (18)	-0.2 (15)
Cl(2)	66.0 (14)) 50.5 (10)) 11.5 (8))-2.0 (5)	5.3 (8)	-3.2 (7)
P(2)	21.4 (8)	18.4 (6)	12.9 (8)	0.3 (4)	2.7 (6)	0.1 (5)
C(42)	28.0 (4)	17.0 (2)	30.0 (4)	5.4 (19)	-1.0 (3)	-0.2 (19)

S(5)	30.6 (9) 23.2 (7) 24.0 (8) 3.7 (5) -8.5 (7) -3.7 (5)	
C(43)	55.0 (5) 34.0 (4) 48.0 (4) -1.0 (3) -11.0 (3) -15.0 (3)	
C(44)	45.0 (4) 26.0 (3) 44.0 (4) -4.0 (3) 13.0 (3) -6.0 (3)	
C(45)	100.0 (8) 53.0 (5) 52.0 (5) -17.0 (4) -23.0 (5) -7.0 (5)	
C(46)	19.0 (3) 18.0 (2) 19.0 (2) 1.5 (19) 0.3 (19) -3.2 (18)	
C(47)	30.0 (3) 25.0 (2) 15.0 (2) 4.0 (19) 6.0 (2) -4.0 (2)	
C(48)	29.0 (3) 28.0 (3) 23.0 (3) 9.0 (2) 2.0 (2) -3.0 (2)	
C(49)	36.0 (3) 20.0 (3) 33.0 (3) 8.0 (2) 2.0 (3) 1.0 (2)	
C(50)	31.0 (3) 19.0 (2) 34.0 (3) 0.0 (2) 3.0 (2) 0.0 (2)	
C(51)	23.0 (3) 18.0 (2) 21.0 (3) -1.1 (19) 1.0 (2) -2.0 (19)	
S(6)	28.9 (7) 24.1 (6) 17.9 (6) -4.9 (5) 3.2 (5) 2.3 (5)	
C(52)	29.0 (3) 41.0 (3) 25.0 (3) -3.0 (2) 6.0 (2) 7.0 (2)	
C(53)	26.0 (3) 55.0 (4) 34.0 (3) 1.0 (3) 3.0 (3) -2.0 (3)	
C(54)	53.0 (4) 63.0 (5) 36.0 (4) -16.0 (3) 19.0 (3) 2.0 (4)	
Cl(3)	59.0 (12) 67.3 (12) 33.0 (9) -7.0 (8) 18.7 (8) -4.4 (9)	
O(1)	43.0 (3) 107.0 (5) 46.0 (3) -38.0 (3) 5.0 (2) -22.0 (3)	
O(2)	72.0 (4) 40.0 (3) 92.0 (5) 1.0 (3) -30.0 (3) 3.0 (3)	
Cl(4)	49.4 (10) 61.4 (11) 35.7 (8) 15.5 (8) 15.8 (7) 2.1 (8)	
O(3)	55.0 (4) 117.0 (6) 35.0 (3) -28.0 (3) 7.0 (2) -37.0 (3)	
C(28)	18.0 (3) 20.0 (2) 21.0 (3) 1.9 (19) 1.0 (2) 2.1 (19)	
C(29)	24.0 (3) 26.0 (3) 17.0 (2) 0.9 (19) 4.0 (2) 0.0 (2)	
C(30)	28.0 (3) 29.0 (3) 19.0 (3) -5.0 (2) -5.0 (2) 2.0 (2)	
C(31)	33.0 (3) 25.0 (3) 28.0 (3) -5.0 (2) 2.0 (2) -6.0 (2)	
C(32)	29.0 (3) 27.0 (3) 22.0 (3) 4.0 (2) 4.0 (2) -5.0 (2)	
C(33)	23.0 (3) 22.0 (2) 15.0 (2) 0.7 (19) 1.0 (2) 2.0 (2)	
S(4)	27.9 (7) 21.9 (6) 15.6 (6) 3.8 (5) 6.3 (5) 1.4 (5)	
O(4)	114.0 (6)41.0 (3) 60.0 (4) -2.0 (3) 18.0 (4) 3.0 (3)	
C(34)	37.0 (3) 21.0 (2) 20.0 (3) 3.0 (2) 5.0 (2) 7.0 (2)	
C(35)	28.0 (3) 25.0 (3) 35.0 (3) 2.0 (2) 4.0 (2) 7.0 (2)	
C(36)	59.0 (4) 37.0 (3) 23.0 (3) 8.0 (2) -1.0 (3) 7.0 (3)	
C(37)	27.0 (3) 17.0 (2) 27.0 (3) 3.0 (2) 5.0 (2) 1.0 (2)	
C(38)	31.0 (3) 25.0 (3) 27.0 (3) 0.0 (2) 8.0 (2) 2.0 (2)	
C(39)	39.0 (4) 25.0 (3) 39.0 (3) 7.0 (2) 19.0 (3) 6.0 (3)	
C(40)	21.0 (3) 29.0 (3) 56.0 (4) 11.0 (3) 12.0 (3) 3.0 (2)	
C(41)	22.0 (3) 31.0 (3) 47.0 (5) 8.0 (3) 0.0 (3) 2.0 (2)	

Table 7-6. ねじれ角[°]

atom-atom-atom	angle / °
C(19)-P(1)-C(1)-C(6)	-137.4(4)
C(10)-P(1)-C(1)-C(6)	104.7(5)
Pd(1)-P(1)-C(1)-C(6)	-16.5(5)
C(19)-P(1)-C(1)-C(2)	45.8(5)
C(10)-P(1)-C(1)-C(2)	-72.1(5)
Pd(1)-P(1)-C(1)-C(2)	166.8(4)
C(6)-C(1)-C(2)-C(3)	-3.4(8)
P(1)-C(1)-C(2)-C(3)	173.4(4)
C(1)-C(2)-C(3)-C(4)	0.6(9)
C(2)-C(3)-C(4)-C(5)	1.9(9)
C(3)-C(4)-C(5)-C(6)	-1.7(9)
C(4)-C(5)-C(6)-C(1)	-1.0(9)
C(4)-C(5)-C(6)-S(1)	176.7(5)
C(2)-C(1)-C(6)-C(5)	3.6(8)
P(1)-C(1)-C(6)-C(5)	-173.3(4)
C(2)-C(1)-C(6)-S(1)	-174.2(4)
P(1)-C(1)-C(6)-S(1)	9.0(6)
C(5)-C(6)-S(1)-C(7)	66.0(5)
C(1)-C(6)-S(1)-C(7)	-116.3(5)
C(5)-C(6)-S(1)-Pd(1)	-176.0(4)
C(1)-C(6)-S(1)-Pd(1)	1.7(5)
C(6)-S(1)-C(7)-C(8)	52.5(5)
Pd(1)-S(1)-C(7)-C(8)	-57.4(5)
C(6)-S(1)-C(7)-C(9)	177.1(4)
Pd(1)-S(1)-C(7)-C(9)	67.2(4)
C(19)-P(1)-C(10)-C(15)	111.6(5)
C(1)-P(1)-C(10)-C(15)	-130.6(4)
Pd(1)-P(1)-C(10)-C(15)	-10.0(5)
C(19)-P(1)-C(10)-C(11)	-67.9(5)
C(1)-P(1)-C(10)-C(11)	49.9(5)
Pd(1)-P(1)-C(10)-C(11)	170.5(4)
C(15)-C(10)-C(11)-C(12)	-4.0(8)
P(1)-C(10)-C(11)-C(12)	175.5(4)
C(10)-C(11)-C(12)-C(13)	1.8(9)

C(11)-C(12)-C(13)-C(14)C(12)-C(13)-C(14)-C(15) C(13)-C(14)-C(15)-C(10)C(13)-C(14)-C(15)-S(2)C(11)-C(10)-C(15)-C(14)P(1)-C(10)-C(15)-C(14) C(11)-C(10)-C(15)-S(2)P(1)-C(10)-C(15)-S(2)C(14)-C(15)-S(2)-C(16)C(10)-C(15)-S(2)-C(16) C(14)-C(15)-S(2)-Pd(1)C(10)-C(15)-S(2)-Pd(1)C(15)-S(2)-C(16)-C(18)Pd(1)-S(2)-C(16)-C(18) C(15)-S(2)-C(16)-C(17)Pd(1)-S(2)-C(16)-C(17)C(10)-P(1)-C(19)-C(24)C(1)-P(1)-C(19)-C(24)Pd(1)-P(1)-C(19)-C(24) C(10)-P(1)-C(19)-C(20)C(1)-P(1)-C(19)-C(20)Pd(1)-P(1)-C(19)-C(20) C(24)-C(19)-C(20)-C(21)P(1)-C(19)-C(20)-C(21)C(19)-C(20)-C(21)-C(22)C(20)-C(21)-C(22)-C(23)C(21)-C(22)-C(23)-C(24) C(22)-C(23)-C(24)-C(19)C(22)-C(23)-C(24)-S(3)C(20)-C(19)-C(24)-C(23) P(1)-C(19)-C(24)-C(23) C(20)-C(19)-C(24)-S(3)P(1)-C(19)-C(24)-S(3)C(23)-C(24)-S(3)-C(25)C(19)-C(24)-S(3)-C(25)C(23)-C(24)-S(3)-Pd(1)

1.1(9)-1.8(9)-0.5(9)176.2(5)3.4(8)-176.1(5)-173.2(4)7.2(6)66.6(5)-116.8(5)-178.1(4)-1.4(5)-169.2(4)81.6(4) 64.8(5)-44.3(5)-135.2(4)107.9(4)-13.1(4)48.3(5)-68.5(5)170.4(4)-2.8(8)173.6(4)1.5(8)0.9(9)-1.9(8)0.5(8)178.3(4)1.8(7)-174.8(4)-175.9(4)7.5(6)65.4(4)-116.9(4)-176.7(4)

C(19)-C(24)-S(3)-Pd(1) C(24)-S(3)-C(25)-C(26) Pd(1)-S(3)-C(25)-C(26) C(24)-S(3)-C(25)-C(27)Pd(1)-S(3)-C(25)-C(27) C(37)-C(42)-S(5)-C(43)C(41)-C(42)-S(5)-C(43)C(37)-C(42)-S(5)-Pd(2)C(41)-C(42)-S(5)-Pd(2)C(42)-S(5)-C(43)-C(45) Pd(2)-S(5)-C(43)-C(45) C(42)-S(5)-C(43)-C(44)Pd(2)-S(5)-C(43)-C(44) C(37)-P(2)-C(46)-C(47)C(28)-P(2)-C(46)-C(47) Pd(2)-P(2)-C(46)-C(47) C(37)-P(2)-C(46)-C(51)C(28)-P(2)-C(46)-C(51) Pd(2)-P(2)-C(46)-C(51) C(51)-C(46)-C(47)-C(48)P(2)-C(46)-C(47)-C(48)C(46)-C(47)-C(48)-C(49) C(47)-C(48)-C(49)-C(50)C(48)-C(49)-C(50)-C(51)C(49)-C(50)-C(51)-C(46)C(49)-C(50)-C(51)-S(6)C(47)-C(46)-C(51)-C(50)P(2)-C(46)-C(51)-C(50) C(47)-C(46)-C(51)-S(6)P(2)-C(46)-C(51)-S(6) C(50)-C(51)-S(6)-C(52)C(46)-C(51)-S(6)-C(52)C(50)-C(51)-S(6)-Pd(2)C(46)-C(51)-S(6)-Pd(2)C(51)-S(6)-C(52)-C(53) Pd(2)-S(6)-C(52)-C(53)

1.1(4)66.5(5)-43.9(5)-167.5(4)82.1(4)-121.3(5)61.8(5)-1.2(4)-178.1(4)-162.7(6)87.1(6) 65.9(6)-44.3(6)53.2(5)-64.4(5)174.8(4)-131.8(4)110.6(4)-10.2(5)-2.4(8)172.6(4)1.8(8)0.1(9)-1.3(9)0.6(8)175.4(5)1.2(8)-174.1(4)-173.5(4)11.2(6)61.8(5)-123.5(5)178.7(4)-6.6(5)79.9(5) -29.9(5)

C(51)-S(6)-C(52)-C(54) Pd(2)-S(6)-C(52)-C(54) C(46)-P(2)-C(28)-C(33) C(37)-P(2)-C(28)-C(33) Pd(2)-P(2)-C(28)-C(33) C(46)-P(2)-C(28)-C(29) C(37)-P(2)-C(28)-C(29) Pd(2)-P(2)-C(28)-C(29) C(33)-C(28)-C(29)-C(30)P(2)-C(28)-C(29)-C(30) C(28)-C(29)-C(30)-C(31) C(29)-C(30)-C(31)-C(32)C(30)-C(31)-C(32)-C(33) C(29)-C(28)-C(33)-C(32)P(2)-C(28)-C(33)-C(32) C(29)-C(28)-C(33)-S(4)P(2)-C(28)-C(33)-S(4)C(31)-C(32)-C(33)-C(28) C(31)-C(32)-C(33)-S(4)C(28)-C(33)-S(4)-C(34)C(32)-C(33)-S(4)-C(34)C(28)-C(33)-S(4)-Pd(2)C(32)-C(33)-S(4)-Pd(2)C(33)-S(4)-C(34)-C(35)Pd(2)-S(4)-C(34)-C(35) C(33)-S(4)-C(34)-C(36)Pd(2)-S(4)-C(34)-C(36) C(41)-C(42)-C(37)-C(38)S(5)-C(42)-C(37)-C(38)C(41)-C(42)-C(37)-P(2) S(5)-C(42)-C(37)-P(2)C(46)-P(2)-C(37)-C(42)C(28)-P(2)-C(37)-C(42)Pd(2)-P(2)-C(37)-C(42) C(46)-P(2)-C(37)-C(38) C(28)-P(2)-C(37)-C(38)

-154.7(5)95.5(5)-127.6(4)115.0(4)-6.8(5)53.2(5)-64.2(5)173.9(4)-1.8(8)177.4(4)1.6(8)-0.8(9)0.2(9)1.2(8)-178.0(4)179.9(4)0.7(6)-0.5(9)-179.2(5)-111.7(5)67.1(5) 5.0(5)-176.3(4)65.7(5)-43.2(4)-168.9(4)82.2(4)1.5(7)-175.4(4)-176.2(4)6.9(6)111.9(4)-131.4(4)-9.6(4)-65.7(5)51.0(5)

Pd(2)-P(2)-C(37)-C(38)	172.8(4)
C(42)-C(37)-C(38)-C(39)	-2.3(8)
P(2)-C(37)-C(38)-C(39)	175.3(4)
C(37)-C(38)-C(39)-C(40)	0.9(9)
C(38)-C(39)-C(40)-C(41)	1.4(9)
C(39)-C(40)-C(41)-C(42)	-2.2(9)
C(37)-C(42)-C(41)-C(40)	0.7(8)
S(5)-C(42)-C(41)-C(40)	177.7(4)

[PdClP(C₆H₄-2-SC(CH₃)₃)₃]BF₄ (**4b**)

Figure 7-1. ¹H NMR (CDCl₃, 400 MHz).

Figure 7-2. ³¹P NMR (CDCl₃, 162 MHz)

Figure 7-3. $^{19}\mathrm{F}\,\mathrm{NMR}$ (CDCl_3, 376 M

 $[Pd(CH_3)_2P(C_6H_4-2-SC(CH_3)_3)_3]$ (5b)

Figure 7-4. ¹H NMR (benzene-*d*₆, 400 MHz).

Figure 7-5. ³¹P NMR (benzene- d_6 , 162 MHz).

Table 7-7. X線結晶構造解析の結果

Identification code	ro1712	ro1712	
Empirical formula	C ₃₅ H ₄₈ P Pd S ₃		
Formula weight	702.28		
Temperature	123 K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 17.494(5) Å	$\alpha = 90^{\circ}.$	
	b = 9.910(2) Å	$\beta = 102.325(7)^{\circ}.$	
	c = 20.594(5) Å	$\gamma = 90^{\circ}.$	
Volume	3488.0(15) Å ³		
Ζ	4		
Density (calculated)	1.337 Mg/m ³	1.337 Mg/m ³	
Absorption coefficient	0.780 mm ⁻¹	0.780 mm ⁻¹	
F(000)	1468	1468	
Crystal size	0.30 x 0.15 x 0.10 mm ³	0.30 x 0.15 x 0.10 mm ³	
Theta range for data collection	3.147 to 27.500°.	3.147 to 27.500°.	
Index ranges	-22<=h<=22, -12<=k<=	-22<=h<=22, -12<=k<=12, -26<=l<=26	
Reflections collected	55871	55871	
Independent reflections	7985 [<i>R</i> (int) = 0.0593]	7985 [$R(int) = 0.0593$]	
Completeness to theta = 25.242°	99.8 %	99.8 %	
Absorption correction	Numerical	Numerical	
Max. and min. transmission	0.950 and 0.864	0.950 and 0.864	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F^2	
Data / restraints / parameters	7985 / 0 / 361	7985 / 0 / 361	
Goodness-of-fit on F^2	1.079		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0238, wR2 = 0.0	R1 = 0.0238, wR2 = 0.0700	
R indices (all data)	R1 = 0.0257, wR2 = 0.0	R1 = 0.0257, wR2 = 0.0705	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.542 and -0.598 e.Å ⁻³	0.542 and -0.598 e.Å ⁻³	

atom	Х	У	Z	U(eq)
Pd(1)	7831(1)	6252(1)	2484(1)	15(1)
C(1)	7216(1)	6394(2)	3227(1)	25(1)
C(2)	8585(1)	7652(2)	3065(1)	23(1)
P(1)	7020(1)	4712(1)	1816(1)	14(1)
C(3)	7056(1)	5265(2)	973(1)	16(1)
C(4)	6446(1)	4999(2)	432(1)	22(1)
C(5)	6451(1)	5538(2)	-190(1)	27(1)
C(6)	7065(1)	6338(2)	-278(1)	28(1)
C(7)	7686(1)	6592(2)	251(1)	25(1)
C(8)	7685(1)	6045(2)	876(1)	19(1)
S(1)	8437(1)	6566(1)	1566(1)	19(1)
C(9)	9311(1)	5477(2)	1561(1)	24(1)
C(10)	9588(1)	5693(2)	918(1)	38(1)
C(11)	9135(1)	3996(2)	1646(1)	38(1)
C(12)	9910(1)	6002(2)	2152(1)	41(1)
C(13)	7279(1)	2906(2)	1795(1)	16(1)
C(14)	7440(1)	2329(2)	1218(1)	21(1)
C(15)	7698(1)	1007(2)	1208(1)	25(1)
C(16)	7773(1)	209(2)	1766(1)	27(1)
C(17)	7580(1)	731(2)	2334(1)	24(1)
C(18)	7354(1)	2079(2)	2361(1)	17(1)
S(2)	7062(1)	2711(1)	3079(1)	19(1)
C(19)	7937(1)	2632(2)	3771(1)	22(1)
C(20)	8607(1)	3423(2)	3594(1)	26(1)
C(21)	7642(1)	3302(2)	4342(1)	35(1)
C(22)	8188(1)	1179(2)	3965(1)	32(1)
C(23)	5965(1)	4672(2)	1795(1)	16(1)
C(24)	5565(1)	3460(2)	1819(1)	18(1)
C(25)	4783(1)	3437(2)	1862(1)	20(1)
C(26)	4395(1)	4644(2)	1900(1)	21(1)
C(27)	4775(1)	5860(2)	1870(1)	19(1)
C(28)	5552(1)	5903(2)	1799(1)	16(1)
S(3)	6021(1)	7461(1)	1711(1)	18(1)
C(29)	5342(1)	8404(2)	1038(1)	22(1)

Table 7-8. 原子座標と等方性温度因子

C(30)	5909(1)	9226(2)	729(1)	45(1)
C(31)	4857(1)	7476(2)	522(1)	31(1)
C(32)	4814(1)	9350(2)	1327(1)	36(1)
C(33)	10193(1)	5715(2)	4484(1)	37(1)
C(34)	9606(1)	6178(2)	4780(1)	38(1)
<u>C(35)</u>	9412(1)	5466(2)	5296(1)	38(1)

Table 7-9. 結合距離[Å].

atom-atom	distance / Å	
Pd(1)-C(1)	2.0553(17)	
Pd(1)-C(2)	2.1039(16)	
Pd(1)-P(1)	2.3234(5)	
Pd(1)-S(1)	2.3761(6)	
C(1)-H(1)	0.9800	
C(1)-H(2)	0.9800	
C(1)-H(3)	0.9800	
C(2)-H(4)	0.9800	
C(2)-H(5)	0.9800	
C(2)-H(6)	0.9800	
P(1)-C(3)	1.8362(16)	
P(1)-C(23)	1.8369(16)	
P(1)-C(13)	1.8489(16)	
C(3)-C(8)	1.393(2)	
C(3)-C(4)	1.393(2)	
C(4)-C(5)	1.389(2)	
C(4)-H(7)	0.9500	
C(5)-C(6)	1.378(3)	
C(5)-H(8)	0.9500	
C(6)-C(7)	1.388(3)	
C(6)-H(9)	0.9500	
C(7)-C(8)	1.396(2)	
C(7)-H(10)	0.9500	
C(8)-S(1)	1.7932(17)	
S(1)-C(9)	1.8729(17)	
C(9)-C(11)	1.517(3)	
C(9)-C(12)	1.519(3)	

C(9)-C(10)	1.520(3)
C(10)-H(11)	0.9800
C(10)-H(12)	0.9800
C(10)-H(13)	0.9800
C(11)-H(14)	0.9800
C(11)-H(15)	0.9800
C(11)-H(16)	0.9800
C(12)-H(17)	0.9800
C(12)-H(18)	0.9800
C(12)-H(19)	0.9800
C(13)-C(14)	1.401(2)
C(13)-C(18)	1.408(2)
C(14)-C(15)	1.387(2)
C(14)-H(20)	0.9500
C(15)-C(16)	1.379(3)
C(15)-H(21)	0.9500
C(16)-C(17)	1.386(2)
C(16)-H(22)	0.9500
C(17)-C(18)	1.398(2)
C(17)-H(23)	0.9500
C(18)-S(2)	1.7766(16)
S(2)-C(19)	1.8571(16)
C(19)-C(20)	1.518(2)
C(19)-C(21)	1.533(2)
C(19)-C(22)	1.534(2)
C(20)-H(24)	0.9800
C(20)-H(25)	0.9800
C(20)-H(26)	0.9800
C(21)-H(27)	0.9800
C(21)-H(28)	0.9800
C(21)-H(29)	0.9800
C(22)-H(30)	0.9800
C(22)-H(31)	0.9800
C(22)-H(32)	0.9800
C(23)-C(24)	1.396(2)
C(23)-C(28)	1.419(2)
C(24)-C(25)	1.391(2)
--------------------	------------
C(24)-H(33)	0.9500
C(25)-C(26)	1.386(2)
C(25)-H(34)	0.9500
C(26)-C(27)	1.384(2)
C(26)-H(35)	0.9500
C(27)-C(28)	1.399(2)
C(27)-H(36)	0.9500
C(28)-S(3)	1.7757(16)
S(3)-C(29)	1.8707(16)
C(29)-C(31)	1.520(2)
C(29)-C(30)	1.523(3)
C(29)-C(32)	1.524(3)
C(30)-H(37)	0.9800
C(30)-H(38)	0.9800
C(30)-H(39)	0.9800
C(31)-H(40)	0.9800
C(31)-H(41)	0.9800
C(31)-H(42)	0.9800
C(32)-H(43)	0.9800
C(32)-H(44)	0.9800
C(32)-H(45)	0.9800
C(33)-C(34)	1.379(3)
C(33)-C(35)#1	1.385(3)
C(33)-H(46)	0.9500
C(34)-C(35)	1.378(3)
C(34)-H(47)	0.9500
<u>C(35)-H(48)</u>	0.9500

Table 7-10. 結合角[°]

atom-atom-atom	angle / °			
C(1)-Pd(1)-C(2)	84.01(7)			
C(1)-Pd(1)-P(1)	97.74(5)			
C(2)-Pd(1)-P(1)	178.24(5)			
C(1)-Pd(1)-S(1)	167.59(5)			
C(2)-Pd(1)-S(1)	91.96(5)			

P(1)-Pd(1)-S(1)	86.29(2)
Pd(1)-C(1)-H(1)	109.5
Pd(1)-C(1)-H(2)	109.5
H(1)-C(1)-H(2)	109.5
Pd(1)-C(1)-H(3)	109.5
H(1)-C(1)-H(3)	109.5
H(2)-C(1)-H(3)	109.5
Pd(1)-C(2)-H(4)	109.5
Pd(1)-C(2)-H(5)	109.5
H(4)-C(2)-H(5)	109.5
Pd(1)-C(2)-H(6)	109.5
H(4)-C(2)-H(6)	109.5
H(5)-C(2)-H(6)	109.5
C(3)-P(1)-C(23)	102.81(7)
C(3)-P(1)-C(13)	102.04(7)
C(23)-P(1)-C(13)	103.23(7)
C(3)-P(1)-Pd(1)	102.90(5)
C(23)-P(1)-Pd(1)	120.77(5)
C(13)-P(1)-Pd(1)	121.86(5)
C(8)-C(3)-C(4)	118.94(14)
C(8)-C(3)-P(1)	119.27(11)
C(4)-C(3)-P(1)	121.66(12)
C(5)-C(4)-C(3)	120.70(15)
C(5)-C(4)-H(7)	119.7
C(3)-C(4)-H(7)	119.7
C(6)-C(5)-C(4)	120.01(16)
C(6)-C(5)-H(8)	120.0
C(4)-C(5)-H(8)	120.0
C(5)-C(6)-C(7)	120.17(16)
C(5)-C(6)-H(9)	119.9
C(7)-C(6)-H(9)	119.9
C(6)-C(7)-C(8)	119.94(16)
C(6)-C(7)-H(10)	120.0
C(8)-C(7)-H(10)	120.0
C(3)-C(8)-C(7)	120.20(15)
C(3)-C(8)-S(1)	120.92(12)

C(7)-C(8)-S(1)	118.29(13)
C(8)-S(1)-C(9)	106.95(8)
C(8)-S(1)-Pd(1)	102.52(6)
C(9)-S(1)-Pd(1)	115.58(6)
C(11)-C(9)-C(12)	111.22(17)
C(11)-C(9)-C(10)	110.26(17)
C(12)-C(9)-C(10)	110.85(16)
C(11)-C(9)-S(1)	111.74(12)
C(12)-C(9)-S(1)	102.93(12)
C(10)-C(9)-S(1)	109.64(13)
C(9)-C(10)-H(11)	109.5
C(9)-C(10)-H(12)	109.5
H(11)-C(10)-H(12)	109.5
C(9)-C(10)-H(13)	109.5
H(11)-C(10)-H(13)	109.5
H(12)-C(10)-H(13)	109.5
C(9)-C(11)-H(14)	109.5
C(9)-C(11)-H(15)	109.5
H(14)-C(11)-H(15)	109.5
C(9)-C(11)-H(16)	109.5
H(14)-C(11)-H(16)	109.5
H(15)-C(11)-H(16)	109.5
C(9)-C(12)-H(17)	109.5
C(9)-C(12)-H(18)	109.5
H(17)-C(12)-H(18)	109.5
C(9)-C(12)-H(19)	109.5
H(17)-C(12)-H(19)	109.5
H(18)-C(12)-H(19)	109.5
C(14)-C(13)-C(18)	117.72(14)
C(14)-C(13)-P(1)	120.67(12)
C(18)-C(13)-P(1)	121.56(11)
C(15)-C(14)-C(13)	121.56(15)
C(15)-C(14)-H(20)	119.2
C(13)-C(14)-H(20)	119.2
C(16)-C(15)-C(14)	120.20(16)
C(16)-C(15)-H(21)	119.9

C(14)-C(15)-H(21)	119.9
C(15)-C(16)-C(17)	119.51(16)
C(15)-C(16)-H(22)	120.2
C(17)-C(16)-H(22)	120.2
C(16)-C(17)-C(18)	120.87(16)
C(16)-C(17)-H(23)	119.6
C(18)-C(17)-H(23)	119.6
C(17)-C(18)-C(13)	119.99(14)
C(17)-C(18)-S(2)	120.29(12)
C(13)-C(18)-S(2)	119.41(12)
C(18)-S(2)-C(19)	106.70(7)
C(20)-C(19)-C(21)	111.35(15)
C(20)-C(19)-C(22)	110.75(14)
C(21)-C(19)-C(22)	109.33(15)
C(20)-C(19)-S(2)	110.27(11)
C(21)-C(19)-S(2)	102.32(11)
C(22)-C(19)-S(2)	112.55(12)
C(19)-C(20)-H(24)	109.5
C(19)-C(20)-H(25)	109.5
H(24)-C(20)-H(25)	109.5
C(19)-C(20)-H(26)	109.5
H(24)-C(20)-H(26)	109.5
H(25)-C(20)-H(26)	109.5
C(19)-C(21)-H(27)	109.5
C(19)-C(21)-H(28)	109.5
H(27)-C(21)-H(28)	109.5
C(19)-C(21)-H(29)	109.5
H(27)-C(21)-H(29)	109.5
H(28)-C(21)-H(29)	109.5
C(19)-C(22)-H(30)	109.5
C(19)-C(22)-H(31)	109.5
H(30)-C(22)-H(31)	109.5
C(19)-C(22)-H(32)	109.5
H(30)-C(22)-H(32)	109.5
H(31)-C(22)-H(32)	109.5
C(24)-C(23)-C(28)	118.70(13)

C(24)-C(23)-P(1)	121.73(12)
C(28)-C(23)-P(1)	119.44(11)
C(25)-C(24)-C(23)	121.58(15)
C(25)-C(24)-H(33)	119.2
C(23)-C(24)-H(33)	119.2
C(26)-C(25)-C(24)	119.33(15)
C(26)-C(25)-H(34)	120.3
C(24)-C(25)-H(34)	120.3
C(27)-C(26)-C(25)	120.28(14)
C(27)-C(26)-H(35)	119.9
C(25)-C(26)-H(35)	119.9
C(26)-C(27)-C(28)	121.13(15)
C(26)-C(27)-H(36)	119.4
C(28)-C(27)-H(36)	119.4
C(27)-C(28)-C(23)	118.83(14)
C(27)-C(28)-S(3)	121.13(12)
C(23)-C(28)-S(3)	120.04(11)
C(28)-S(3)-C(29)	106.05(7)
C(31)-C(29)-C(30)	110.34(16)
C(31)-C(29)-C(32)	110.52(15)
C(30)-C(29)-C(32)	109.73(16)
C(31)-C(29)-S(3)	112.75(12)
C(30)-C(29)-S(3)	102.13(12)
C(32)-C(29)-S(3)	111.06(12)
C(29)-C(30)-H(37)	109.5
C(29)-C(30)-H(38)	109.5
H(37)-C(30)-H(38)	109.5
C(29)-C(30)-H(39)	109.5
H(37)-C(30)-H(39)	109.5
H(38)-C(30)-H(39)	109.5
C(29)-C(31)-H(40)	109.5
C(29)-C(31)-H(41)	109.5
H(40)-C(31)-H(41)	109.5
C(29)-C(31)-H(42)	109.5
H(40)-C(31)-H(42)	109.5
H(41)-C(31)-H(42)	109.5

C(29)-C(32)-H(43)	109.5
C(29)-C(32)-H(44)	109.5
H(43)-C(32)-H(44)	109.5
C(29)-C(32)-H(45)	109.5
H(43)-C(32)-H(45)	109.5
H(44)-C(32)-H(45)	109.5
C(34)-C(33)-C(35)#1	120.1(2)
C(34)-C(33)-H(46)	119.9
C(35)#1-C(33)-H(46)	119.9
C(35)-C(34)-C(33)	119.96(19)
C(35)-C(34)-H(47)	120.0
C(33)-C(34)-H(47)	120.0
C(34)-C(35)-C(33)#1	119.9(2)
C(34)-C(35)-H(48)	120.0
C(33)#1-C(35)-H(48)	120.0

Table 7-11. 異方性温度因子

1abic 7-11.	天月1111月21	<u> </u>				
atom	U11	U22	U33	U23	U13	U12
Pd(1)	14.32(7)	13.74(8)	17.2(7)	-1.7(4)	0.99(5)	0.73(4)
C(1)	28.4(9)	27.4(9)	19.9(8)	-3.9(7)	6.8(7)	5.5(7)
C(2)	21.6(8)	15.8(8)	27.7(8)	1.5(6)	-3.6(6)	-3(6)
P(1)	12.76(17)	13.52(19)	14.61(17)	-0.17(14)	3.14(13)	-0.62(13)
C(3)	20(7)	12.7(7)	17.2(7)	-0.1(6)	4.6(6)	1.3(6)
C(4)	24(8)	21.9(8)	18.8(7)	-0.4(6)	4.6(6)	-3.6(6)
C(5)	33.6(9)	28(9)	17.8(8)	-0.5(7)	2.2(7)	-0.8(7)
C(6)	41.1(10)	25.9(10)	19.4(8)	5.9(7)	10.8(7)	1.8(7)
C(7)	30.2(9)	22.3(9)	26.3(8)	4.6(7)	13.3(7)	-2.3(7)
C(8)	20.8(7)	15.4(8)	20.7(8)	0.4(6)	6.9(6)	3(6)
S (1)	15.83(18)	16.54(19)	25.2(2)	0.04(15)	5.51(15)	-2.01(14)
C(9)	15(7)	24.1(9)	35.7(9)	1.1(7)	7.9(7)	1.3(6)
C(10)	29.2(10)	45.8(12)	45.1(11)	2.8(10)	19.2(9)	4.8(9)
C(11)	22.9(9)	25.1(10)	68.7(14)	8.1(9)	15.9(9)	5.6(7)
C(12)	17.9(9)	53.5(13)	49.9(12)	-8.8(10)	1.4(8)	2.5(9)
C(13)	11.6(6)	14.7(7)	20.8(7)	-0.1(6)	3.3(5)	-0.5(5)
C(14)	21(8)	19.7(8)	22(8)	-0.5(6)	6.2(6)	-1.8(6)
C(15)	25.5(8)	22.4(9)	27.8(9)	-6.2(7)	7.3(7)	1.7(7)

C(16)	29.7(9)	16.4(8)	34.2(9)	-3.2(7)	2.2(7)	6.7(7)
C(17)	24.8(8)	19(8)	26.5(8)	3.8(7)	0.5(7)	1.3(7)
C(18)	12.8(7)	19.1(8)	19.6(7)	-0.1(6)	1.8(6)	-1.2(6)
S(2)	14.12(17)	24.2(2)	18.72(18)	2.57(15)	3.61(14)	0.61(14)
C(19)	18.7(7)	27.8(9)	17.5(7)	3.4(6)	1.1(6)	1.2(6)
C(20)	19(8)	28.3(9)	28(9)	1.8(7)	0.6(7)	-0.8(7)
C(21)	32(10)	51.8(13)	20.7(8)	-0.7(8)	4.9(7)	3.5(9)
C(22)	30.4(10)	32(11)	30.7(10)	11.4(8)	-2.8(8)	0.5(7)
C(23)	13.8(7)	18.8(8)	13.8(6)	1.2(6)	2.8(5)	-0.3(5)
C(24)	16.2(7)	17.4(8)	18.4(7)	2.5(6)	1.5(6)	0.5(6)
C(25)	17.5(7)	21.1(8)	21.6(8)	5.8(6)	1.6(6)	-4.3(6)
C(26)	13.7(7)	30.8(9)	19.8(7)	5.6(6)	3.6(6)	0.3(6)
C(27)	17.9(7)	20.2(8)	18.1(7)	2(6)	3.9(6)	3.9(6)
C(28)	15.9(7)	17.4(8)	14.4(7)	1.3(6)	1.7(5)	0.1(6)
S(3)	16.58(18)	15.16(19)	21.2(18)	0.96(14)	0.96(14)	0.33(14)
C(29)	22(8)	18.6(8)	23.5(8)	5.9(6)	-1.4(6)	-0.1(6)
C(30)	31.3(10)	48.4(13)	49.8(12)	29.6(11)	-2.1(9)	-8.3(9)
C(31)	34.2(10)	29(10)	25.4(9)	1.1(7)	-6(7)	0.3(8)
C(32)	39.1(10)	27.3(10)	35.2(10)	3.2(8)	-2.5(8)	13.2(8)
C(33)	40.1(11)	34.7(11)	32.9(10)	2.4(8)	1.2(8)	-6.4(9)
C(34)	39.5(11)	28(10)	40.3(11)	0.8(8)	-3.4(9)	4.3(8)
C(35)	31.9(10)	39.4(12)	39.7(11)	-4.8(9)	2.4(8)	1.6(8)

Table 7-12. ねじれ角[°]

atom-atom-atom	angle / °
C(23)-P(1)-C(3)-C(8)	147.87(12)
C(13)-P(1)-C(3)-C(8)	-105.37(13)
Pd(1)-P(1)-C(3)-C(8)	21.68(13)
C(23)-P(1)-C(3)-C(4)	-27.96(15)
C(13)-P(1)-C(3)-C(4)	78.80(14)
Pd(1)-P(1)-C(3)-C(4)	-154.15(12)
C(8)-C(3)-C(4)-C(5)	-2.1(2)
P(1)-C(3)-C(4)-C(5)	173.74(13)
C(3)-C(4)-C(5)-C(6)	0.4(3)
C(4)–C(5)–C(6)–C(7)	0.9(3)
C(5)-C(6)-C(7)-C(8)	-0.5(3)

_

C(4)-C(3)-C(8)-C(7)P(1)-C(3)-C(8)-C(7)C(4)-C(3)-C(8)-S(1)P(1)-C(3)-C(8)-S(1)C(6)-C(7)-C(8)-C(3)C(6)-C(7)-C(8)-S(1)C(3)-C(8)-S(1)-C(9)C(7)-C(8)-S(1)-C(9)C(3)-C(8)-S(1)-Pd(1)C(7)-C(8)-S(1)-Pd(1)C(8)-S(1)-C(9)-C(11) Pd(1)-S(1)-C(9)-C(11)C(8)-S(1)-C(9)-C(12)Pd(1)-S(1)-C(9)-C(12)C(8)-S(1)-C(9)-C(10)Pd(1)-S(1)-C(9)-C(10)C(3)-P(1)-C(13)-C(14)C(23)-P(1)-C(13)-C(14)Pd(1)-P(1)-C(13)-C(14)C(3)-P(1)-C(13)-C(18)C(23)-P(1)-C(13)-C(18)Pd(1)-P(1)-C(13)-C(18)C(18)-C(13)-C(14)-C(15)P(1)-C(13)-C(14)-C(15)C(13)-C(14)-C(15)-C(16) C(14)-C(15)-C(16)-C(17)C(15)-C(16)-C(17)-C(18) C(16)-C(17)-C(18)-C(13)C(16)-C(17)-C(18)-S(2)C(14)-C(13)-C(18)-C(17)P(1)-C(13)-C(18)-C(17)C(14)-C(13)-C(18)-S(2)P(1)-C(13)-C(18)-S(2)C(17)-C(18)-S(2)-C(19)C(13)-C(18)-S(2)-C(19)C(18)-S(2)-C(19)-C(20)

2.5(2)-173.44(12)173.55(12) -2.40(18)-1.2(3)-172.52(13)104.26(14) -84.53(14) -17.75(13)153.46(12) -61.21(16) 52.19(15) 179.36(13) -67.24(13) 61.34(14) 174.75(11) 0.03(14) 106.46(13) -113.64(12) 177.36(12) -76.20(13)63.70(13) -2.9(2)174.57(12) 2.6(3) 0.7(3) -3.7(3)3.4(2) 176.90(13) -0.1(2)-177.51(11) -173.69(11) 8.89(17) 65.05(14) -121.38(12)56.93(14)

C(18)–S(2)–C(19)–C(21)	175.48(12)
C(18)-S(2)-C(19)-C(22)	-67.29(14)
C(3)-P(1)-C(23)-C(24)	110.64(13)
C(13)–P(1)–C(23)–C(24)	4.78(14)
Pd(1)-P(1)-C(23)-C(24)	-135.67(11)
C(3)-P(1)-C(23)-C(28)	-73.55(13)
C(13)–P(1)–C(23)–C(28)	-179.41(12)
Pd(1)-P(1)-C(23)-C(28)	40.14(13)
C(28)-C(23)-C(24)-C(25)	-1.6(2)
P(1)-C(23)-C(24)-C(25)	174.21(12)
C(23)-C(24)-C(25)-C(26)	-1.7(2)
C(24)-C(25)-C(26)-C(27)	2.4(2)
C(25)-C(26)-C(27)-C(28)	0.3(2)
C(26)-C(27)-C(28)-C(23)	-3.6(2)
C(26)-C(27)-C(28)-S(3)	176.21(12)
C(24)-C(23)-C(28)-C(27)	4.2(2)
P(1)-C(23)-C(28)-C(27)	-171.74(11)
C(24)-C(23)-C(28)-S(3)	-175.60(11)
P(1)-C(23)-C(28)-S(3)	8.46(17)
C(27)-C(28)-S(3)-C(29)	-50.16(14)
C(23)-C(28)-S(3)-C(29)	129.63(12)
C(28)–S(3)–C(29)–C(31)	-30.58(14)
C(28)–S(3)–C(29)–C(30)	-148.99(13)
C(28)–S(3)–C(29)–C(32)	94.09(14)
C(35)-C(33)-C(34)-C(35)	0.0(3)
C(33)-C(34)-C(35)-C(33)	0.0(3)

[PdCl(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (**6a**)

Table 7-13. X 線結晶構造解析の結果

Identification code	ydkr		
Empirical formula	C ₂₈ H ₃₆ Cl P Pd S ₃		
Formula weight	641.57		
Temperature	130(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 9.591(3) Å	$\alpha = 77.561(17)^{\circ}$.	
	b = 11.181(3) Å	$\beta = 88.097(19)^{\circ}.$	
	c = 15.130(5) Å	$\gamma = 65.473(14)^{\circ}$.	
Volume 1438.6(8) Å3			
Ζ	2		
Density (calculated)	1.481 Mg/m3		
Absorption coefficient	1.027 mm-1		
F(000)	660		
Crystal size	0.030 x 0.010 x 0.010 mm3		
Theta range for data collection	2.640 to 27.497°.		
Index ranges	-12<= <i>h</i> <=12, -14<= <i>k</i> <=14, -19<= <i>l</i> <=19		
Reflections collected	23563		
Independent reflections	6575 [$R(int) = 0.1554$]		
Completeness to theta = 25.242°	99.5 %		
Absorption correction	Numerical		
Max. and min. transmission	0.991 and 0.959		
Refinement method	Full-matrix least-sq	uares on F2	
Data / restraints / parameters	6575 / 0 / 314		
Goodness-of-fit on F2	1.155		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0870, wR2 = 0.1609		
R indices (all data)	R1 = 0.1632, wR2 = 0.2020		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.634 and -0.858 e.Å-3		

atom	x	V	7.	U(ea)
$\frac{1}{Pd(1)}$	6514(1)	5673(1)	2573(1)	14(1)
Cl(1)	7460(3)	3494(2)	2260(2)	26(1)
C(1)	4327(11)	5849(10)	2344(7)	19(2)
P(1)	5739(3)	7673(2)	2936(2)	14(1)
C(2)	7242(10)	8234(9)	2612(6)	12(2)
C(3)	7068(12)	9537(11)	2517(7)	22(2)
C(4)	8275(12)	9912(10)	2390(7)	25(2)
C(5)	9763(12)	8932(11)	2365(7)	25(2)
C(6)	9975(11)	7625(10)	2439(7)	23(2)
C(7)	8754(11)	7250(9)	2553(6)	16(2)
S(1)	9076(3)	5533(2)	2682(2)	16(1)
C(8)	9873(11)	5155(10)	1579(6)	21(2)
C(9)	9123(15)	6317(12)	776(7)	45(3)
C(10)	11604(12)	4603(12)	1631(8)	35(3)
C(11)	4006(10)	9131(9)	2398(7)	17(2)
C(12)	2998(11)	9985(9)	2915(7)	19(2)
C(13)	1673(11)	11083(10)	2529(7)	24(2)
C(14)	1351(11)	11356(9)	1598(7)	19(2)
C(15)	2332(11)	10557(10)	1066(7)	23(2)
C(16)	3671(10)	9430(9)	1455(6)	16(2)
S(2)	4975(3)	8410(2)	790(2)	20(1)
C(17)	3812(11)	8501(10)	-186(6)	23(2)
C(18)	2514(13)	8069(12)	79(8)	35(3)
C(19)	4942(12)	7588(11)	-729(7)	26(2)
C(20)	5695(10)	7686(9)	4156(7)	20(2)
C(21)	6738(11)	8036(10)	4553(7)	22(2)
C(22)	6755(12)	8019(10)	5461(7)	26(2)
C(23)	5756(12)	7655(11)	6005(7)	28(2)
C(24)	4733(12)	7292(10)	5650(7)	24(2)
C(25)	4711(11)	7267(9)	4730(7)	20(2)
S(3)	3478(3)	6716(3)	4257(2)	24(1)
C(26)	2117(12)	6655(11)	5112(7)	27(2)
C(27)	1028(14)	8045(13)	5207(9)	48(4)
C(28)	1280(13)	5882(12)	4829(8)	35(3)

Table 7-14. 原子座標と等方性温度因子

atom-atom	distance / Å	
Pd(1)-C(1)	2.058(9)	
Pd(1)-P(1)	2.230(3)	
Pd(1)-Cl(1)	2.371(3)	
Pd(1)-S(1)	2.405(3)	
C(1)-H(34)	0.9800	
C(1)-H(35)	0.9800	
C(1)-H(36)	0.9800	
P(1)-C(2)	1.811(9)	
P(1)-C(11)	1.830(9)	
P(1)-C(20)	1.849(10)	
C(2)-C(3)	1.372(13)	
C(2)-C(7)	1.425(13)	
C(3)-C(4)	1.381(14)	
C(3)-H(1)	0.9500	
C(4)-C(5)	1.399(14)	
C(4)-H(2)	0.9500	
C(5)-C(6)	1.370(14)	
C(5)-H(3)	0.9500	
C(6)-C(7)	1.392(13)	
C(6)-H(4)	0.9500	
C(7)-S(1)	1.781(9)	
S(1)-C(8)	1.869(9)	
C(8)-C(10)	1.510(14)	
C(8)-C(9)	1.511(14)	
C(8)-H(5)	1.0000	
C(9)-H(6)	0.9800	
C(9)-H(7)	0.9800	
C(9)-H(8)	0.9800	
C(10)-H(9)	0.9800	
C(10)-H(10)	0.9800	
C(10)-H(11)	0.9800	
C(11)-C(12)	1.402(13)	
C(11)-C(16)	1.410(13)	

Table 7-15. 結合距離[Å]

C(12)-C(13)	1.381(13)
C(12)-H(12)	0.9500
C(13)-C(14)	1.393(14)
C(13)-H(13)	0.9500
C(14)-C(15)	1.376(14)
C(14)-H(14)	0.9500
C(15)-C(16)	1.404(13)
C(15)-H(15)	0.9500
C(16)-S(2)	1.762(9)
S(2)-C(17)	1.840(10)
C(17)-C(19)	1.508(13)
C(17)-C(18)	1.526(15)
C(17)-H(16)	1.0000
C(18)-H(17)	0.9800
C(18)-H(18)	0.9800
C(18)-H(19)	0.9800
C(19)-H(20)	0.9800
C(19)-H(21)	0.9800
C(19)-H(22)	0.9800
C(20)-C(21)	1.407(14)
C(20)-C(25)	1.415(14)
C(21)-C(22)	1.370(14)
C(21)-H(23)	0.9500
C(22)-C(23)	1.374(15)
C(22)-H(24)	0.9500
C(23)-C(24)	1.370(15)
C(23)-H(25)	0.9500
C(24)-C(25)	1.399(13)
C(24)-H(26)	0.9500
C(25)-S(3)	1.773(10)
S(3)-C(26)	1.818(10)
C(26)-C(27)	1.505(15)
C(26)-C(28)	1.527(15)
C(26)-H(27)	1.0000
C(27)-H(28)	0.9800
C(27)-H(29)	0.9800

C(27)-H(30)	0.9800
C(28)-H(31)	0.9800
C(28)-H(32)	0.9800
C(28)-H(33)	0.9800

Table 7-16. 結合角[°]

14016 / 10. 加口円[]		
atom-atom-atom	angle / °	
C(1)-Pd(1)-P(1)	94.7(3)	
C(1)-Pd(1)-Cl(1)	88.1(3)	
P(1)-Pd(1)-Cl(1)	176.47(11)	
C(1)-Pd(1)-S(1)	174.3(3)	
P(1)-Pd(1)-S(1)	86.33(9)	
Cl(1)-Pd(1)-S(1)	91.16(9)	
Pd(1)-C(1)-H(34)	109.5	
Pd(1)-C(1)-H(35)	109.5	
H(34)-C(1)-H(35)	109.5	
Pd(1)-C(1)-H(36)	109.5	
H(34)-C(1)-H(36)	109.5	
H(35)-C(1)-H(36)	109.5	
C(2)-P(1)-C(11)	102.6(4)	
C(2)-P(1)-C(20)	100.7(4)	
C(11)-P(1)-C(20)	105.4(4)	
C(2)-P(1)-Pd(1)	105.6(3)	
C(11)-P(1)-Pd(1)	122.3(3)	
C(20)-P(1)-Pd(1)	117.1(3)	
C(3)-C(2)-C(7)	116.7(9)	
C(3)-C(2)-P(1)	124.1(7)	
C(7)-C(2)-P(1)	118.7(7)	
C(2)-C(3)-C(4)	123.3(10)	
C(2)-C(3)-H(1)	118.4	
C(4)-C(3)-H(1)	118.4	
C(3)-C(4)-C(5)	119.6(10)	
C(3)-C(4)-H(2)	120.2	
C(5)-C(4)-H(2)	120.2	
C(6)-C(5)-C(4)	118.7(9)	
C(6)-C(5)-H(3)	120.7	

C(4)-C(5)-H(3)	120.7
C(5)-C(6)-C(7)	121.7(9)
C(5)-C(6)-H(4)	119.2
C(7)-C(6)-H(4)	119.2
C(6)-C(7)-C(2)	120.0(8)
C(6)-C(7)-S(1)	120.6(7)
C(2)-C(7)-S(1)	119.4(7)
C(7)-S(1)-C(8)	102.5(4)
C(7)-S(1)-Pd(1)	102.7(3)
C(8)-S(1)-Pd(1)	104.2(3)
C(10)-C(8)-C(9)	113.2(10)
C(10)-C(8)-S(1)	111.6(7)
C(9)-C(8)-S(1)	113.3(7)
C(10)-C(8)-H(5)	106.0
C(9)-C(8)-H(5)	106.0
S(1)-C(8)-H(5)	106.0
C(8)-C(9)-H(6)	109.5
C(8)-C(9)-H(7)	109.5
H(6)-C(9)-H(7)	109.5
C(8)-C(9)-H(8)	109.5
H(6)-C(9)-H(8)	109.5
H(7)-C(9)-H(8)	109.5
C(8)-C(10)-H(9)	109.5
C(8)-C(10)-H(10)	109.5
H(9)-C(10)-H(10)	109.5
C(8)-C(10)-H(11)	109.5
H(9)-C(10)-H(11)	109.5
H(10)-C(10)-H(11)	109.5
C(12)-C(11)-C(16)	118.7(8)
C(12)-C(11)-P(1)	120.6(7)
C(16)-C(11)-P(1)	120.8(7)
C(13)-C(12)-C(11)	121.8(9)
C(13)-C(12)-H(12)	119.1
C(11)-C(12)-H(12)	119.1
C(12)-C(13)-C(14)	118.8(9)
C(12)-C(13)-H(13)	120.6

C(14)-C(13)-H(13)	120.6
C(15)-C(14)-C(13)	121.0(9)
C(15)-C(14)-H(14)	119.5
C(13)-C(14)-H(14)	119.5
C(14)-C(15)-C(16)	120.5(9)
C(14)-C(15)-H(15)	119.7
C(16)-C(15)-H(15)	119.7
C(15)-C(16)-C(11)	119.2(8)
C(15)-C(16)-S(2)	121.7(7)
C(11)-C(16)-S(2)	119.1(7)
C(16)-S(2)-C(17)	105.6(4)
C(19)-C(17)-C(18)	111.1(9)
C(19)-C(17)-S(2)	104.7(7)
C(18)-C(17)-S(2)	113.7(7)
C(19)-C(17)-H(16)	109.1
C(18)-C(17)-H(16)	109.1
S(2)-C(17)-H(16)	109.1
C(17)-C(18)-H(17)	109.5
C(17)-C(18)-H(18)	109.5
H(17)-C(18)-H(18)	109.5
C(17)-C(18)-H(19)	109.5
H(17)-C(18)-H(19)	109.5
H(18)-C(18)-H(19)	109.5
C(17)-C(19)-H(20)	109.5
C(17)-C(19)-H(21)	109.5
H(20)-C(19)-H(21)	109.5
C(17)-C(19)-H(22)	109.5
H(20)-C(19)-H(22)	109.5
H(21)-C(19)-H(22)	109.5
C(21)-C(20)-C(25)	117.9(9)
C(21)-C(20)-P(1)	119.7(7)
C(25)-C(20)-P(1)	122.3(8)
C(22)-C(21)-C(20)	120.8(10)
C(22)-C(21)-H(23)	119.6
C(20)-C(21)-H(23)	119.6
C(21)-C(22)-C(23)	120.6(10)

C(21)-C(22)-H(24)	119.7
C(23)-C(22)-H(24)	119.7
C(24)-C(23)-C(22)	120.6(10)
C(24)-C(23)-H(25)	119.7
C(22)-C(23)-H(25)	119.7
C(23)-C(24)-C(25)	120.2(10)
C(23)-C(24)-H(26)	119.9
C(25)-C(24)-H(26)	119.9
C(24)-C(25)-C(20)	119.8(9)
C(24)-C(25)-S(3)	121.6(8)
C(20)-C(25)-S(3)	118.6(7)
C(25)-S(3)-C(26)	105.2(5)
C(27)-C(26)-C(28)	112.2(9)
C(27)-C(26)-S(3)	111.6(8)
C(28)-C(26)-S(3)	106.6(8)
C(27)-C(26)-H(27)	108.8
C(28)-C(26)-H(27)	108.8
S(3)-C(26)-H(27)	108.8
C(26)-C(27)-H(28)	109.5
C(26)-C(27)-H(29)	109.5
H(28)-C(27)-H(29)	109.5
C(26)-C(27)-H(30)	109.5
H(28)-C(27)-H(30)	109.5
H(29)-C(27)-H(30)	109.5
C(26)-C(28)-H(31)	109.5
C(26)-C(28)-H(32)	109.5
H(31)-C(28)-H(32)	109.5
C(26)-C(28)-H(33)	109.5
H(31)-C(28)-H(33)	109.5
H(32)-C(28)-H(33)	109.5

Table 7-17. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12
Pd(1)	1.2(4)	1.25(4)	1.71(4)	-0.49(3)	0.09(3)	-0.35(3)
Cl(1)	2.37(13)	1.65(12)	4.02(16)	-1.36(11)	0.86(12)	-0.66(10)
C(1)	1.8(5)	2.1(5)	2.2(5)	-0.7(4)	-0.1(4)	-0.9(4)

P(1)	1.24(12)	1.34(12)	1.31(12)	-0.45(10)	0.15(10)	-0.21(10)
C(2)	2.3(5)	1.6(5)	0.4(4)	-0.3(3)	-0.1(4)	-1.4(4)
C(3)	1.9(5)	2.6(5)	1.8(5)	0.1(4)	-0.2(4)	-0.7(4)
C(4)	3.6(6)	1.6(5)	2.5(6)	-0.3(4)	0.4(5)	-1.3(5)
C(5)	1.9(5)	3.3(6)	3.2(6)	-0.9(5)	0.4(5)	-1.8(5)
C(6)	1.9(5)	1.6(5)	3.1(6)	-0.8(4)	1(4)	-0.5(4)
C(7)	2.1(5)	1.7(5)	0.9(5)	-0.6(4)	0.1(4)	-0.6(4)
S (1)	1.29(11)	1.29(11)	2.13(13)	-0.49(9)	0.01(9)	-0.35(9)
C(8)	2.6(5)	2.4(5)	2.1(5)	-2(4)	0.8(4)	-1(4)
C(9)	4.8(8)	4.4(7)	1.6(6)	-0.1(5)	-0.3(5)	0.5(6)
C(10)	2(6)	4.6(7)	3.7(7)	-2.2(6)	0.7(5)	-0.8(5)
C(11)	1.3(4)	0.8(4)	2.4(5)	-0.1(4)	-0.3(4)	0(4)
C(12)	1.9(5)	1.9(5)	2(5)	-1(4)	-0.3(4)	-0.6(4)
C(13)	1.9(5)	2.1(5)	3.7(6)	-1.5(5)	1(5)	-1(4)
C(14)	1.7(5)	0.6(4)	3.1(6)	-0.1(4)	-0.3(4)	-0.3(4)
C(15)	2.5(5)	1.8(5)	2(5)	0(4)	-0.5(4)	-0.3(4)
C(16)	2(5)	1.6(5)	1.3(5)	-0.8(4)	0.4(4)	-0.6(4)
S(2)	1.74(12)	2.21(13)	1.7(13)	-0.7(10)	0.13(10)	-0.25(10)
C(17)	1.9(5)	2.7(5)	1.5(5)	-0.7(4)	-0.1(4)	-0.1(4)
C(18)	3(6)	4.4(7)	3.1(7)	-0.1(5)	0(5)	-1.8(6)
C(19)	3.2(6)	3.1(6)	1.6(5)	-1.3(4)	0.3(4)	-1(5)
C(20)	0.9(4)	1.2(5)	2.7(6)	0(4)	0.1(4)	0.5(4)
C(21)	1.8(5)	2.2(5)	2.6(6)	-1(4)	0.3(4)	-0.5(4)
C(22)	2.8(6)	2.9(6)	2.5(6)	-1.2(5)	-0.2(5)	-1.2(5)
C(23)	3.2(6)	3.4(6)	1.8(6)	-1.1(5)	0.3(5)	-1(5)
C(24)	2.5(5)	2.3(5)	1.7(5)	-0.5(4)	0.3(4)	-0.4(4)
C(25)	1.6(5)	1.3(5)	2.1(5)	-0.3(4)	-0.4(4)	0.4(4)
S(3)	2.54(14)	3.61(15)	1.81(13)	-0.84(11)	0.45(11)	-1.88(12)
C(26)	2.3(5)	3.3(6)	2(6)	0.3(5)	0.6(4)	-1(5)
C(27)	2.7(6)	5.4(8)	5.8(9)	-3.5(7)	0.6(6)	-0.3(6)
C(28)	2.7(6)	4.9(7)	3.6(7)	0.4(6)	-0.2(5)	-2.8(6)

atom-atom-atom	angle / °
C(11)-P(1)-C(2)-C(3)	34.8(9)
C(20)-P(1)-C(2)-C(3)	-73.9(9)

Pd(1)-P(1)-C(2)-C(3)C(11)-P(1)-C(2)-C(7) C(20)-P(1)-C(2)-C(7) Pd(1)-P(1)-C(2)-C(7) C(7)-C(2)-C(3)-C(4)P(1)-C(2)-C(3)-C(4)C(2)-C(3)-C(4)-C(5) C(3)-C(4)-C(5)-C(6) C(4)-C(5)-C(6)-C(7) C(5)-C(6)-C(7)-C(2) C(5)-C(6)-C(7)-S(1)C(3)-C(2)-C(7)-C(6) P(1)-C(2)-C(7)-C(6)C(3)-C(2)-C(7)-S(1)P(1)-C(2)-C(7)-S(1)C(6)-C(7)-S(1)-C(8) C(2)-C(7)-S(1)-C(8)C(6)-C(7)-S(1)-Pd(1)C(2)-C(7)-S(1)-Pd(1)C(7)-S(1)-C(8)-C(10)Pd(1)-S(1)-C(8)-C(10)C(7)-S(1)-C(8)-C(9)Pd(1)-S(1)-C(8)-C(9) C(2)-P(1)-C(11)-C(12) C(20)-P(1)-C(11)-C(12) Pd(1)-P(1)-C(11)-C(12) C(2)-P(1)-C(11)-C(16) C(20)-P(1)-C(11)-C(16) Pd(1)-P(1)-C(11)-C(16) C(16)-C(11)-C(12)-C(13) P(1)-C(11)-C(12)-C(13) C(11)-C(12)-C(13)-C(14) C(12)-C(13)-C(14)-C(15) C(13)-C(14)-C(15)-C(16) C(14)-C(15)-C(16)-C(11)C(14)-C(15)-C(16)-S(2)

163.8(7) -153.0(7) 98.3(7) -24.0(7)-1.4(14)170.9(8) -0.8(16)2.0(16) -1.0(16)-1.2(15) -178.1(8)2.3(13) -170.4(7)179.3(7) 6.5(10) -62.4(9)120.7(7) -170.3(7)12.8(7) 91.2(8) -162.0(7)-37.9(9) 68.8(9) -104.1(8)1.0(9) 138.1(7) 74.9(8) 180.0(8) -42.9(9)1.7(15) -179.3(8)-1.0(15)-0.4(14)1.1(15) -0.4(15)-178.4(8)

C(12)-C(11)-C(16)-C(15)	-0.9(14)
P(1)-C(11)-C(16)-C(15)	-180.0(7)
C(12)-C(11)-C(16)-S(2)	177.1(7)
P(1)-C(11)-C(16)-S(2)	-1.9(11)
C(15)-C(16)-S(2)-C(17)	-30.3(10)
C(11)-C(16)-S(2)-C(17)	151.8(8)
C(16)-S(2)-C(17)-C(19)	-178.3(7)
C(16)-S(2)-C(17)-C(18)	-56.9(9)
C(2)-P(1)-C(20)-C(21)	-2.0(8)
C(11)-P(1)-C(20)-C(21)	-108.5(8)
Pd(1)-P(1)-C(20)-C(21)	111.8(7)
C(2)-P(1)-C(20)-C(25)	-177.7(7)
C(11)-P(1)-C(20)-C(25)	75.8(8)
Pd(1)-P(1)-C(20)-C(25)	-63.9(8)
C(25)-C(20)-C(21)-C(22)	-2.4(14)
P(1)-C(20)-C(21)-C(22)	-178.3(7)
C(20)-C(21)-C(22)-C(23)	0.1(15)
C(21)-C(22)-C(23)-C(24)	0.6(16)
C(22)-C(23)-C(24)-C(25)	1.0(15)
C(23)-C(24)-C(25)-C(20)	-3.3(14)
C(23)-C(24)-C(25)-S(3)	176.6(8)
C(21)-C(20)-C(25)-C(24)	3.9(13)
P(1)-C(20)-C(25)-C(24)	179.7(7)
C(21)-C(20)-C(25)-S(3)	-175.9(7)
P(1)-C(20)-C(25)-S(3)	-0.2(10)
C(24)-C(25)-S(3)-C(26)	13.2(9)
C(20)-C(25)-S(3)-C(26)	-166.9(7)
C(25)-S(3)-C(26)-C(27)	70.0(9)
C(25)-S(3)-C(26)-C(28)	-167.2(7)

[PdCl(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃] (6b)

Figure 7-6. ¹H NMR (benzene- d_6 , 400 MHz).

Figure 7-7. ³¹P NMR (benzene-*d*₆, 162 MHz)

[NiClP(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (**10a**)

Figure 7-8. ¹H NMR (CDCl₃, 400 MHz).

Figure 7-9. ³¹P NMR (CDCl₃, 162 MHz).

Figure 7-10. ¹⁹F NMR (CDCl₃, 376 MHz).

Figure 7-11. ¹³C NMR (CDCl₃, 151 MHz).

Figure 7-12. UV–vis.

Figure 7-13. IR (KBr).

Table 7-19. X 線結晶構造解析の結果

Identification code	ro1510a	
Empirical formula	C ₂₈ H ₃₃ Cl F ₃ Ni O ₃ P S ₄	
Formula weight	727.91	
Temperature	123 K	
Wavelength	0.71075 Å	
Crystal system	monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 13.402(2) Å	<i>α</i> = 90°.
	b = 14.0241(11) Å	$\beta = 93.172(4)^{\circ}$.
	c = 17.1511(14) Å	$\gamma = 90^{\circ}$.
Volume	3218.6(6) Å ³	
Ζ	4	
Density (calculated)	1.502 Mg/m ³	
Absorption coefficient	1.042 mm ⁻¹	
<i>F</i> (000)	1504	
Crystal size	$0.08 \ x \ 0.07 \ x \ 0.05 \ mm^3$	
Theta range for data collection	2.787 to 27.490°.	
Index ranges	-17<= <i>h</i> <=17, -18<= <i>k</i> <=18, -	22<= <i>l</i> <=22
Reflections collected	51626	
Independent reflections	7148 [<i>R</i> (int) = 0.0813]	
Completeness to theta = 25.50°	97.2 %	
Max. and min. transmission	1.000 and 0.919	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	7148 / 0 / 370	
Goodness-of-fit on F^2	1.110	
Final <i>R</i> indices [I>2sigma(I)]	R1 = 0.847, wR2 = 0.2233	
R indices (all data)	R1 = 0.0929, wR2 = 0.2305	
Largest diff. peak and hole	1.746 and -1.524 e.Å ⁻³	

atom	X	У	Z	U(eq)
Ni(1)	7433.0 (5)	3173.9 (5)	1417.2 (4)	281.0 (2)
Cl(1)	7245.9 (12)	2908.8 (13)	2693.3 (8)	398.0 (4)
P(1)	7630.8 (10)	3370.2 (10)	211.5 (8)	231.0 (3)
C(1)	7687.0 (4)	4634.0 (4)	-8.0 (3)	243.0 (10)
C(2)	7704.0 (4)	5010.0 (4)	-766.0 (3)	292.0 (11)
C(3)	7710.0 (5)	5988.0 (4)	-872.0 (4)	339.0 (12)
C(4)	7692.0 (5)	6601.0 (4)	-235.0 (4)	362.0 (13)
C(5)	7661.0 (5)	6244.0 (4)	513.0 (4)	345.0 (13)
C(6)	7686.0 (4)	5257.0 (4)	630.0 (3)	278.0 (11)
S (1)	7707.3 (10)	4787.2 (11)	1594.1 (8)	294.0 (3)
C(7)	9000.0 (5)	5139.0 (7)	1917.0 (4)	505.0 (19)
C(8)	9172.0 (7)	4926.0 (10)	2737.0 (5)	840.0 (4)
C(9)	9787.0 (5)	4752.0 (6)	1391.0 (4)	476.0 (17)
C(10)	8765.0 (4)	2790.0 (4)	-65.0 (3)	249.0 (10)
C(11)	9158.0 (5)	2848.0 (4)	-807.0 (3)	322.0 (12)
C(12)	10037.0 (5)	2371.0 (4)	-941.0 (4)	363.0 (13)
C(13)	10533.0 (5)	1853.0 (4)	-362.0 (4)	376.0 (14)
C(14)	10175.0 (5)	1808.0 (4)	384.0 (4)	349.0 (13)
C(15)	9282.0 (4)	2265.0 (4)	521.0 (3)	271.0 (11)
S(2)	8805.0 (10)	2240.0 (10)	1474.7 (8)	290.0 (3)
C(16)	8356.0 (5)	995.0 (4)	1566.0 (4)	393.0 (14)
C(17)	7779.0 (6)	643.0 (5)	837.0 (4)	469.0 (17)
C(18)	9220.0 (7)	343.0 (5)	1811.0 (5)	570.0 (2)
C(19)	6573.0 (4)	2904.0 (4)	-369.0 (3)	283.0 (11)
C(20)	6496.0 (5)	2887.0 (4)	-1187.0 (4)	363.0 (13)
C(21)	5614.0 (6)	2608.0 (5)	-1570.0 (4)	462.0 (16)
C(22)	4812.0 (5)	2328.0 (6)	-1153.0 (5)	510.0 (18)
C(23)	4894.0 (5)	2302.0 (6)	-342.0 (5)	484.0 (17)
C(24)	5772.0 (4)	2606.0 (5)	49.0 (4)	344.0 (13)
S(3)	5890.2 (11)	2607.2 (12)	1091.1 (9)	368.0 (4)
C(25)	4847.0 (5)	3435.0 (6)	1283.0 (4)	475.0 (17)
C(26)	5078.0 (6)	4444.0 (6)	1023.0 (5)	525.0 (19)
C(27)	4608.0 (6)	3368.0 (7)	2107.0 (5)	570.0 (2)
S(4)	2705.0 (2)	1115.8 (18)	1846.8 (12)	688.0 (7)

Table 7-20. 原子座標と等方性温度因子

F(2)	2545.0 (12)	-704.0 (8)	2143.0 (5)	2190.0 (7)
C(28)	2671.0 (10)	-192.0 (9)	1576.0 (5)	910.0 (4)
F(3)	1886.0 (6)	-280.0 (8)	1036.0 (4)	1310.0 (3)
F(1)	3466.0 (6)	-385.0 (5)	1220.0 (5)	1090.0 (2)
O(3)	1705.0 (8)	1320.0 (14)	2000.0 (7)	2490.0 (11)
O(2)	3356.0 (4)	1113.0 (4)	2522.0 (3)	505.0 (13)
O(1)	3053.0 (13)	1525.0 (6)	1169.0 (5)	1790.0 (7)

Table 7-21. 結合距離[Å]

	* [- 1]	
atom-atom	distance / Å	
Ni(1)–P(1)	2.1174(15)	
Ni(1)-Cl(1)	2.2476(15)	
Ni(1)–S(2)	2.2552(15)	
Ni(1)–S(3)	2.2565(18)	
Ni(1)–S(1)	2.3095(17)	
P(1)–C(19)	1.808(6)	
P(1)–C(10)	1.810(5)	
P(1)–C(1)	1.814(5)	
C(1)–C(6)	1.400(7)	
C(1)–C(2)	1.403(8)	
C(2)–C(3)	1.384(8)	
C(3)–C(4)	1.391(9)	
C(4)–C(5)	1.379(9)	
C(5)–C(6)	1.400(8)	
C(6)–S(1)	1.779(6)	
S(1)–C(7)	1.856(7)	
C(7)–C(8)	1.444(12)	
C(7)–C(9)	1.525(9)	
C(10)–C(15)	1.399(7)	
C(10)–C(11)	1.407(8)	
C(11)–C(12)	1.385(8)	
C(12)–C(13)	1.372(10)	
C(13)–C(14)	1.392(9)	
C(14)–C(15)	1.389(8)	
C(15)–S(2)	1.789(6)	
S(2)–C(16)	1.857(6)	

C(16)-C(18)	1.516(10)
C(16)–C(17)	1.517(10)
C(19)–C(24)	1.389(8)
C(19)–C(20)	1.403(8)
C(20)–C(21)	1.377(9)
C(21)–C(22)	1.381(11)
C(22)–C(23)	1.389(11)
C(23)–C(24)	1.388(9)
C(24)–S(3)	1.785(7)
S(3)–C(25)	1.860(7)
C(25)–C(27)	1.469(10)
C(25)–C(26)	1.521(12)
S(4)–O(1)	1.399(10)
S(4)–O(3)	1.410(10)
S(4)–O(2)	1.411(5)
S(4)–C(28)	1.891(13)
F(1)–C(28)	1.286(13)
F(3)–C(28)	1.368(13)
C(28)–F(2)	1.228(12)

Table 7-22. 結合角[°]

Table 7-22. 加日月[]		
atom-atom-atom	angle / °	
P(1)–Ni(1)–Cl(1)	177.82(7)	
P(1)–Ni(1)–S(2)	88.42(6)	
Cl(1)-Ni(1)-S(2)	89.77(6)	
P(1)-Ni(1)-S(3)	88.07(6)	
Cl(1)-Ni(1)-S(3)	91.90(6)	
S(2)-Ni(1)-S(3)	122.69(7)	
P(1)–Ni(1)–S(1)	88.47(6)	
C(11)–Ni(1)–S(1)	93.42(6)	
S(2)–Ni(1)–S(1)	116.08(6)	
S(3)–Ni(1)–S(1)	120.97(6)	
C(19)–P(1)–C(10)	109.7(3)	
C(19)–P(1)–C(1)	106.2(3)	
C(10)–P(1)–C(1)	109.8(2)	
C(19)–P(1)–Ni(1)	110.7(2)	

C(10)-P(1)-Ni(1)	110.47(18)
C(1)–P(1)–Ni(1)	109.81(18)
C(6)–C(1)–C(2)	119.3(5)
C(6)–C(1)–P(1)	116.5(4)
C(2)–C(1)–P(1)	124.2(4)
C(3)–C(2)–C(1)	119.7(5)
C(2)–C(3)–C(4)	120.6(6)
C(5)–C(4)–C(3)	120.6(5)
C(4)–C(5)–C(6)	119.3(6)
C(5)–C(6)–C(1)	120.5(5)
C(5)–C(6)–S(1)	119.9(4)
C(1)–C(6)–S(1)	119.7(4)
C(6)–S(1)–C(7)	98.4(3)
C(6)–S(1)–Ni(1)	104.25(19)
C(7)–S(1)–Ni(1)	116.0(3)
C(8)–C(7)–C(9)	115.1(7)
C(8)–C(7)–S(1)	109.3(6)
C(9)–C(7)–S(1)	113.2(5)
C(15)-C(10)-C(11)	119.0(5)
C(15)-C(10)-P(1)	116.0(4)
C(11)–C(10)–P(1)	125.0(4)
C(12)-C(11)-C(10)	119.2(5)
C(13)–C(12)–C(11)	121.2(6)
C(12)-C(13)-C(14)	120.8(6)
C(15)-C(14)-C(13)	118.6(6)
C(14)-C(15)-C(10)	121.2(5)
C(14)-C(15)-S(2)	120.1(4)
C(10)-C(15)-S(2)	118.6(4)
C(15)-S(2)-C(16)	103.3(3)
C(15)–S(2)–Ni(1)	106.30(18)
C(16)–S(2)–Ni(1)	106.4(2)
C(18)-C(16)-C(17)	112.2(6)
C(18)-C(16)-S(2)	110.2(5)
C(17)-C(16)-S(2)	112.9(5)
C(24)-C(19)-C(20)	119.7(5)
C(24)–C(19)–P(1)	115.5(4)

C(20)-C(19)-P(1)	124.7(5)
C(21)-C(20)-C(19)	119.7(7)
C(20)-C(21)-C(22)	120.5(7)
C(21)-C(22)-C(23)	120.3(7)
C(24)-C(23)-C(22)	119.6(7)
C(23)-C(24)-C(19)	120.1(6)
C(23)-C(24)-S(3)	120.7(5)
C(19)-C(24)-S(3)	119.2(4)
C(24)-S(3)-C(25)	98.8(3)
C(24)–S(3)–Ni(1)	106.1(2)
C(25)–S(3)–Ni(1)	115.1(3)
C(27)-C(25)-C(26)	113.6(7)
C(27)-C(25)-S(3)	109.7(6)
C(26)-C(25)-S(3)	111.2(5)
O(1)–S(4)–O(3)	115.8(10)
O(1)–S(4)–O(2)	117.7(7)
O(3)–S(4)–O(2)	113.5(5)
O(1)–S(4)–C(28)	101.5(5)
O(3)–S(4)–C(28)	103.4(9)
O(2)–S(4)–C(28)	101.8(4)
F(2)-C(28)-F(1)	114.0(16)
F(2)-C(28)-F(3)	110.4(10)
F(1)-C(28)-F(3)	106.5(8)
F(2)-C(28)-S(4)	112.0(8)
F(1)-C(28)-S(4)	108.1(7)
F(3)-C(28)-S(4)	105.2(10)

Table 7-23. 異方性温度因子

Idole /			,			
atom	U11	U22	U33	U23	U13	U12
Ni(1)	26.6(4)	38.3(4)	19.5(4)	4.9(3)	2.9(3)	5.6(3)
Cl(1)	37.7(8)	59(10)	23.3(7)	9.9(6)	5.9(6)	4.7(7)
P(1)	24.2(6)	25.9(6)	19.1(6)	1.8(5)	-0.5(5)	2.9(5)
C(1)	24(2)	24(2)	25(3)	0.1(19)	3(2)	1.7(19)
C(2)	28(3)	31(3)	29(3)	-2(2)	0(2)	1(2)
C(3)	37(3)	31(3)	34(3)	8(2)	1(2)	2(2)
C(4)	39(3)	23(3)	46(4)	4(2)	1(3)	0(2)

C(5)	36(3)	29(3)	39(3)	-7(2)	4(3)	-3(2)
C(6)	27(3)	32(3)	25(3)	-4(2)	4(2)	0(2)
S (1)	24.3(6)	40.9(8)	23(6)	-6.6(5)	2.1(5)	0.8(5)
C(7)	28(3)	82(6)	41(4)	-11(4)	-4(3)	-7(3)
C(8)	44(5)	161(12)	48(5)	-8(6)	-4(4)	4(6)
C(9()	25(3)	68(5)	50(4)	-13(3)	6(3)	-2(3)
C(10)	27(2)	23(2)	25(3)	-1.4(19)	0(2)	3(2)
C(11)	40(3)	30(3)	27(3)	3(2)	4(2)	4(2)
C(12)	43(3)	34(3)	33(3)	-7(2)	14(3)	-2(3)
C(13)	32(3)	34(3)	48(4)	-6(3)	13(3)	4(2)
C(14)	33(3)	30(3)	42(3)	2(2)	5(3)	8(2)
C(15)	27(3)	29(3)	25(3)	0(2)	-1(2)	4(2)
S(2)	29.8(7)	33.2(7)	23.7(7)	4.3(5)	-1.3(5)	6(5)
C(16)	48(4)	32(3)	38(3)	9(3)	11(3)	1(3)
C(17)	62(5)	36(3)	44(4)	-3(3)	10(3)	-4(3)
C(18)	69(5)	39(4)	64(5)	23(4)	3(4)	13(4)
C(19)	27(3)	27(3)	30(3)	-1(2)	-7(2)	4(2)
C(20)	43(3)	34(3)	31(3)	-3(2)	-9(3)	-1(3)
C(21)	52(4)	45(4)	40(4)	-6(3)	-14(3)	1(3)
C(22)	39(4)	58(4)	54(5)	-13(4)	-14(3)	-2(3)
C(23)	34(3)	58(4)	53(4)	-8(3)	0(3)	-6(3)
C(24)	28(3)	40(3)	35(3)	1(2)	-4(2)	2(2)
S(3)	31.4(7)	44.2(8)	35.5(8)	4.8(6)	7(6)	-4.5(6)
C(25)	29(3)	72(5)	42(4)	-11(3)	8(3)	9(3)
C(26)	38(4)	71(5)	48(4)	5(4)	4(3)	21(3)
C(27)	47(4)	82(6)	43(4)	-6(4)	12(3)	-3(4)
S(4)	88.9(16)	81.4(15)	33.4(10)	-15.2(9)	-21.9(10))48.6(13)
O(1)	420(2)	69(5)	40(4)	23(4)	-24(8)	-1(9)
O(2)	61(3)	54(3)	35(3)	6(2)	-10(2)	-7(2)
O(3)	119(8)	470(2)	149(10)	-204(14)	-84(7)	188(12)
F(1)	113(6)	90(5)	126(6)	-24(4)	21(5)	34(4)
F(3)	93(5)	230(10)	70(4)	-73(5)	-1(4)	-51(6)
C(28)	119(9)	124(9)	30(4)	-13(5)	12(5)	-83(8)
F(2)	398(19)	179(9)	79(5)	20(6)	-3(8)	-213(12)

atom	X	у	Z	U(eq)
H(1)	7710	4595	-1203	350
H(2)	7727	6244	-1384	410
H(3)	7702	7271	-316	430
H(4)	7622	6665	945	410
H(5)	9027	5849	1871	610
H(6)	8632	5201	3028	1270
H(7)	9187	4233	2811	1270
H(8)	9812	5200	2927	1270
H(9)	9612	4929	848	710
H(10)	10441	5022	1552	710
H(11)	9815	4055	1436	710
H(12)	8825	3209	-1211	390
H(13)	10301	2402	-1443	440
H(14)	11128	1522	-471	450
H(15)	10535	1472	791	420
H(16)	7884	988	1998	470
H(17)	7230	1084	700	700
H(18)	8228	609	405	700
H(19)	7508	7	934	700
H(20)	9570	597	2283	860
H(21)	8964	-296	1919	860
H(22)	9683	306	1390	860
H(23)	7051	3066	-1477	440
H(24)	5556	2609	-2124	550
H(25)	4200	2153	-1421	610
H(26)	4354	2078	-57	580
H(27)	4246	3213	962	570
H(28)	5230	4439	471	790
H(29)	4497	4854	1094	790
H(30)	5655	4690	1337	790
H(31)	4468	2703	2237	860
H(32)	5178	3597	2439	860
H(33)	4020	3761	2196	860

Table 7-24. 水素原子座標と等方性温度因子

Table 7-25. ねじれ角[°]

Table 7-25. ねじれ角[°]	
atom-atom-atom	angle / °
P(1)-C(1)-C(6)-C(5)	-175.7(4)
C(2)-C(1)-C(6)-S(1)	-177.9(4)
P(1)-C(1)-C(6)-S(1)	3.8(6)
C(5)-C(6)-S(1)-C(7)	-71.1(6)
C(1)-C(6)-S(1)-C(7)	109.4(5)
C(5)–C(6)–S(1)–Ni(1)	169.2(4)
C(1)–C(6)–S(1)–Ni(1)	-10.3(5)
C(6)-S(1)-C(7)-C(8)	173.5(7)
Ni(1)–S(1)–C(7)–C(8)	-76.1(8)
C(6)-S(1)-C(7)-C(9)	-56.7(7)
Ni(1)–S(1)–C(7)–C(9)	53.7(7)
C(19)-P(1)-C(10)-C(15)	-118.1(4)
C(1)-P(1)-C(10)-C(15)	125.5(4)
Ni(1)-P(1)-C(10)-C(15)	4.2(5)
C(19)–P(1)–C(10)–C(11)	63.0(6)
C(1)-P(1)-C(10)-C(11)	-53.3(6)
Ni(1)-P(1)-C(10)-C(11)	-174.6(4)
C(15)-C(10)-C(11)-C(12)	1.0(8)
P(1)-C(10)-C(11)-C(12)	179.8(5)
C(10)-C(11)-C(12)-C(13)	-0.6(9)
C(11)-C(12)-C(13)-C(14)	-1.2(10)
C(12)-C(13)-C(14)-C(15)	2.7(10)
C(13)-C(14)-C(15)-C(10)	-2.3(9)
C(13)-C(14)-C(15)-S(2)	-179.1(5)
C(11)-C(10)-C(15)-C(14)	0.5(8)
P(1)-C(10)-C(15)-C(14)	-178.4(5)
C(11)-C(10)-C(15)-S(2)	177.3(4)
P(1)-C(10)-C(15)-S(2)	-1.6(6)
C(14)-C(15)-S(2)-C(16)	-72.9(5)
C(10)-C(15)-S(2)-C(16)	110.3(5)
C(14)-C(15)-S(2)-Ni(1)	175.3(4)
C(10)-C(15)-S(2)-Ni(1)	-1.5(5)
C(15)-S(2)-C(16)-C(18)	82.4(5)
Ni(1)-S(2)-C(16)-C(18)	-165.8(5)

C(15)-S(2)-C(16)-C(17)Ni(1)-S(2)-C(16)-C(17)C(10)-P(1)-C(19)-C(24)C(1)-P(1)-C(19)-C(24)Ni(1)-P(1)-C(19)-C(24)C(10)-P(1)-C(19)-C(20)C(1)-P(1)-C(19)-C(20)Ni(1)-P(1)-C(19)-C(20)C(24)-C(19)-C(20)-C(21)P(1)-C(19)-C(20)-C(21)C(19)-C(20)-C(21)-C(22)C(20)-C(21)-C(22)-C(23)C(21)-C(22)-C(23)-C(24)C(22)-C(23)-C(24)-C(19)C(22)-C(23)-C(24)-S(3)C(20)-C(19)-C(24)-C(23)P(1)-C(19)-C(24)-C(23)C(20)-C(19)-C(24)-S(3)P(1)-C(19)-C(24)-S(3)C(23)-C(24)-S(3)-C(25)C(19)-C(24)-S(3)-C(25)C(23)-C(24)-S(3)-Ni(1)C(19)-C(24)-S(3)-Ni(1)C(24)-S(3)-C(25)-C(27) Ni(1)-S(3)-C(25)-C(27)C(24)-S(3)-C(25)-C(26)Ni(1)-S(3)-C(25)-C(26) O(1)-S(4)-C(28)-F(2)O(3)-S(4)-C(28)-F(2)O(2)-S(4)-C(28)-F(2)O(1)-S(4)-C(28)-F(1)O(3)-S(4)-C(28)-F(1)O(2)-S(4)-C(28)-F(1)O(1)-S(4)-C(28)-F(3)O(3)-S(4)-C(28)-F(3)O(2)-S(4)-C(28)-F(3)

-43.9(5)67.8(5) 129.4(5) -112.0(5)7.2(5) -54.8(6)63.8(5) -177.0(4) 2.5(9)-173.2(5) -1.3(10)-1.6(12)3.3(12) -2.1(11)178.5(6) -0.8(9)175.3(5) 178.6(5) -5.3(7)-60.0(6)120.6(5) -179.4(5) 1.2(5) 165.1(6) -82.4(6)-68.4(6)44.1(6) 168.4(13) -71.3(14) 46.7(13) 41.9(11) 162.3(10) -79.8(8)-71.6(9) 48.7(9) 166.7(6)

[PdClP(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (**11a**)

Figure 7-14. ¹H NMR (CDCl₃, 400 MHz).

Figure 7-15. ³¹P NMR (CDCl₃, 162 MHz).

Figure 7-16. ¹⁹F NMR (CDCl₃, 282 MHz).

Figure 7-17. ¹³C NMR (CDCl₃, 151 MHz).

Figure 7-18. UV–VIS (CHCl₃).

Figure 7-19. IR (KBr).

Table 7-26. X 線結晶構造解析の結果

ro02a	
C28 H33 Cl F3 O3 P Pd S4	
775.60	
173.1500 K	
0.71070 Å	
Monoclinic	
P 21/n	
a = 13.5567(10) Å	$\alpha = 90.0000^{\circ}.$
<i>b</i> = 14.0721(11) Å	$\beta = 92.7026(9)^{\circ}.$
c = 17.2619(15) Å	$\gamma = 90.0000^{\circ}.$
3289.4(5) Å3	
4	
1.566 Mg/m3	
0.994 mm-1	
1576	
0.2000 x 0.2000 x 0.2000 mr	n3
2.36 to 25.50°.	
-14<=h<=15, -17<=k<=17, -	19<= <i>l</i> <=20
22252	
5740 [<i>R</i> (int) = 0.0154]	
94.1 %	
Semi-empirical from equival	ents
1.0000 and 0.4229	
Full-matrix least-squares on	F^2
5740 / 0 / 371	
1.064	
R1 = 0.0458, wR2 = 0.1119	
R1 = 0.0459, wR2 = 0.1121	
1.271 and -1.090 e.Å-3	
	ro02a C28 H33 CI F3 O3 P Pd S4 775.60 173.1500 K 0.71070 Å Monoclinic P 21/n a = 13.5567(10) Å b = 14.0721(11) Å c = 17.2619(15) Å 3289.4(5) Å3 4 1.566 Mg/m3 0.994 mm-1 1576 0.2000 x 0.2000 x 0.2000 mr 2.36 to 25.50°. -14<= h <=15, -17<= k <=17, -17 22252 5740 [$R(int) = 0.0154$] 94.1 % Semi-empirical from equivale 1.0000 and 0.4229 Full-matrix least-squares on L 5740 / 0 / 371 1.064 R1 = 0.0458, wR2 = 0.1119 R1 = 0.0459, wR2 = 0.1121 1.271 and -1.090 e.Å-3

		• • • • • • • • • • •			
atom	X	у	Z	U(eq)	
Pd(1)	7328(1)	1911(1)	1438(1)	27(1)	
Cl(1)	7119(1)	2202(1)	2782(1)	43(1)	
P(1)	7554(1)	1676(1)	211(1)	21(1)	
C(1)	7634(3)	414(3)	-7(2)	23(1)	
C(2)	7607(3)	88(3)	-774(2)	29(1)	
C(3)	7690(3)	-874(3)	-925(2)	31(1)	
C(4)	7773(3)	-1522(3)	-325(2)	34(1)	
C(5)	7781(3)	-1209(3)	438(2)	33(1)	
C(6)	7734(3)	-244(3)	602(2)	24(1)	
S (1)	7780(1)	117(1)	1592(1)	26(1)	
C(7)	9061(3)	-217(3)	1887(2)	31(1)	
C(8)	9817(3)	248(4)	1394(3)	49(1)	
C(9)	9203(4)	23(5)	2735(3)	69(2)	
C(10)	8695(3)	2234(2)	-57(2)	23(1)	
C(11)	9061(3)	2158(3)	-798(2)	31(1)	
C(12)	9941(3)	2597(3)	-957(2)	36(1)	
C(13)	10480(3)	3082(3)	-379(3)	37(1)	
C(14)	10149(3)	3130(3)	366(2)	33(1)	
C(15)	9244(3)	2722(3)	521(2)	24(1)	
S(2)	8832(1)	2786(1)	1488(1)	26(1)	
C(16)	8420(4)	4038(3)	1569(3)	40(1)	
C(17)	7765(4)	4354(4)	882(3)	53(1)	
C(18)	9298(5)	4695(4)	1711(4)	69(2)	
C(19)	6507(3)	2123(3)	-373(2)	27(1)	
C(20)	6480(3)	2208(3)	-1179(2)	35(1)	
C(21)	5600(4)	2434(3)	-1578(3)	46(1)	
C(22)	4756(4)	2592(4)	-1180(3)	57(1)	
C(23)	4786(4)	2561(4)	-374(3)	53(1)	
C(24)	5660(3)	2317(3)	29(2)	37(1)	
S(3)	5693(1)	2310(1)	1068(1)	36(1)	
C(25)	4786(3)	1373(4)	1259(3)	45(1)	
C(26)	5167(4)	391(4)	1072(3)	55(1)	
C(27)	4515(4)	1495(4)	2095(3)	52(1)	
C(28)	7307(7)	-5066(7)	-1513(4)	92(3)	

Table 7-27. 原子座標と等方性温度因子

O(3)	7023(13)	-3352(6)	-1229(5)	303(9)	
O(2)	6652(3)	-3839(3)	-2516(2)	58(1)	
O(1)	8261(6)	-3719(13)	-2080(7)	377(12)	
S(4)	7361(2)	-3857(1)	-1902(1)	82(1)	
F(3)	6563(4)	-5262(4)	-1178(3)	113(2)	
F(2)	7398(9)	-5675(5)	-2060(4)	233(5)	
F(1)	8061(4)	-5140(6)	-971(3)	176(3)	

Table 7-28. 結合距離[Å]

atom-atom	distance / Å	
Pd(1)-P(1)	2.1805(9)	
Pd(1)-S(3)	2.3452(11)	
Pd(1)-S(2)	2.3798(9)	
Pd(1)-Cl(1)	2.3854(10)	
Pd(1)-S(1)	2.6093(10)	
P(1)-C(19)	1.813(4)	
P(1)-C(10)	1.815(4)	
P(1)-C(1)	1.819(4)	
C(1)-C(2)	1.399(5)	
C(1)-C(6)	1.403(5)	
C(2)-C(3)	1.385(6)	
C(2)-H(1)	0.9500	
C(3)-C(4)	1.381(6)	
C(3)-H(2)	0.9500	
C(4)-C(5)	1.387(6)	
C(4)-H(3)	0.9500	
C(5)-C(6)	1.389(5)	
C(5)-H(4)	0.9500	
C(6)-S(1)	1.781(4)	
S(1)-C(7)	1.848(4)	
C(7)-C(9)	1.505(6)	
C(7)-C(8)	1.512(6)	
C(7)-H(5)	1.0000	
C(8)-H(6)	0.9800	
C(8)-H(7)	0.9800	
C(8)-H(8)	0.9800	

C(9)-H(9)	0.9800
C(9)-H(10)	0.9800
C(9)-H(11)	0.9800
C(10)-C(15)	1.397(5)
C(10)-C(11)	1.398(5)
C(11)-C(12)	1.382(6)
C(11)-H(12)	0.9500
C(12)-C(13)	1.387(7)
C(12)-H(13)	0.9500
C(13)-C(14)	1.384(6)
C(13)-H(14)	0.9500
C(14)-C(15)	1.391(5)
C(14)-H(15)	0.9500
C(15)-S(2)	1.788(4)
S(2)-C(16)	1.855(4)
C(16)-C(17)	1.513(7)
C(16)-C(18)	1.518(7)
C(16)-H(16)	1.0000
C(17)-H(17)	0.9800
C(17)-H(18)	0.9800
C(17)-H(19)	0.9800
C(18)-H(20)	0.9800
C(18)-H(21)	0.9800
C(18)-H(22)	0.9800
C(19)-C(20)	1.395(5)
C(19)-C(24)	1.397(6)
C(20)-C(21)	1.386(6)
C(20)-H(23)	0.9500
C(21)-C(22)	1.382(7)
C(21)-H(24)	0.9500
C(22)-C(23)	1.390(7)
C(22)-H(25)	0.9500
C(23)-C(24)	1.388(6)
C(23)-H(26)	0.9500
C(24)-S(3)	1.792(4)
S(3)-C(25)	1.843(5)

C(25)-C(26)	1.516(8)
C(25)-C(27)	1.517(6)
C(25)-H(27)	1.0000
C(26)-H(28)	0.9800
C(26)-H(29)	0.9800
C(26)-H(30)	0.9800
C(27)-H(31)	0.9800
C(27)-H(32)	0.9800
C(27)-H(33)	0.9800
C(28)-F(3)	1.218(9)
C(28)-F(2)	1.285(10)
C(28)-F(1)	1.357(9)
C(28)-S(4)	1.831(9)
S(4)-O(1)	1.288(9)
S(4)-O(2)	1.398(4)
S(4)-O(3)	1.453(12)

Table 7-29. 結合角[°]

140167-27. 加口月[]		
atom-atom-atom	angle / °	
P(1)-Pd(1)-S(3)	86.87(4)	
P(1)-Pd(1)-S(2)	87.41(3)	
S(3)-Pd(1)-S(2)	133.09(4)	
P(1)-Pd(1)-Cl(1)	178.33(4)	
S(3)-Pd(1)-Cl(1)	94.01(4)	
S(2)-Pd(1)-Cl(1)	90.96(3)	
P(1)-Pd(1)-S(1)	84.77(3)	
S(3)-Pd(1)-S(1)	118.26(4)	
S(2)-Pd(1)-S(1)	107.47(3)	
Cl(1)-Pd(1)-S(1)	96.04(4)	
C(19)-P(1)-C(10)	111.26(17)	
C(19)-P(1)-C(1)	106.07(17)	
C(10)-P(1)-C(1)	108.04(16)	
C(19)-P(1)-Pd(1)	110.19(13)	
C(10)-P(1)-Pd(1)	110.01(12)	
C(1)-P(1)-Pd(1)	111.19(11)	
C(2)-C(1)-C(6)	119.3(3)	

C(2)-C(1)-P(1)	121.1(3)
C(6)-C(1)-P(1)	119.7(3)
C(3)-C(2)-C(1)	120.0(4)
C(3)-C(2)-H(1)	120.0
C(1)-C(2)-H(1)	120.0
C(4)-C(3)-C(2)	120.6(4)
C(4)-C(3)-H(2)	119.7
C(2)-C(3)-H(2)	119.7
C(3)-C(4)-C(5)	119.9(4)
C(3)-C(4)-H(3)	120.0
C(5)-C(4)-H(3)	120.0
C(4)-C(5)-C(6)	120.4(4)
C(4)-C(5)-H(4)	119.8
C(6)-C(5)-H(4)	119.8
C(5)-C(6)-C(1)	119.8(3)
C(5)-C(6)-S(1)	118.4(3)
C(1)-C(6)-S(1)	121.9(3)
C(6)-S(1)-C(7)	100.51(17)
C(6)-S(1)-Pd(1)	100.44(12)
C(7)-S(1)-Pd(1)	119.18(14)
C(9)-C(7)-C(8)	113.1(4)
C(9)-C(7)-S(1)	106.6(3)
C(8)-C(7)-S(1)	112.8(3)
C(9)-C(7)-H(5)	108.0
C(8)-C(7)-H(5)	108.0
S(1)-C(7)-H(5)	108.0
C(7)-C(8)-H(6)	109.5
C(7)-C(8)-H(7)	109.5
H(6)-C(8)-H(7)	109.5
C(7)-C(8)-H(8)	109.5
H(6)-C(8)-H(8)	109.5
H(7)-C(8)-H(8)	109.5
C(7)-C(9)-H(9)	109.5
C(7)-C(9)-H(10)	109.5
H(9)-C(9)-H(10)	109.5
C(7)-C(9)-H(11)	109.5

H(9)-C(9)-H(11)	109.5
H(10)-C(9)-H(11)	109.5
C(15)-C(10)-C(11)	119.4(4)
C(15)-C(10)-P(1)	117.6(3)
C(11)-C(10)-P(1)	122.9(3)
C(12)-C(11)-C(10)	119.6(4)
C(12)-C(11)-H(12)	120.2
C(10)-C(11)-H(12)	120.2
C(11)-C(12)-C(13)	120.5(4)
C(11)-C(12)-H(13)	119.8
C(13)-C(12)-H(13)	119.8
C(14)-C(13)-C(12)	120.6(4)
C(14)-C(13)-H(14)	119.7
C(12)-C(13)-H(14)	119.7
C(13)-C(14)-C(15)	119.1(4)
C(13)-C(14)-H(15)	120.5
C(15)-C(14)-H(15)	120.5
C(14)-C(15)-C(10)	120.7(3)
C(14)-C(15)-S(2)	118.4(3)
C(10)-C(15)-S(2)	120.9(3)
C(15)-S(2)-C(16)	103.08(18)
C(15)-S(2)-Pd(1)	104.16(13)
C(16)-S(2)-Pd(1)	103.51(15)
C(17)-C(16)-C(18)	112.0(4)
C(17)-C(16)-S(2)	112.8(3)
C(18)-C(16)-S(2)	110.7(4)
C(17)-C(16)-H(16)	107.0
C(18)-C(16)-H(16)	107.0
S(2)-C(16)-H(16)	107.0
C(16)-C(17)-H(17)	109.5
C(16)-C(17)-H(18)	109.5
H(17)-C(17)-H(18)	109.5
C(16)-C(17)-H(19)	109.5
H(17)-C(17)-H(19)	109.5
H(18)-C(17)-H(19)	109.5
C(16)-C(18)-H(20)	109.5

C(16)-C(18)-H(21)	109.5
H(20)-C(18)-H(21)	109.5
C(16)-C(18)-H(22)	109.5
H(20)-C(18)-H(22)	109.5
H(21)-C(18)-H(22)	109.5
C(20)-C(19)-C(24)	119.6(4)
C(20)-C(19)-P(1)	124.5(3)
C(24)-C(19)-P(1)	115.6(3)
C(21)-C(20)-C(19)	119.8(4)
C(21)-C(20)-H(23)	120.1
C(19)-C(20)-H(23)	120.1
C(22)-C(21)-C(20)	120.2(4)
C(22)-C(21)-H(24)	119.9
C(20)-C(21)-H(24)	119.9
C(21)-C(22)-C(23)	120.5(4)
C(21)-C(22)-H(25)	119.8
C(23)-C(22)-H(25)	119.8
C(24)-C(23)-C(22)	119.5(5)
C(24)-C(23)-H(26)	120.2
C(22)-C(23)-H(26)	120.2
C(23)-C(24)-C(19)	120.2(4)
C(23)-C(24)-S(3)	118.9(4)
C(19)-C(24)-S(3)	120.9(3)
C(24)-S(3)-C(25)	101.4(2)
C(24)-S(3)-Pd(1)	104.68(15)
C(25)-S(3)-Pd(1)	114.22(16)
C(26)-C(25)-C(27)	114.0(4)
C(26)-C(25)-S(3)	112.2(3)
C(27)-C(25)-S(3)	106.5(4)
C(26)-C(25)-H(27)	108.0
C(27)-C(25)-H(27)	108.0
S(3)-C(25)-H(27)	108.0
C(25)-C(26)-H(28)	109.5
C(25)-C(26)-H(29)	109.5
H(28)-C(26)-H(29)	109.5
C(25)-C(26)-H(30)	109.5

H(28)-C(26)-H(30)	109.5
H(29)-C(26)-H(30)	109.5
C(25)-C(27)-H(31)	109.5
C(25)-C(27)-H(32)	109.5
H(31)-C(27)-H(32)	109.5
C(25)-C(27)-H(33)	109.5
H(31)-C(27)-H(33)	109.5
H(32)-C(27)-H(33)	109.5
F(3)-C(28)-F(2)	107.9(11)
F(3)-C(28)-F(1)	105.6(5)
F(2)-C(28)-F(1)	111.1(8)
F(3)-C(28)-S(4)	115.6(5)
F(2)-C(28)-S(4)	110.1(5)
F(1)-C(28)-S(4)	106.4(7)
O(1)-S(4)-O(2)	116.2(5)
O(1)-S(4)-O(3)	117.0(10)
O(2)-S(4)-O(3)	111.5(6)
O(1)-S(4)-C(28)	106.4(7)
O(2)-S(4)-C(28)	104.9(3)
O(3)-S(4)-C(28)	98.2(5)

Table 7-30. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12
Pd(1)	22(1)	41(1)	19(1)	-5(1)	4(1)	-7(1)
Cl(1)	37(1)	70(1)	23(1)	-13(1)	9(1)	-9(1)
P(1)	20(1)	26(1)	18(1)	0(1)	0(1)	-3(1)
C(1)	19(2)	26(2)	22(2)	0(1)	0(1)	-3(1)
C(2)	28(2)	34(2)	23(2)	0(2)	-2(1)	-6(2)
C(3)	25(2)	41(2)	28(2)	-10(2)	-2(2)	-5(2)
C(4)	33(2)	28(2)	39(2)	-8(2)	-4(2)	0(2)
C(5)	34(2)	29(2)	35(2)	2(2)	-2(2)	1(2)
C(6)	19(2)	29(2)	23(2)	0(1)	-1(1)	-1(1)
S(1)	28(1)	29(1)	20(1)	3(1)	3(1)	1(1)
C(7)	27(2)	35(2)	30(2)	4(2)	-3(2)	5(2)
C(8)	26(3)	62(3)	59(3)	18(2)	5(2)	3(2)
C(9)	46(3)	124(6)	35(3)	-8(3)	-12(2)	7(3)

C(10)	23(2)	23(2)	23(2)	3(1)	4(1)	-1(1)
C(11)	36(2)	34(2)	25(2)	2(2)	6(2)	-2(2)
C(12)	41(3)	37(2)	33(2)	11(2)	16(2)	4(2)
C(13)	28(3)	35(2)	48(3)	8(2)	13(2)	-3(2)
C(14)	26(2)	34(2)	39(2)	0(2)	4(2)	-7(2)
C(15)	23(2)	24(2)	25(2)	2(1)	4(1)	0(1)
S(2)	26(1)	28(1)	22(1)	-3(1)	0(1)	-6(1)
C(16)	55(3)	27(2)	39(2)	-10(2)	14(2)	-5(2)
C(17)	75(4)	38(2)	48(3)	7(2)	13(2)	16(2)
C(18)	78(4)	40(3)	90(4)	-25(3)	9(3)	-20(3)
C(19)	26(2)	27(2)	29(2)	2(2)	-3(2)	-1(1)
C(20)	38(3)	38(2)	30(2)	5(2)	-5(2)	3(2)
C(21)	50(3)	50(3)	35(2)	11(2)	-10(2)	5(2)
C(22)	46(3)	67(3)	55(3)	23(3)	-19(2)	7(2)
C(23)	33(3)	74(4)	51(3)	20(3)	-4(2)	11(2)
C(24)	33(2)	42(2)	37(2)	9(2)	-3(2)	3(2)
S(3)	27(1)	46(1)	35(1)	1(1)	3(1)	8(1)
C(25)	19(2)	79(3)	37(2)	7(2)	2(2)	-5(2)
C(26)	43(3)	67(3)	55(3)	-15(3)	8(2)	-23(2)
C(27)	38(3)	76(4)	42(3)	7(2)	15(2)	9(2)
C(28)	105(6)	130(7)	44(3)	31(4)	23(3)	56(5)
F(1)	96(4)	296(9)	131(4)	150(5)	-29(3)	3(4)
F(2)	436(15)	150(6)	117(5)	3(4)	55(7)	166(8)
F(3)	105(4)	105(4)	127(4)	42(3)	2(3)	-26(3)
S(4)	99(1)	74(1)	68(1)	28(1)	-53(1)	-46(1)
O(1)	102(6)	690(30)	328(13)	426(18)	-101(7)	-183(11)
O(2)	66(3)	65(2)	42(2)	2(2)	-16(2)	7(2)
O(3)	670(30)	92(5)	132(7)	-65(5)	-182(11)	23(10)

Table 7-31. 水素原子座標と等方性温度因子

atom	х	у	Z	U(eq)
H(1)	7532	528	-1190	34
H(2)	7690	-1090	-1447	37
H(3)	7824	-2182	-434	40
H(4)	7819	-1657	850	39
H(5)	9125	-921	1831	37

H(6)	9688	68	850	73
H(7)	10480	37	1567	73
H(8)	9772	940	1445	73
H(9)	8701	-305	3026	103
H(10)	9138	711	2805	103
H(11)	9861	-181	2926	103
H(12)	8707	1806	-1190	38
H(13)	10179	2565	-1465	44
H(14)	11081	3384	-497	44
H(15)	10534	3437	766	40
H(16)	8014	4078	2037	48
H(17)	7212	3910	807	80
H(18)	8149	4365	415	80
H(19)	7510	4993	980	80
H(20)	9702	4467	2159	104
H(21)	9063	5339	1815	104
H(22)	9695	4704	1252	104
H(23)	7063	2112	-1453	43
H(24)	5578	2480	-2128	55
H(25)	4150	2723	-1458	68
H(26)	4212	2706	-101	64
H(27)	4181	1495	919	54
H(28)	5321	362	523	82
H(29)	4660	-83	1176	82
H(30)	5764	258	1395	82
H(31)	4272	2143	2173	77
H(32)	5099	1383	2439	77
H(33)	3997	1039	2214	77

Table 7-32. ねじれ角[°]

atom-atom-atom	angle / °
S(3)-Pd(1)-P(1)-C(19)	10.98(13)
S(2)-Pd(1)-P(1)-C(19)	-122.44(13)
Cl(1)-Pd(1)-P(1)-C(19)	-111.1(15)
S(1)-Pd(1)-P(1)-C(19)	129.75(13)
S(3)-Pd(1)-P(1)-C(10)	134.01(13)

S(2)-Pd(1)-P(1)-C(10)	0.59(13)
Cl(1)-Pd(1)-P(1)-C(10)	11.9(15)
S(1)-Pd(1)-P(1)-C(10)	-107.23(13)
S(3)-Pd(1)-P(1)-C(1)	-106.34(13)
S(2)-Pd(1)-P(1)-C(1)	120.24(13)
Cl(1)-Pd(1)-P(1)-C(1)	131.6(15)
S(1)-Pd(1)-P(1)-C(1)	12.43(13)
C(19)-P(1)-C(1)-C(2)	49.1(3)
C(10)-P(1)-C(1)-C(2)	-70.3(3)
Pd(1)-P(1)-C(1)-C(2)	168.8(3)
C(19)-P(1)-C(1)-C(6)	-131.5(3)
C(10)-P(1)-C(1)-C(6)	109.1(3)
Pd(1)-P(1)-C(1)-C(6)	-11.7(3)
C(6)-C(1)-C(2)-C(3)	-0.8(5)
P(1)-C(1)-C(2)-C(3)	178.7(3)
C(1)-C(2)-C(3)-C(4)	1.8(6)
C(2)-C(3)-C(4)-C(5)	-0.5(6)
C(3)-C(4)-C(5)-C(6)	-1.8(6)
C(4)-C(5)-C(6)-C(1)	2.8(6)
C(4)-C(5)-C(6)-S(1)	-178.3(3)
C(2)-C(1)-C(6)-C(5)	-1.5(5)
P(1)-C(1)-C(6)-C(5)	179.1(3)
C(2)-C(1)-C(6)-S(1)	179.7(3)
P(1)-C(1)-C(6)-S(1)	0.2(4)
C(5)-C(6)-S(1)-C(7)	67.5(3)
C(1)-C(6)-S(1)-C(7)	-113.6(3)
C(5)-C(6)-S(1)-Pd(1)	-169.9(3)
C(1)-C(6)-S(1)-Pd(1)	9.0(3)
P(1)-Pd(1)-S(1)-C(6)	-11.71(12)
S(3)-Pd(1)-S(1)-C(6)	71.89(13)
S(2)-Pd(1)-S(1)-C(6)	-97.33(12)
Cl(1)-Pd(1)-S(1)-C(6)	169.75(12)
P(1)-Pd(1)-S(1)-C(7)	96.67(15)
S(3)-Pd(1)-S(1)-C(7)	-179.73(14)
S(2)-Pd(1)-S(1)-C(7)	11.06(15)
Cl(1)-Pd(1)-S(1)-C(7)	-81.87(15)

C(6)-S(1)-C(7)-C(9)	-178.3(4)
Pd(1)-S(1)-C(7)-C(9)	73.4(4)
C(6)-S(1)-C(7)-C(8)	57.0(4)
Pd(1)-S(1)-C(7)-C(8)	-51.3(4)
C(19)-P(1)-C(10)-C(15)	121.8(3)
C(1)-P(1)-C(10)-C(15)	-122.1(3)
Pd(1)-P(1)-C(10)-C(15)	-0.6(3)
C(19)-P(1)-C(10)-C(11)	-61.2(4)
C(1)-P(1)-C(10)-C(11)	54.8(4)
Pd(1)-P(1)-C(10)-C(11)	176.4(3)
C(15)-C(10)-C(11)-C(12)	-2.5(6)
P(1)-C(10)-C(11)-C(12)	-179.4(3)
C(10)-C(11)-C(12)-C(13)	2.3(6)
C(11)-C(12)-C(13)-C(14)	0.4(7)
C(12)-C(13)-C(14)-C(15)	-3.0(6)
C(13)-C(14)-C(15)-C(10)	2.8(6)
C(13)-C(14)-C(15)-S(2)	179.7(3)
C(11)-C(10)-C(15)-C(14)	0.0(6)
P(1)-C(10)-C(15)-C(14)	177.0(3)
C(11)-C(10)-C(15)-S(2)	-176.9(3)
P(1)-C(10)-C(15)-S(2)	0.2(4)
C(14)-C(15)-S(2)-C(16)	75.5(3)
C(10)-C(15)-S(2)-C(16)	-107.5(3)
C(14)-C(15)-S(2)-Pd(1)	-176.6(3)
C(10)-C(15)-S(2)-Pd(1)	0.3(3)
P(1)-Pd(1)-S(2)-C(15)	-0.50(13)
S(3)-Pd(1)-S(2)-C(15)	-83.77(13)
Cl(1)-Pd(1)-S(2)-C(15)	179.82(13)
S(1)-Pd(1)-S(2)-C(15)	83.18(13)
P(1)-Pd(1)-S(2)-C(16)	107.00(15)
S(3)-Pd(1)-S(2)-C(16)	23.73(15)
Cl(1)-Pd(1)-S(2)-C(16)	-72.68(15)
S(1)-Pd(1)-S(2)-C(16)	-169.32(14)
C(15)-S(2)-C(16)-C(17)	47.5(4)
Pd(1)-S(2)-C(16)-C(17)	-60.8(4)
C(15)-S(2)-C(16)-C(18)	-78.9(4)

Pd(1)-S(2)-C(16)-C(18)	172.8(3)
C(10)-P(1)-C(19)-C(20)	48.0(4)
C(1)-P(1)-C(19)-C(20)	-69.3(4)
Pd(1)-P(1)-C(19)-C(20)	170.3(3)
C(10)-P(1)-C(19)-C(24)	-137.2(3)
C(1)-P(1)-C(19)-C(24)	105.6(3)
Pd(1)-P(1)-C(19)-C(24)	-14.9(3)
C(24)-C(19)-C(20)-C(21)	-3.5(6)
P(1)-C(19)-C(20)-C(21)	171.2(3)
C(19)-C(20)-C(21)-C(22)	1.2(7)
C(20)-C(21)-C(22)-C(23)	2.3(8)
C(21)-C(22)-C(23)-C(24)	-3.6(9)
C(22)-C(23)-C(24)-C(19)	1.2(8)
C(22)-C(23)-C(24)-S(3)	178.5(4)
C(20)-C(19)-C(24)-C(23)	2.3(7)
P(1)-C(19)-C(24)-C(23)	-172.9(4)
C(20)-C(19)-C(24)-S(3)	-174.9(3)
P(1)-C(19)-C(24)-S(3)	10.0(5)
C(23)-C(24)-S(3)-C(25)	62.9(5)
C(19)-C(24)-S(3)-C(25)	-119.9(4)
C(23)-C(24)-S(3)-Pd(1)	-178.0(4)
C(19)-C(24)-S(3)-Pd(1)	-0.8(4)
P(1)-Pd(1)-S(3)-C(24)	-6.46(16)
S(2)-Pd(1)-S(3)-C(24)	77.04(16)
Cl(1)-Pd(1)-S(3)-C(24)	172.12(16)
S(1)-Pd(1)-S(3)-C(24)	-88.81(16)
P(1)-Pd(1)-S(3)-C(25)	103.54(17)
S(2)-Pd(1)-S(3)-C(25)	-172.96(16)
Cl(1)-Pd(1)-S(3)-C(25)	-77.87(17)
S(1)-Pd(1)-S(3)-C(25)	21.19(17)
C(24)-S(3)-C(25)-C(26)	71.4(4)
Pd(1)-S(3)-C(25)-C(26)	-40.6(4)
C(24)-S(3)-C(25)-C(27)	-163.3(3)
Pd(1)-S(3)-C(25)-C(27)	84.7(3)
F(3)-C(28)-S(4)-O(1)	166.6(10)
F(2)-C(28)-S(4)-O(1)	-70.8(11)

F(1)-C(28)-S(4)-O(1)	49.7(9)
F(3)-C(28)-S(4)-O(2)	-69.7(7)
F(2)-C(28)-S(4)-O(2)	52.9(8)
F(1)-C(28)-S(4)-O(2)	173.4(5)
F(3)-C(28)-S(4)-O(3)	45.2(9)
F(2)-C(28)-S(4)-O(3)	167.8(10)
F(1)-C(28)-S(4)-O(3)	-71.7(8)

[PdClP(C₆H₄-2-SC(CH₃)₃)₃]CF₃SO₃ (**11b**)

Figure 7-20. ¹H NMR (CDCl₃, 400MHz).

والمتعادية والمتعادية	a daa aadaa		and taken and	and the fille shall t	L	
			יאר בייא ארגן ארצין איז איז ארגעריינדי ארג בייא ארגן ארצין איז איז ארא ארציי איז איז איז איינדי	a de la constant a la constant de la constant	a national de la construction de la	a di kana di sa di sa di sa da sa kana kana kana kana kana kana kana
dina di kangana kana ka	indexed by the barbar	ատերաներությո	n na shin na shin a	ana hala ka	eredeke propositika mendatika d	ang ng panang panang
300.0	200.0	100.0		-100.0	-200.0	-300.0
		4.631				
parts per Million : Phosphor	rus31	10				

Figure 7-21. ³¹P NMR (CDCl₃, 162MHz).

												1					
200.0 180.0	160.0 1/0.0	120.0	100.0	80.0	60.0	40.0	20.0	0	-20.0	-40.0		-80.0	-100.0	-120.0	-140.0	-160.0	-180.0
200.0 180.0	100.0 140.0	120.0	100.0	00.0	55.0	40.0	20.0	5	-20.0		-00.0	-50.0	-100.0	-120.0	-140.0	-100.0	-100.0 =200.0
												.931					

Figure 7-22. ¹⁹F NMR (CDCl₃, 376MHz).

Table 7-33. X 線結晶構造解析の結果

Identification code	18ro02	
Empirical formula	C ₃₁ H ₃₉ Cl F ₃ O ₃ P Pd S ₄	
Formula weight	817.68	
Temperature	123(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions	a = 10.1585(19) Å	$\alpha = 90^{\circ}$.
	b = 14.124(3) Å	$\beta = 94.340(4)^{\circ}.$
	c = 25.075(5) Å	$\gamma = 90^{\circ}$.
Volume	3587.4(12) Å ³	
Ζ	4	
Density (calculated)	1.514 Mg/m ³	
Absorption coefficient	0.915 mm ⁻¹	
<i>F</i> (000)	1672	
Crystal size	$0.100 \text{ x} 0.100 \text{ x} 0.020 \text{ mm}^3$	
Theta range for data collection	3.046 to 27.499°.	
Index ranges	-13<=h<=13, -18<=k<=18, -1	32<= <i>l</i> <=32
Reflections collected	57801	
Independent reflections	8231 [<i>R</i> (int) = 0.1643]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Numerical	
Max. and min. transmission	0.981 and 0.944	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	8231 / 0 / 397	
Goodness-of-fit on F^2	0.925	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0735, wR2 = 0.1587	
R indices (all data)	R1 = 0.1700, wR2 = 0.1962	
Extinction coefficient	n/a	
Largest diff. peak and hole	2.545 and -0.817 e.Å ⁻³	

atom	X	у	Z	U(eq)
Pd(1)	5726(1)	7711(1)	4094(1)	34(1)
Cl(1)	7247(2)	7802(2)	4852(1)	54(1)
P(1)	4304(2)	7645(1)	3410(1)	26(1)
C(1)	3356(6)	8739(5)	3349(3)	30(2)
C(2)	2677(6)	9012(5)	2881(3)	31(2)
C(3)	1951(6)	9845(5)	2867(3)	33(2)
C(4)	1938(7)	10396(5)	3318(3)	39(2)
C(5)	2652(6)	10152(5)	3783(3)	32(2)
C(6)	3360(6)	9305(5)	3804(3)	32(2)
S (1)	4363(2)	8995(1)	4399(1)	28(1)
C(7)	3158(7)	8591(5)	4885(3)	37(2)
C(8)	4037(9)	8342(6)	5379(3)	47(2)
C(9)	2367(8)	7748(6)	4673(3)	43(2)
C(10)	2246(8)	9423(6)	5000(3)	48(2)
C(11)	5092(6)	7481(5)	2790(3)	29(2)
C(12)	4409(7)	7206(5)	2325(3)	33(2)
C(13)	5014(7)	7133(5)	1856(3)	34(2)
C(14)	6355(7)	7340(5)	1861(3)	36(2)
C(15)	7073(7)	7576(5)	2330(3)	36(2)
C(16)	6456(6)	7677(5)	2797(3)	28(2)
S(2)	7393(2)	7904(1)	3417(1)	32(1)
C(17)	7921(7)	9187(5)	3385(3)	39(2)
C(18)	8970(7)	9267(6)	3846(3)	48(2)
C(19)	8512(7)	9393(6)	2851(3)	47(2)
C(20)	6774(7)	9834(5)	3448(4)	47(2)
C(21)	3140(7)	6692(5)	3473(3)	31(2)
C(22)	1904(7)	6675(6)	3204(3)	43(2)
C(23)	1037(9)	5961(7)	3286(4)	54(2)
C(24)	1369(9)	5246(7)	3635(4)	65(3)
C(25)	2579(10)	5235(5)	3908(4)	53(2)
C(26)	3503(7)	5973(5)	3830(3)	36(2)
S(3)	5025(2)	6043(1)	4248(1)	39(1)
C(27)	6133(9)	5120(5)	3975(4)	51(2)
C(28)	7485(9)	5324(7)	4287(4)	76(3)

Table 7-34. 原子座標と等方性温度因子

F(3)	-1402(4)	7970(3)	1080(2)	50(1)
F(2)	-362(5)	6755(3)	813(2)	60(1)
F(1)	235(4)	8161(3)	600(2)	47(1)
C(31)	-215(7)	7642(6)	985(3)	36(2)
O(3)	246(5)	7154(4)	1978(2)	50(2)
O(2)	1021(6)	8679(4)	1702(2)	57(2)
O (1)	2068(5)	7246(5)	1417(2)	69(2)
S(4)	903(2)	7691(1)	1591(1)	35(1)
C(30)	5632(11)	4145(6)	4110(4)	71(3)
C(29)	6240(10)	5233(6)	3386(3)	62(3)

Table 7-35. 結合距離[Å]

atom-atom	distance / Å	
Pd(1)-P(1)	2.1603(19)	
Pd(1)-Cl(1)	2.359(2)	
Pd(1)-S(1)	2.4392(18)	
Pd(1)-S(3)	2.499(2)	
Pd(1)-S(2)	2.5024(19)	
P(1)-C(21)	1.807(7)	
P(1)-C(11)	1.815(7)	
P(1)-C(1)	1.820(7)	
C(1)-C(2)	1.371(10)	
C(1)-C(6)	1.393(10)	
C(2)-C(3)	1.387(10)	
C(2)-H(1)	0.9500	
C(3)-C(4)	1.373(10)	
C(3)-H(2)	0.9500	
C(4)-C(5)	1.371(10)	
C(4)-H(3)	0.9500	
C(5)-C(6)	1.395(10)	
C(5)-H(4)	0.9500	
C(6)-S(1)	1.796(7)	
S(1)-C(7)	1.881(7)	
C(7)-C(9)	1.511(10)	
C(7)-C(8)	1.513(11)	
C(7)-C(10)	1.537(10)	

C(8)-H(31)	0.9800
C(8)-H(32)	0.9800
C(8)-H(33)	0.9800
C(9)-H(34)	0.9800
C(9)-H(35)	0.9800
C(9)-H(36)	0.9800
C(10)-H(37)	0.9800
C(10)-H(38)	0.9800
C(10)-H(39)	0.9800
C(11)-C(12)	1.367(10)
C(11)-C(16)	1.412(9)
C(12)-C(13)	1.373(9)
C(12)-H(14)	0.9500
C(13)-C(14)	1.392(9)
C(13)-H(15)	0.9500
C(14)-C(15)	1.377(10)
C(14)-H(16)	0.9500
C(15)-C(16)	1.376(9)
C(15)-H(17)	0.9500
C(16)-S(2)	1.790(7)
S(2)-C(17)	1.893(7)
C(17)-C(20)	1.498(10)
C(17)-C(18)	1.516(10)
C(17)-C(19)	1.536(11)
C(18)-H(40)	0.9800
C(18)-H(41)	0.9800
C(18)-H(42)	0.9800
C(19)-H(43)	0.9800
C(19)-H(44)	0.9800
C(19)-H(45)	0.9800
C(20)-H(46)	0.9800
C(20)-H(47)	0.9800
C(20)-H(48)	0.9800
C(21)-C(22)	1.380(10)
C(21)-C(26)	1.385(10)
C(22)-C(23)	1.364(11)

C(22)-H(27)	0.9500
C(23)-C(24)	1.361(13)
C(23)-H(28)	0.9500
C(24)-C(25)	1.360(12)
C(24)-H(29)	0.9500
C(25)-C(26)	1.426(10)
C(25)-H(30)	0.9500
C(26)-S(3)	1.804(8)
S(3)-C(27)	1.885(8)
C(27)-C(29)	1.498(11)
C(27)-C(30)	1.515(11)
C(27)-C(28)	1.555(13)
C(28)-H(49)	0.9800
C(28)-H(50)	0.9800
C(28)-H(51)	0.9800
C(29)-H(52)	0.9800
C(29)-H(53)	0.9800
C(29)-H(54)	0.9800
C(30)-H(55)	0.9800
C(30)-H(56)	0.9800
C(30)-H(57)	0.9800
S(4)-O(2)	1.425(6)
S(4)-O(3)	1.435(5)
S(4)-O(1)	1.436(6)
S(4)-C(31)	1.829(8)
C(31)-F(1)	1.322(8)
C(31)-F(2)	1.329(9)
C(31)-F(3)	1.330(8)

Table 7-36. 結合角[°]

Table 7-30. 相口 户[]				
atom–atom–atom	angle / °			
P(1)-Pd(1)-Cl(1)	178.79(8)			
P(1)-Pd(1)-S(1)	85.37(7)			
Cl(1)-Pd(1)-S(1)	93.46(7)			
P(1)-Pd(1)-S(3)	84.31(7)			
Cl(1)-Pd(1)-S(3)	95.98(8)			

S(1)-Pd(1)-S(3)	118.53(7)
P(1)-Pd(1)-S(2)	84.91(7)
Cl(1)-Pd(1)-S(2)	96.03(8)
S(1)-Pd(1)-S(2)	124.10(6)
S(3)-Pd(1)-S(2)	115.00(6)
C(21)-P(1)-C(11)	108.2(3)
C(21)-P(1)-C(1)	107.1(3)
C(11)-P(1)-C(1)	107.6(3)
C(21)-P(1)-Pd(1)	111.4(3)
C(11)-P(1)-Pd(1)	112.0(2)
C(1)-P(1)-Pd(1)	110.3(2)
C(2)-C(1)-C(6)	120.6(7)
C(2)-C(1)-P(1)	122.6(6)
C(6)-C(1)-P(1)	116.8(5)
C(1)-C(2)-C(3)	119.5(7)
C(1)-C(2)-H(1)	120.2
C(3)-C(2)-H(1)	120.2
C(4)-C(3)-C(2)	119.9(7)
C(4)-C(3)-H(2)	120.1
C(2)-C(3)-H(2)	120.1
C(5)-C(4)-C(3)	121.4(7)
C(5)-C(4)-H(3)	119.3
C(3)-C(4)-H(3)	119.3
C(4)-C(5)-C(6)	119.1(7)
C(4)-C(5)-H(4)	120.5
C(6)-C(5)-H(4)	120.5
C(1)-C(6)-C(5)	119.5(7)
C(1)-C(6)-S(1)	120.4(6)
C(5)-C(6)-S(1)	120.0(6)
C(6)-S(1)-C(7)	104.9(3)
C(6)-S(1)-Pd(1)	102.8(2)
C(7)-S(1)-Pd(1)	112.9(2)
C(9)-C(7)-C(8)	111.7(7)
C(9)-C(7)-C(10)	110.8(6)
C(8)-C(7)-C(10)	110.6(6)
C(9)-C(7)-S(1)	111.4(5)

C(8)-C(7)-S(1)	103.2(5)
C(10)-C(7)-S(1)	108.7(5)
C(7)-C(8)-H(31)	109.5
C(7)-C(8)-H(32)	109.5
H(31)-C(8)-H(32)	109.5
C(7)-C(8)-H(33)	109.5
H(31)-C(8)-H(33)	109.5
H(32)-C(8)-H(33)	109.5
C(7)-C(9)-H(34)	109.5
C(7)-C(9)-H(35)	109.5
H(34)-C(9)-H(35)	109.5
C(7)-C(9)-H(36)	109.5
H(34)-C(9)-H(36)	109.5
H(35)-C(9)-H(36)	109.5
C(7)-C(10)-H(37)	109.5
C(7)-C(10)-H(38)	109.5
H(37)-C(10)-H(38)	109.5
C(7)-C(10)-H(39)	109.5
H(37)-C(10)-H(39)	109.5
H(38)-C(10)-H(39)	109.5
C(12)-C(11)-C(16)	119.9(6)
C(12)-C(11)-P(1)	122.5(5)
C(16)-C(11)-P(1)	117.5(5)
C(11)-C(12)-C(13)	121.5(6)
C(11)-C(12)-H(14)	119.3
C(13)-C(12)-H(14)	119.3
C(12)-C(13)-C(14)	118.5(7)
C(12)-C(13)-H(15)	120.8
C(14)-C(13)-H(15)	120.8
C(15)-C(14)-C(13)	120.9(7)
C(15)-C(14)-H(16)	119.5
C(13)-C(14)-H(16)	119.5
C(16)-C(15)-C(14)	120.4(6)
C(16)-C(15)-H(17)	119.8
C(14)-C(15)-H(17)	119.8
C(15)-C(16)-C(11)	118.7(6)

C(15)-C(16)-S(2)	120.8(5)
C(11)-C(16)-S(2)	120.1(5)
C(16)-S(2)-C(17)	105.6(3)
C(16)-S(2)-Pd(1)	103.2(2)
C(17)-S(2)-Pd(1)	110.0(2)
C(20)-C(17)-C(18)	112.4(7)
C(20)-C(17)-C(19)	109.6(7)
C(18)-C(17)-C(19)	110.6(6)
C(20)-C(17)-S(2)	110.8(5)
C(18)-C(17)-S(2)	103.0(5)
C(19)-C(17)-S(2)	110.4(5)
C(17)-C(18)-H(40)	109.5
C(17)-C(18)-H(41)	109.5
H(40)-C(18)-H(41)	109.5
C(17)-C(18)-H(42)	109.5
H(40)-C(18)-H(42)	109.5
H(41)-C(18)-H(42)	109.5
C(17)-C(19)-H(43)	109.5
C(17)-C(19)-H(44)	109.5
H(43)-C(19)-H(44)	109.5
C(17)-C(19)-H(45)	109.5
H(43)-C(19)-H(45)	109.5
H(44)-C(19)-H(45)	109.5
C(17)-C(20)-H(46)	109.5
C(17)-C(20)-H(47)	109.5
H(46)-C(20)-H(47)	109.5
C(17)-C(20)-H(48)	109.5
H(46)-C(20)-H(48)	109.5
H(47)-C(20)-H(48)	109.5
C(22)-C(21)-C(26)	119.4(7)
C(22)-C(21)-P(1)	123.2(6)
C(26)-C(21)-P(1)	117.3(6)
C(23)-C(22)-C(21)	120.8(8)
C(23)-C(22)-H(27)	119.6
C(21)-C(22)-H(27)	119.6
C(24)-C(23)-C(22)	120.9(9)

C(24)-C(23)-H(28)	119.5
C(22)-C(23)-H(28)	119.5
C(25)-C(24)-C(23)	120.2(8)
C(25)-C(24)-H(29)	119.9
C(23)-C(24)-H(29)	119.9
C(24)-C(25)-C(26)	120.0(8)
C(24)-C(25)-H(30)	120.0
C(26)-C(25)-H(30)	120.0
C(21)-C(26)-C(25)	118.6(7)
C(21)-C(26)-S(3)	120.6(5)
C(25)-C(26)-S(3)	120.3(6)
C(26)-S(3)-C(27)	105.1(4)
C(26)-S(3)-Pd(1)	101.8(2)
C(27)-S(3)-Pd(1)	114.3(3)
C(29)-C(27)-C(30)	111.5(7)
C(29)-C(27)-C(28)	110.4(8)
C(30)-C(27)-C(28)	110.8(8)
C(29)-C(27)-S(3)	112.0(6)
C(30)-C(27)-S(3)	109.2(6)
C(28)-C(27)-S(3)	102.6(6)
C(27)-C(28)-H(49)	109.5
C(27)-C(28)-H(50)	109.5
H(49)-C(28)-H(50)	109.5
C(27)-C(28)-H(51)	109.5
H(49)-C(28)-H(51)	109.5
H(50)-C(28)-H(51)	109.5
C(27)-C(29)-H(52)	109.5
C(27)-C(29)-H(53)	109.5
H(52)-C(29)-H(53)	109.5
C(27)-C(29)-H(54)	109.5
H(52)-C(29)-H(54)	109.5
H(53)-C(29)-H(54)	109.5
C(27)-C(30)-H(55)	109.5
C(27)-C(30)-H(56)	109.5
H(55)-C(30)-H(56)	109.5
C(27)-C(30)-H(57)	109.5

H(55)-C(30)-H(57)	109.5
H(56)-C(30)-H(57)	109.5
O(2)-S(4)-O(3)	115.0(4)
O(2)-S(4)-O(1)	115.4(4)
O(3)-S(4)-O(1)	114.2(4)
O(2)-S(4)-C(31)	103.7(4)
O(3)-S(4)-C(31)	104.5(3)
O(1)-S(4)-C(31)	101.8(4)
F(1)-C(31)-F(2)	108.8(6)
F(1)-C(31)-F(3)	107.8(6)
F(2)-C(31)-F(3)	107.8(6)
F(1)-C(31)-S(4)	111.0(5)
F(2)-C(31)-S(4)	110.6(5)
F(3)-C(31)-S(4)	110.6(5)

Table 7-37. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12
Pd(1)	29.9(3)	29.7(3)	41.2(3)	-0.4(3)	-4.7(2)	3.5(3)
Cl(1)	54.7(13)	51.9(13)	53.3(12)	-2(11)	-20.3(10)	9(12)
P(1)	21.4(9)	25.1(10)	32.8(9)	-1(8)	2.5(7)	-2.4(8)
C(1)	16(3)	37(4)	37(4)	2(3)	8(3)	-4(3)
C(2)	15(3)	36(4)	42(4)	0(4)	8(3)	-3(3)
C(3)	15(3)	39(5)	45(5)	9(4)	2(3)	0(3)
C(4)	18(4)	29(4)	71(6)	9(4)	7(4)	5(3)
C(5)	19(3)	28(4)	50(5)	1(4)	7(3)	-2(3)
C(6)	20(4)	37(4)	39(4)	4(3)	10(3)	-10(3)
S (1)	27.1(9)	19.9(9)	38.1(10)	0.2(8)	3.7(8)	-1.5(8)
C(7)	41(4)	33(4)	40(4)	-7(4)	18(4)	-7(4)
C(8)	70(6)	35(5)	38(5)	1(4)	11(4)	-2(4)
C(9)	44(5)	42(5)	45(5)	-11(4)	21(4)	-16(4)
C(10)	56(5)	37(5)	54(5)	-6(4)	29(4)	-8(4)
C(11)	24(4)	24(4)	40(4)	1(3)	12(3)	0(3)
C(12)	18(3)	37(4)	43(4)	0(4)	2(3)	-2(3)
C(13)	28(4)	37(4)	37(4)	-1(3)	6(3)	-2(3)
C(14)	27(4)	36(4)	46(5)	-6(4)	14(3)	0(4)
C(15)	21(4)	35(4)	55(5)	-8(4)	12(4)	-1(3)

C(16)	21(3)	24(3)	39(4)	0(3)	5(3)	-3(3)
S(2)	18.8(8)	28.1(10)	50.1(11)	-2.8(9)	0.7(8)	1.5(7)
C(17)	21(4)	33(4)	63(5)	-8(4)	7(4)	-5(3)
C(18)	32(4)	45(5)	66(6)	-11(4)	-2(4)	-11(4)
C(19)	33(4)	45(5)	62(6)	-11(4)	11(4)	-16(4)
C(20)	28(4)	24(4)	91(7)	-4(4)	16(4)	-6(3)
C(21)	33(4)	22(4)	39(4)	-13(3)	13(4)	-7(3)
C(22)	32(4)	49(5)	48(5)	-6(4)	12(4)	-8(4)
C(23)	43(5)	48(6)	72(6)	-21(5)	15(5)	-20(5)
C(24)	50(6)	48(6)	99(8)	-17(6)	23(6)	-35(5)
C(25)	77(7)	20(4)	63(6)	-6(4)	23(5)	-14(4)
C(26)	47(5)	18(4)	44(5)	-8(4)	12(4)	-7(4)
S(3)	51.8(12)	21.9(9)	44.8(11)	2.9(9)	11.3(10)	4.7(9)
C(27)	69(6)	22(4)	64(6)	-1(4)	22(5)	19(4)
C(28)	68(7)	57(6)	101(8)	-16(6)	-12(6)	41(6)
C(29)	83(7)	38(5)	67(6)	2(5)	24(5)	30(5)
C(30)	109(8)	27(5)	81(7)	5(5)	41(6)	10(5)
S(4)	19.3(9)	36.9(11)	48.2(11)	2.1(10)	-2.8(8)	-0.3(9)
O(1)	24(3)	110(5)	74(4)	5(4)	7(3)	27(3)
O(2)	50(4)	46(4)	72(4)	1(3)	-17(3)	-10(3)
O(3)	39(3)	60(4)	51(3)	13(3)	1(3)	-12(3)
C(31)	30(4)	32(4)	46(5)	-7(4)	0(3)	2(4)
F(1)	37(3)	52(3)	52(3)	8(2)	6(2)	-3(2)
F(2)	74(4)	38(3)	66(3)	-9(2)	-9(3)	-5(3)
F(3)	16(2)	73(3)	59(3)	5(2)	-1(2)	2(2)

Table 7-38. ねじれ角[°]

atom–atom–atom	angle / °
C(21)-P(1)-C(1)-C(2)	-78.3(6)
C(11)–P(1)–C(1)–C(2)	37.9(6)
Pd(1)-P(1)-C(1)-C(2)	160.3(5)
C(21)–P(1)–C(1)–C(6)	102.6(5)
C(11)–P(1)–C(1)–C(6)	-141.3(5)
Pd(1)–P(1)–C(1)–C(6)	-18.9(6)
C(6)-C(1)-C(2)-C(3)	-2.3(10)
P(1)-C(1)-C(2)-C(3)	178.5(5)

C(1)–C(2	L)-C(3)-C(4)	1.3(10)
C(2)–C(3)-C(4)-C(5)	1.3(10)
C(3)–C(4	-)-C(5)-C(6)	-2.7(10)
C(2)–C(1)-C(6)-C(5)	0.8(10)
P(1)-C(1))-C(6)-C(5)	-180.0(5)
C(2)–C(1)–C(6)–S(1)	-174.6(5)
P(1)–C(1))-C(6)-S(1)	4.6(7)
C(4)–C(5)-C(6)-C(1)	1.7(9)
C(4)–C(5)-C(6)-S(1)	177.2(5)
C(1)-C(6)-S(1)-C(7)	-108.6(6)
C(5)–C(6	-S(1)-C(7)	76.0(6)
C(1)–C(6	-S(1)-Pd(1)	9.7(6)
C(5)–C(6	-S(1)-Pd(1)	-165.7(5)
C(6)–S(1))–C(7)–C(9)	60.2(6)
Pd(1)–S(1	1)-C(7)-C(9)	-51.0(6)
C(6)–S(1))–C(7)–C(8)	-179.8(5)
Pd(1)–S(1	1)–C(7)–C(8)	69.1(5)
C(6)–S(1))-C(7)-C(10)	-62.3(6)
Pd(1)–S(1	1)–C(7)–C(10)	-173.5(5)
C(21)–P(1)–C(11)–C(12)	41.6(7)
C(1)–P(1))–C(11)–C(12)	-73.8(6)
Pd(1)–P(1	1)–C(11)–C(12)	164.8(5)
C(21)–P(1)–C(11)–C(16)	-140.3(5)
C(1)–P(1))–C(11)–C(16)	104.2(6)
Pd(1)–P(1	1)–C(11)–C(16)	-17.1(6)
C(16)–C((11)-C(12)-C(13)	-1.4(11)
P(1)-C(1	1)-C(12)-C(13)	176.6(6)
C(11)–C(12)–C(13)–C(14)	0.4(11)
C(12)–C((13)-C(14)-C(15)	2.5(11)
C(13)–C((14)-C(15)-C(16)	-4.5(11)
C(14)–C(15)–C(16)–C(11)	3.5(11)
C(14)-C((15)-C(16)-S(2)	175.7(6)
C(12)-C((11)-C(16)-C(15)	-0.6(10)
P(1)-C(1	1)-C(16)-C(15)	-178.7(5)
C(12)-C((11)-C(16)-S(2)	-172.8(5)
P(1)–C(1	1)–C(16)–S(2)	9.1(8)

C(15)-C(16)-S(2)-C(17)C(11)-C(16)-S(2)-C(17)C(15)-C(16)-S(2)-Pd(1)C(11)-C(16)-S(2)-Pd(1)C(16)-S(2)-C(17)-C(20)Pd(1)-S(2)-C(17)-C(20)C(16)-S(2)-C(17)-C(18) Pd(1)-S(2)-C(17)-C(18)C(16)-S(2)-C(17)-C(19)Pd(1)-S(2)-C(17)-C(19)C(11)-P(1)-C(21)-C(22)C(1)-P(1)-C(21)-C(22)Pd(1)-P(1)-C(21)-C(22)C(11)-P(1)-C(21)-C(26)C(1)-P(1)-C(21)-C(26)Pd(1)-P(1)-C(21)-C(26)C(26)-C(21)-C(22)-C(23)P(1)-C(21)-C(22)-C(23)C(21)-C(22)-C(23)-C(24)C(22)-C(23)-C(24)-C(25)C(23)-C(24)-C(25)-C(26)C(22)-C(21)-C(26)-C(25)P(1)-C(21)-C(26)-C(25)C(22)-C(21)-C(26)-S(3)P(1)-C(21)-C(26)-S(3)C(24)-C(25)-C(26)-C(21)C(24)-C(25)-C(26)-S(3)C(21)-C(26)-S(3)-C(27)C(25)-C(26)-S(3)-C(27)C(21)-C(26)-S(3)-Pd(1)C(25)-C(26)-S(3)-Pd(1)C(26)-S(3)-C(27)-C(29)Pd(1)-S(3)-C(27)-C(29)C(26)-S(3)-C(27)-C(30)Pd(1)-S(3)-C(27)-C(30)C(26)-S(3)-C(27)-C(28)

74.3(6) -113.6(6) -170.2(5) 1.8(6) 73.2(6) -37.5(6)-166.4(5)82.9(5) -48.3(6) -159.0(4) -79.3(7) 36.4(7) 157.2(5) 103.9(6) -140.4(5)-19.6(6) 0.1(11) -176.6(6)-0.2(12) 0.1(14)0.0(13)0.0(10) 176.9(5) -172.4(5)4.6(8) -0.1(11)172.3(7) -109.5(6)78.3(7) 9.9(6) -162.3(5) 52.8(7) -57.9(7) -71.2(7) 178.1(6) 171.1(6)

Pd(1)–S(3)–C(27)–C(28)	60.4(6)
O(2)-S(4)-C(31)-F(1)	55.4(6)
O(3)-S(4)-C(31)-F(1)	176.3(5)
O(1)-S(4)-C(31)-F(1)	-64.6(6)
O(2)-S(4)-C(31)-F(2)	176.4(5)
O(3)–S(4)–C(31)–F(2)	-62.8(6)
O(1)–S(4)–C(31)–F(2)	56.3(6)
O(2)–S(4)–C(31)–F(3)	-64.2(6)
O(3)–S(4)–C(31)–F(3)	56.6(6)
O(1)–S(4)–C(31)–F(3)	175.7(6)

[Pd(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (**12a**)

Figure 7-23. ¹H NMR (Acetone-*d*₆, 400 MHz).

a dia mandra dia mini di Arama	and a standard a standard and a standard and a stan	that an inclusion a ball of the line line and	hand down the day block of the second	ويراويه ومرواه والمعاوم ومعاور وم	eri menteri denda deserva entre	for disting differentiation of
300.0	500 0	100.0	Durit set de set et les secondes et	100.0	200.0	300.0
	200.0	100.0	v	-100.0	-200.0	-567.0
		. 16				

Figure 7-24. ³¹P NMR (Acetone- *d*₆, 162 MHz).

Figure 7-25. ¹⁹F NMR (Acetone- *d*₆, 282 MHz).

Figure 7-26. ¹³C NMR (Acetone- *d*₆, 75 MHz).

Figure 7-27. UV–VIS (THF)

Figure 7-28. IR (KBr).

[Pd(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃]CF₃SO₃ (**12b**)

Figure 7-29. ¹H NMR (acetone-*d*₆, 400 MHz).

Figure 7-30. ³¹P NMR (acetone-*d*₆, 162 MHz).

Figure 7-31. ¹⁹F NMR (acetone-*d*₆, 376 MHz).

Table 7-39. X 線結晶構造解析の結果

Identification code	ro1721			
Empirical formula	C ₃₂ H ₄₂ F ₃ O ₃ P Pd S ₄			
Formula weight	797.26			
Temperature	123(2) K			
Wavelength	0.71075 Å			
Crystal system	Trigonal			
Space group	<i>R</i> -3 <i>c</i>			
Unit cell dimensions	a = 14.572(3) Å	$\alpha = 90^{\circ}$.		
	<i>b</i> = 14.572(3) Å	$\beta = 90^{\circ}$.		
	c = 58.345(13) Å	$\gamma = 120^{\circ}$.		
Volume	10729(5) Å ³			
Ζ	12			
Density (calculated)	1.481 Mg/m ³			
Absorption coefficient	0.844 mm ⁻¹			
<i>F</i> (000)	4920			
Crystal size	$0.090 \text{ x} 0.080 \text{ x} 0.010 \text{ mm}^3$			
Theta range for data collection	3.226 to 27.481°.			
Index ranges	-18<= <i>h</i> <=18, -18<= <i>k</i> <=18, -75<= <i>l</i> <=75			
Reflections collected	55615			
Independent reflections	2739 [<i>R</i> (int) = 0.0884]			
Completeness to theta = 25.242°	99.8 %			
Absorption correction	Numerical			
Max. and min. transmission	0.994 and 0.950			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	2739 / 16 / 169			
Goodness-of-fit on F2	0.966			
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0346, wR2 = 0.0785			
R indices (all data)	R1 = 0.0631, wR2 = 0.0882			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.836 and -0.317 e.Å ⁻³			
atom	X	У	Z	U(eq)
--------------	-----------	-----------	---------	---------
Pd(1)	0	0	3618(1)	30(1)
C(1)	0	0	3257(1)	45(1)
P(1)	0	0	4000(1)	26(1)
C(2)	541(2)	1337(2)	4110(1)	31(1)
C(3)	426(2)	1562(2)	4335(1)	40(1)
C(4)	854(3)	2595(2)	4408(1)	48(1)
C(5)	1373(3)	3405(3)	4256(1)	51(1)
C(6)	1460(2)	3203(2)	4027(1)	46(1)
C(7)	1059(2)	2165(2)	3954(1)	33(1)
S (1)	1150(1)	1917(1)	3654(1)	33(1)
C(8)	2590(2)	2347(2)	3612(1)	41(1)
C(9)	3235(3)	3544(3)	3620(1)	74(1)
C(10)	2952(3)	1854(3)	3791(1)	65(1)
C(11)	2631(3)	1968(4)	3373(1)	75(1)
O(1)	2690(20)	5602(16)	3929(7)	57(6)
S(2)	3333	6667	4002(1)	25(1)
C(12)	3333	6667	4309(3)	118(13)
F(1)	3939(19)	7660(11)	4386(6)	55(4)
C(13)	-718(11)	-413(11)	4964(2)	1(4)
F(2)	-1342(10)	-753(14)	5148(2)	37(3)
F(3)	-917(12)	-1282(11)	4850(2)	63(5)
F(4)	-1048(11)	139(15)	4835(2)	22(3)
S(3)	614(7)	516(6)	5029(1)	45(2)
O(2)	933(17)	1069(19)	4820(3)	57(7)
O(3)	402(13)	1104(10)	5200(2)	20(3)
O(4)	1318(14)	231(15)	5117(3)	66(6)

Table 7-40. 原子座標と等方性温度因子

Table 7-41.	結合距離[Å]
Table /-41.	ハロ□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

atom-atom	distance / Å
Pd(1)-C(1)	2.108(5)
Pd(1)-P(1)	2.2245(12)
Pd(1)-S(1)#1	2.4437(8)
Pd(1)-S(1)	2.4438(8)

Pd(1)-S(1)#2	2.4438(8)
C(1)-H(14)	0.82(3)
P(1)-C(2)	1.814(3)
P(1)-C(2)#2	1.814(3)
P(1)-C(2)#1	1.814(3)
C(2)-C(3)	1.388(4)
C(2)-C(7)	1.394(4)
C(3)-C(4)	1.377(4)
C(3)-H(1)	0.9500
C(4)-C(5)	1.366(5)
C(4)-H(2)	0.9500
C(5)-C(6)	1.386(4)
C(5)-H(3)	0.9500
C(6)-C(7)	1.388(4)
C(6)-H(4)	0.9500
C(7)-S(1)	1.805(3)
S(1)-C(8)	1.882(3)
C(8)-C(10)	1.503(4)
C(8)-C(11)	1.512(4)
C(8)-C(9)	1.512(4)
C(9)-H(5)	0.9800
C(9)-H(6)	0.9800
C(9)-H(7)	0.9800
C(10)-H(8)	0.9800
C(10)-H(9)	0.9800
C(10)-H(10)	0.9800
C(11)-H(11)	0.9800
C(11)-H(12)	0.9800
C(11)-H(13)	0.9800
O(1)-S(2)	1.418(15)
S(2)-O(1)#3	1.418(15)
S(2)-O(1)#4	1.418(15)
S(2)-C(12)	1.792(17)
C(12)-F(1)	1.340(13)
C(12)-F(1)#4	1.340(13)
C(12)-F(1)#3	1.340(13)

C(13)-F(3)	1.329(16)
C(13)-F(2)	1.330(14)
C(13)-F(4)	1.356(14)
C(13)-S(3)	1.765(10)
S(3)-O(4)	1.383(14)
S(3)-O(2)	1.404(14)
S(3)-O(3)	1.447(11)

Table 7-42. 結合角[°]

atom-atom-atom	angle / °
C(1)-Pd(1)-P(1)	180.0
C(1)-Pd(1)-S(1)#1	94.841(18)
P(1)-Pd(1)-S(1)#1	85.159(18)
C(1)-Pd(1)-S(1)	94.843(18)
P(1)-Pd(1)-S(1)	85.157(18)
S(1)#1-Pd(1)-S(1)	119.295(5)
C(1)-Pd(1)-S(1)#2	94.841(18)
P(1)-Pd(1)-S(1)#2	85.159(18)
S(1)#1-Pd(1)-S(1)#2	119.297(5)
S(1)-Pd(1)-S(1)#2	119.295(5)
Pd(1)-C(1)-H(14)	111(2)
C(2)-P(1)-C(2)#2	108.23(9)
C(2)-P(1)-C(2)#1	108.23(9)
C(2)#2-P(1)-C(2)#1	108.23(9)
C(2)-P(1)-Pd(1)	110.68(9)
C(2)#2-P(1)-Pd(1)	110.68(9)
C(2)#1-P(1)-Pd(1)	110.68(9)
C(3)-C(2)-C(7)	119.4(2)
C(3)-C(2)-P(1)	123.4(2)
C(7)-C(2)-P(1)	117.14(19)
C(4)-C(3)-C(2)	120.7(3)
C(4)-C(3)-H(1)	119.7
C(2)-C(3)-H(1)	119.7
C(5)-C(4)-C(3)	119.7(3)
C(5)-C(4)-H(2)	120.2
C(3)-C(4)-H(2)	120.2

C(4)-C(5)-C(6)	121.0(3)
C(4)-C(5)-H(3)	119.5
C(6)-C(5)-H(3)	119.5
C(5)-C(6)-C(7)	119.6(3)
C(5)-C(6)-H(4)	120.2
C(7)-C(6)-H(4)	120.2
C(6)-C(7)-C(2)	119.6(2)
C(6)-C(7)-S(1)	118.9(2)
C(2)-C(7)-S(1)	121.40(19)
C(7)-S(1)-C(8)	103.84(13)
C(7)-S(1)-Pd(1)	103.52(9)
C(8)-S(1)-Pd(1)	112.50(9)
C(10)-C(8)-C(11)	112.2(3)
C(10)-C(8)-C(9)	111.4(3)
C(11)-C(8)-C(9)	109.4(3)
C(10)-C(8)-S(1)	110.56(19)
C(11)-C(8)-S(1)	103.8(2)
C(9)-C(8)-S(1)	109.1(2)
C(8)-C(9)-H(5)	109.5
C(8)-C(9)-H(6)	109.5
H(5)-C(9)-H(6)	109.5
C(8)-C(9)-H(7)	109.5
H(5)-C(9)-H(7)	109.5
H(6)-C(9)-H(7)	109.5
C(8)-C(10)-H(8)	109.5
C(8)-C(10)-H(9)	109.5
H(8)-C(10)-H(9)	109.5
C(8)-C(10)-H(10)	109.5
H(8)-C(10)-H(10)	109.5
H(9)-C(10)-H(10)	109.5
C(8)-C(11)-H(11)	109.5
C(8)-C(11)-H(12)	109.5
H(11)-C(11)-H(12)	109.5
C(8)-C(11)-H(13)	109.5
H(11)-C(11)-H(13)	109.5
H(12)-C(11)-H(13)	109.5

O(1)#3-S(2)-O(1)#4	111.4(16)
O(1)#3-S(2)-O(1)	111.4(16)
O(1)#4-S(2)-O(1)	111.4(16)
O(1)#3-S(2)-C(12)	107.5(17)
O(1)#4-S(2)-C(12)	107.5(17)
O(1)-S(2)-C(12)	107.5(17)
F(1)-C(12)-F(1)#4	109.5(15)
F(1)-C(12)-F(1)#3	109.5(15)
F(1)#4-C(12)-F(1)#3	109.5(15)
F(1)-C(12)-S(2)	109.4(15)
F(1)#4-C(12)-S(2)	109.4(15)
F(1)#3-C(12)-S(2)	109.4(15)
F(3)-C(13)-F(2)	105.4(12)
F(3)-C(13)-F(4)	108.3(13)
F(2)-C(13)-F(4)	107.0(13)
F(3)-C(13)-S(3)	118.0(12)
F(2)-C(13)-S(3)	113.5(11)
F(4)-C(13)-S(3)	104.1(10)
O(4)-S(3)-O(2)	114.3(11)
O(4)-S(3)-O(3)	109.3(10)
O(2)-S(3)-O(3)	111.5(10)
O(4)-S(3)-C(13)	123.0(12)
O(2)-S(3)-C(13)	100.2(10)
O(3)-S(3)-C(13)	97.1(10)

Table 7-43. 異方性温度因子

Idole /			,			
atom	U11	U22	U33	U23	U13	U12
Pd(1)	33.17(14)33.17(14))24.72(18)	0	0	16.58(7)
C(1)	54(2)	54(2)	28(2)	0	0	27(10)
P(1)	26(3)	26(3)	25.8(5)	0	0	13.02(17)
C(2)	31.1(14)	31.1(13)	32.8(13)	-4.8(10)	-4(10)	17(11)
C(3)	43.2(16)	43.1(17)	35.2(16)	-6.8(12)	-1.9(12)	22.9(14)
C(4)	58(2)	51.7(19)	42(18)	-15.1(15)	-8(15)	33.7(17)
C(5)	58(2)	37.7(17)	63(2)	-16.7(16)	-11.4(16)2	26.5(15)
C(6)	50.8(18)	31.9(15)	54.3(18)	-4.1(13)	-3.3(14)	19.5(14)
C(7)	32.8(14)	31.1(13)	37.7(14)	-3.7(10)	-2.6(11)	17.5(12)

F(1)	64(6)	36(5)	46(4)	-6(4)	-7(4)	11(5)
C(12)	90(14)	90(14)	170(3)	0	0	45(7)
S(2)	23.3(10)	23.3(10)	28.8(12)	0	0	11.6(5)
O (1)	59(10)	40(5)	50(9)	-13(4)	9(7)	9(4)
C(11)	45(2)	100(3)	64(2)	-7(2)	20.1(17)	24(2)
C(10)	37.6(18)	80(3)	80(3)	28(2)	8.3(17)	30.3(18)
C(9)	40.7(19)	41.6(19)	117(3)	9(2)	11(2)	3.3(15)
C(8)	28.1(14)	37.4(15)	47.4(18)	7.4(12)	4.9(12)	9.2(12)
S(1)	33.1(3)	28.4(3)	34.2(3)	4.6(2)	1.1(3)	13.3(3)

Table 7-44. ねじれ角[°]

atom–atom–atom	angle / °
C(2)-P(1)-C(2)-C(3)	43.6(2)
C(2)-P(1)-C(2)-C(3)	-73.5(2)
Pd(1)-P(1)-C(2)-C(3)	165.1(2)
C(2)-P(1)-C(2)-C(7)	-133.8(2)
C(2)-P(1)-C(2)-C(7)	109.2(2)
Pd(1)-P(1)-C(2)-C(7)	-12.3(2)
C(7)–C(2)–C(3)–C(4)	-2.5(4)
P(1)-C(2)-C(3)-C(4)	-179.9(2)
C(2)–C(3)–C(4)–C(5)	1.7(4)
C(3)-C(4)-C(5)-C(6)	1.2(5)
C(4)-C(5)-C(6)-C(7)	-3.1(5)
C(5)-C(6)-C(7)-C(2)	2.2(4)
C(5)-C(6)-C(7)-S(1)	178.4(2)
C(3)–C(2)–C(7)–C(6)	0.5(4)
P(1)-C(2)-C(7)-C(6)	178.0(2)
C(3)–C(2)–C(7)–S(1)	-175.6(2)
P(1)-C(2)-C(7)-S(1)	1.9(3)
C(6)-C(7)-S(1)-C(8)	74.2(2)
C(2)-C(7)-S(1)-C(8)	-109.6(2)
C(6)-C(7)-S(1)-Pd(1)	-168.1(2)
C(2)–C(7)–S(1)–Pd(1)	8.1(2)
C(7)–S(1)–C(8)–C(10)	50.2(3)
Pd(1)-S(1)-C(8)-C(10)	-61.1(3)
C(7)–S(1)–C(8)–C(11)	170.7(2)

Pd(1)-S(1)-C(8)-C(11)	59.4(2)
C(7)–S(1)–C(8)–C(9)	-72.7(2)
Pd(1)-S(1)-C(8)-C(9)	176.0(2)
O(1)-S(2)-C(12)-F(1)	-60.4(4)
O(1)-S(2)-C(12)-F(1)	59.6(4)
O(1)-S(2)-C(12)-F(1)	179.6(4)
O(1)-S(2)-C(12)-F(1)	59.6(4)
O(1)-S(2)-C(12)-F(1)	179.6(4)
O(1)-S(2)-C(12)-F(1)	-60.4(4)
O(1)–S(2)–C(12)–F(1)	179.6(4)
O(1)–S(2)–C(12)–F(1)	-60.4(4)
O(1)-S(2)-C(12)-F(1)	59.6(4)
F(3)-C(13)-S(3)-O(4)	-45.9(14)
F(2)-C(13)-S(3)-O(4)	78.1(14)
F(4)-C(13)-S(3)-O(4)	-165.9(14)
F(3)-C(13)-S(3)-O(2)	82.1(14)
F(2)-C(13)-S(3)-O(2)	-153.8(14)
F(4)-C(13)-S(3)-O(2)	-37.9(15)
F(3)-C(13)-S(3)-O(3)	-164.5(12)
F(2)-C(13)-S(3)-O(3)	-40.4(14)
F(4)-C(13)-S(3)-O(3)	75.5(10)

[Pd(CF₃SO₃)P(C₆H₄-2-SCH(CH₃)₂)₃]CF₃SO₃ (13a)

Figure 7-32. ¹H NMR (Acetone-*d*₆, 400 MHz).

Figure 7-33. ³¹P NMR (Acetone-*d*₆, 162 MHz).

Figure 7-34. ¹⁹F NMR (Acetone-*d*₆, 282 MHz).

Figure 7-35. ¹³C NMR (Acetone-*d*₆, 151 MHz).

Figure 7-36. UV–VIS (CHCl₃).

Figure 7-37. IR (KBr).

Table 7-45. X 線結晶構造解析の結果

Identification code	ro01b	
Empirical formula	C ₂₉ H ₃₃ F ₆ O ₆ P Pd S ₅	
Formula weight	889.22	
Temperature	173.1500 K	
Wavelength	0.71070 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 12.5640(9) Å	$\alpha = 91.103(7)^{\circ}$.
	<i>b</i> = 13.4990(11) Å	$\beta = 106.452(8)^{\circ}.$
	c = 22.0921(17) Å	$\gamma = 90.437(7)^{\circ}$.
Volume	3592.4(5) Å ³	
Ζ	4	
Density (calculated)	1.644 Mg/m ³	
Absorption coefficient	0.923 mm ⁻¹	
<i>F</i> (000)	1800	
Crystal size	$0.1500 \text{ x } 0.0500 \text{ x } 0.0500 \text{ mm}^3$	
Theta range for data collection	2.25 to 25.50°.	
Index ranges	-14<= <i>h</i> <=15, -16<= <i>k</i> <=16, -26<= <i>l</i> <=26	
Reflections collected	24507	
Independent reflections	12499 [<i>R</i> (int) = 0.0300]	
Completeness to theta = 25.50°	93.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.4121	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	12499 / 0 / 865	
Goodness-of-fit on F^2	1.255	
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0800, wR2 = 0.1385	
<i>R</i> indices (all data)	R1 = 0.0849, wR2 = 0.1410	
Largest diff. peak and hole	1.220 and -0.935 e.Å ⁻³	

atom	X	у	Z	U(eq)
Pd(1)	3077(1)	2490(1)	278(1)	28(1)
P(1)	1458(1)	2517(1)	-404(1)	21(1)
C(1)	1229(5)	1470(4)	-942(3)	23(1)
C(2)	152(5)	1236(5)	-1332(3)	26(1)
C(3)	12(6)	504(5)	-1792(3)	33(2)
C(4)	914(6)	-20(5)	-1855(3)	37(2)
C(5)	1965(6)	180(5)	-1464(3)	35(2)
C(6)	2123(5)	929(4)	-1004(3)	26(1)
S(1)	3492(1)	1151(1)	-494(1)	28(1)
C(7)	4238(5)	1513(6)	-1070(3)	37(2)
C(8)	5432(6)	1741(7)	-690(4)	54(2)
C(9)	3695(6)	2378(6)	-1472(4)	50(2)
C(10)	400(5)	2486(4)	2(3)	23(1)
C(11)	-707(5)	2728(4)	-265(3)	28(1)
C(12)	-1485(6)	2555(5)	62(3)	34(2)
C(13)	-1168(6)	2146(6)	656(3)	39(2)
C(14)	-57(5)	1941(5)	946(3)	35(2)
C(15)	718(5)	2111(5)	614(3)	26(1)
S(2)	2163(1)	1943(1)	1003(1)	24(1)
C(16)	2269(5)	605(5)	1155(3)	30(1)
C(17)	3487(6)	413(6)	1483(4)	44(2)
C(18)	1808(6)	-38(5)	576(4)	41(2)
C(19)	1341(5)	3611(4)	-879(3)	24(1)
C(20)	440(6)	3760(5)	-1408(3)	35(2)
C(21)	386(6)	4607(5)	-1761(3)	43(2)
C(22)	1235(6)	5305(5)	-1581(4)	47(2)
C(23)	2146(7)	5160(5)	-1070(4)	46(2)
C(24)	2201(5)	4300(5)	-716(3)	27(1)
S(3)	3424(1)	4102(1)	-86(1)	27(1)
C(25)	3268(6)	5061(5)	493(3)	39(2)
C(26)	4321(7)	5055(6)	1050(4)	52(2)
C(27)	2214(7)	4927(6)	689(4)	50(2)
O(1)	4584(4)	2518(4)	1044(2)	40(1)
S(4)	5709(1)	2277(1)	1035(1)	30(1)

Table 7-46. 原子座標と等方性温度因子

O(2)	6173(5)	2974(4)	708(2)	52(2)
O(3)	5856(5)	1255(4)	922(3)	63(2)
C(28)	6445(6)	2489(7)	1862(3)	46(2)
F(1)	6067(5)	1923(5)	2234(2)	80(2)
F(2)	6388(5)	3411(4)	2040(2)	72(2)
F(3)	7526(4)	2308(5)	1956(2)	77(2)
S(5)	2041(2)	2096(1)	2814(1)	39(1)
O(4)	1198(6)	1502(5)	2446(3)	85(3)
O(5)	3085(5)	2054(5)	2631(3)	68(2)
O(6)	2263(5)	2089(4)	3480(2)	61(2)
C(29)	1625(7)	3339(6)	2614(4)	46(2)
F(4)	1437(5)	3524(3)	2001(2)	62(1)
F(5)	2294(5)	4016(4)	2951(3)	75(2)
F(6)	632(5)	3517(5)	2735(3)	83(2)
Pd(2)	8033(1)	2553(1)	5112(1)	29(1)
P(2)	6394(1)	2424(1)	4456(1)	23(1)
C(30)	6229(5)	1296(4)	3986(3)	24(1)
C(31)	5176(5)	971(5)	3615(3)	30(2)
C(32)	5088(6)	170(5)	3209(3)	34(2)
C(33)	6017(6)	-327(5)	3181(3)	39(2)
C(34)	7054(6)	-58(5)	3564(3)	35(2)
C(35)	7170(5)	765(5)	3969(3)	30(1)
S(6)	8498(1)	1074(1)	4493(1)	28(1)
C(36)	9307(6)	1365(6)	3941(3)	41(2)
C(37)	10482(6)	1619(7)	4342(4)	54(2)
C(38)	8790(7)	2193(8)	3502(4)	64(3)
C(39)	5373(5)	2423(4)	4892(3)	24(1)
C(40)	4261(5)	2595(4)	4617(3)	29(1)
C(41)	3511(5)	2499(5)	4975(3)	31(2)
C(42)	3874(5)	2246(5)	5604(3)	34(2)
C(43)	5004(5)	2076(5)	5886(3)	32(2)
C(44)	5753(5)	2178(4)	5531(3)	26(1)
S(7)	7193(1)	2044(1)	5903(1)	23(1)
C(45)	7325(5)	730(5)	6107(3)	29(1)
C(46)	8553(6)	577(5)	6429(3)	39(2)
C(47)	6854(6)	32(5)	5560(3)	36(2)

C(48)	6147(5)	3456(5)	3920(3)	26(1)
C(49)	5229(6)	3489(5)	3383(3)	36(2)
C(50)	5061(6)	4332(6)	3020(3)	41(2)
C(51)	5781(6)	5120(6)	3175(4)	45(2)
C(52)	6723(7)	5076(5)	3686(4)	43(2)
C(53)	6893(6)	4238(5)	4058(3)	30(1)
S(8)	8144(1)	4164(1)	4697(1)	29(1)
C(54)	7880(7)	5125(5)	5239(3)	41(2)
C(55)	8963(8)	5290(7)	5762(4)	67(3)
C(56)	6905(7)	4879(6)	5488(4)	49(2)
O(7)	9555(4)	2805(5)	5848(3)	62(2)
S(9)	10695(1)	2552(1)	5971(1)	33(1)
O(8)	10848(6)	1519(5)	5936(3)	73(2)
O(9)	11307(6)	3176(5)	5685(3)	72(2)
C(57)	11210(8)	2857(9)	6812(4)	67(3)
F(7)	10758(7)	2343(6)	7150(3)	129(3)
F(8)	11091(6)	3806(6)	6915(3)	91(2)
F(9)	12310(5)	2718(6)	6995(3)	117(3)
S(10)	6815(1)	2406(1)	7803(1)	35(1)
O(10)	6906(7)	1605(4)	7396(3)	77(2)
O(11)	5702(5)	2651(7)	7784(3)	101(3)
O(12)	7577(5)	2399(4)	8424(2)	55(2)
C(58)	7241(7)	3477(6)	7444(3)	44(2)
F(10)	6566(4)	3665(3)	6882(2)	52(1)
F(11)	7318(6)	4281(4)	7801(2)	89(2)
F(12)	8246(4)	3343(4)	7358(2)	68(2)

Table 7-47. 結合距離[Å]

atom–atom	distance / Å	
Pd(1)-O(1)	2.152(4)	
Pd(1)-P(1)	2.1619(15)	
Pd(1)-S(2)	2.3461(15)	
Pd(1)-S(3)	2.4140(15)	
Pd(1)-S(1)	2.6159(17)	
P(1)-C(1)	1.796(6)	
P(1)-C(10)	1.803(6)	

P(1)-C(19)	1.811(6)
C(1)-C(6)	1.383(9)
C(1)-C(2)	1.412(8)
C(2)-C(3)	1.376(9)
C(2)-H(1)	0.9500
C(3)-C(4)	1.380(10)
C(3)-H(2)	0.9500
C(4)-C(5)	1.379(9)
C(4)-H(3)	0.9500
C(5)-C(6)	1.392(9)
C(5)-H(4)	0.9500
C(6)-S(1)	1.788(6)
S(1)-C(7)	1.852(7)
C(7)-C(8)	1.524(9)
C(7)-C(9)	1.525(10)
C(7)-H(5)	1.0000
C(8)-H(6)	0.9800
C(8)-H(7)	0.9800
C(8)-H(8)	0.9800
C(9)-H(9)	0.9800
C(9)-H(10)	0.9800
C(9)-H(11)	0.9800
C(10)-C(11)	1.392(8)
C(10)-C(15)	1.403(8)
C(11)-C(12)	1.391(9)
C(11)-H(12)	0.9500
C(12)-C(13)	1.386(10)
C(12)-H(13)	0.9500
C(13)-C(14)	1.394(9)
C(13)-H(14)	0.9500
C(14)-C(15)	1.395(9)
C(14)-H(15)	0.9500
C(15)-S(2)	1.793(6)
S(2)-C(16)	1.842(6)
C(16)-C(18)	1.502(10)
C(16)-C(17)	1.523(9)

C(16)-H(16)	1.0000
C(17)-H(17)	0.9800
C(17)-H(18)	0.9800
C(17)-H(19)	0.9800
C(18)-H(20)	0.9800
C(18)-H(21)	0.9800
C(18)-H(22)	0.9800
C(19)-C(24)	1.383(8)
C(19)-C(20)	1.398(8)
C(20)-C(21)	1.387(9)
C(20)-H(23)	0.9500
C(21)-C(22)	1.383(10)
C(21)-H(24)	0.9500
C(22)-C(23)	1.380(10)
C(22)-H(25)	0.9500
C(23)-C(24)	1.403(9)
C(23)-H(26)	0.9500
C(24)-S(3)	1.782(6)
S(3)-C(25)	1.852(7)
C(25)-C(27)	1.517(11)
C(25)-C(26)	1.530(10)
C(25)-H(27)	1.0000
C(26)-H(28)	0.9800
C(26)-H(29)	0.9800
C(26)-H(30)	0.9800
C(27)-H(31)	0.9800
C(27)-H(32)	0.9800
C(27)-H(33)	0.9800
O(1)-S(4)	1.457(5)
S(4)-O(2)	1.416(5)
S(4)-O(3)	1.420(6)
S(4)-C(28)	1.814(8)
C(28)-F(2)	1.307(10)
C(28)-F(1)	1.312(9)
C(28)-F(3)	1.339(9)
S(5)-O(4)	1.378(6)

S(5)-O(6)	1.416(5)
S(5)-O(5)	1.480(6)
S(5)-C(29)	1.788(8)
C(29)-F(5)	1.305(9)
C(29)-F(4)	1.337(8)
C(29)-F(6)	1.370(9)
Pd(2)-O(7)	2.150(5)
Pd(2)-P(2)	2.1597(16)
Pd(2)-S(7)	2.3910(16)
Pd(2)-S(8)	2.3952(16)
Pd(2)-S(6)	2.5624(17)
P(2)-C(30)	1.803(6)
P(2)-C(39)	1.809(6)
P(2)-C(48)	1.819(6)
C(30)-C(35)	1.396(9)
C(30)-C(31)	1.406(8)
C(31)-C(32)	1.374(10)
C(31)-H(34)	0.9500
C(32)-C(33)	1.368(10)
C(32)-H(35)	0.9500
C(33)-C(34)	1.379(10)
C(33)-H(36)	0.9500
C(34)-C(35)	1.394(9)
C(34)-H(37)	0.9500
C(35)-S(6)	1.782(7)
S(6)-C(36)	1.841(7)
C(36)-C(38)	1.519(12)
C(36)-C(37)	1.524(9)
C(36)-H(38)	1.0000
C(37)-H(39)	0.9800
C(37)-H(40)	0.9800
C(37)-H(41)	0.9800
C(38)-H(42)	0.9800
C(38)-H(43)	0.9800
C(38)-H(44)	0.9800
C(39)-C(40)	1.380(8)

C(39)-C(44)	1.403(8)
C(40)-C(41)	1.398(9)
C(40)-H(45)	0.9500
C(41)-C(42)	1.385(9)
C(41)-H(46)	0.9500
C(42)-C(43)	1.402(9)
C(42)-H(47)	0.9500
C(43)-C(44)	1.392(9)
C(43)-H(48)	0.9500
C(44)-S(7)	1.774(6)
S(7)-C(45)	1.836(6)
C(45)-C(47)	1.496(9)
C(45)-C(46)	1.522(9)
C(45)-H(49)	1.0000
C(46)-H(50)	0.9800
C(46)-H(51)	0.9800
C(46)-H(52)	0.9800
C(47)-H(53)	0.9800
C(47)-H(54)	0.9800
C(47)-H(55)	0.9800
C(48)-C(53)	1.376(9)
C(48)-C(49)	1.402(9)
C(49)-C(50)	1.387(9)
C(49)-H(56)	0.9500
C(50)-C(51)	1.364(10)
C(50)-H(57)	0.9500
C(51)-C(52)	1.388(10)
C(51)-H(58)	0.9500
C(52)-C(53)	1.394(9)
C(52)-H(59)	0.9500
C(53)-S(8)	1.796(7)
S(8)-C(54)	1.844(7)
C(54)-C(56)	1.515(10)
C(54)-C(55)	1.527(11)
C(54)-H(60)	1.0000
C(55)-H(61)	0.9800

C(55)-H(62)	0.9800
C(55)-H(63)	0.9800
C(56)-H(64)	0.9800
C(56)-H(65)	0.9800
C(56)-H(66)	0.9800
O(7)-S(9)	1.426(5)
S(9)-O(9)	1.409(6)
S(9)-O(8)	1.413(6)
S(9)-C(57)	1.823(9)
C(57)-F(7)	1.272(10)
C(57)-F(8)	1.313(12)
C(57)-F(9)	1.342(12)
S(10)-O(10)	1.419(6)
S(10)-O(11)	1.428(6)
S(10)-O(12)	1.434(5)
S(10)-C(58)	1.810(8)
C(58)-F(11)	1.315(9)
C(58)-F(10)	1.322(8)
C(58)-F(12)	1.343(9)

Table 7-48. 結合角[°]

Table 7-40. 府口円[]		
atom-atom-atom	angle / °	
C(6)-C(1)-P(1)	119.6(5)	
C(2)-C(1)-P(1)	120.6(5)	
C(3)-C(2)-C(1)	119.6(6)	
C(3)-C(2)-H(1)	120.2	
C(1)-C(2)-H(1)	120.2	
C(2)-C(3)-C(4)	120.1(6)	
C(2)-C(3)-H(2)	120.0	
C(4)-C(3)-H(2)	120.0	
C(5)-C(4)-C(3)	120.8(7)	
C(5)-C(4)-H(3)	119.6	
C(3)-C(4)-H(3)	119.6	
C(4)-C(5)-C(6)	119.8(6)	
C(4)-C(5)-H(4)	120.1	
C(6)-C(5)-H(4)	120.1	

O(1)-Pd(1)-P(1)	172.78(15)
O(1)-Pd(1)-S(2)	87.35(14)
P(1)-Pd(1)-S(2)	86.68(6)
O(1)-Pd(1)-S(3)	93.66(14)
P(1)-Pd(1)-S(3)	87.54(6)
S(2)-Pd(1)-S(3)	133.68(6)
O(1)-Pd(1)-S(1)	102.46(15)
P(1)-Pd(1)-S(1)	83.88(6)
S(2)-Pd(1)-S(1)	116.80(6)
S(3)-Pd(1)-S(1)	108.16(6)
C(1)-P(1)-C(10)	107.8(3)
C(1)-P(1)-C(19)	106.5(3)
C(10)-P(1)-C(19)	111.1(3)
C(1)-P(1)-Pd(1)	112.0(2)
C(10)-P(1)-Pd(1)	109.45(19)
C(19)-P(1)-Pd(1)	109.9(2)
C(6)-C(1)-C(2)	119.7(6)
C(1)-C(6)-C(5)	119.9(6)
C(1)-C(6)-S(1)	121.5(5)
C(5)-C(6)-S(1)	118.6(5)
C(6)-S(1)-C(7)	101.0(3)
C(6)-S(1)-Pd(1)	100.2(2)
C(7)-S(1)-Pd(1)	119.7(2)
C(8)-C(7)-C(9)	112.7(7)
C(8)-C(7)-S(1)	106.4(5)
C(9)-C(7)-S(1)	112.6(5)
C(8)-C(7)-H(5)	108.3
C(9)-C(7)-H(5)	108.3
S(1)-C(7)-H(5)	108.3
C(7)-C(8)-H(6)	109.5
C(7)-C(8)-H(7)	109.5
H(6)-C(8)-H(7)	109.5
C(7)-C(8)-H(8)	109.5
H(6)-C(8)-H(8)	109.5
H(7)-C(8)-H(8)	109.5
C(7)-C(9)-H(9)	109.5

C(7)-C(9)-H(10)	109.5
H(9)-C(9)-H(10)	109.5
C(7)-C(9)-H(11)	109.5
H(9)-C(9)-H(11)	109.5
H(10)-C(9)-H(11)	109.5
C(11)-C(10)-C(15)	118.7(6)
C(11)-C(10)-P(1)	124.9(5)
C(15)-C(10)-P(1)	116.2(4)
C(12)-C(11)-C(10)	120.1(6)
C(12)-C(11)-H(12)	119.9
C(10)-C(11)-H(12)	119.9
C(13)-C(12)-C(11)	120.5(6)
C(13)-C(12)-H(13)	119.7
C(11)-C(12)-H(13)	119.7
C(12)-C(13)-C(14)	120.5(6)
C(12)-C(13)-H(14)	119.8
C(14)-C(13)-H(14)	119.8
C(13)-C(14)-C(15)	118.6(6)
C(13)-C(14)-H(15)	120.7
C(15)-C(14)-H(15)	120.7
C(14)-C(15)-C(10)	121.4(6)
C(14)-C(15)-S(2)	119.1(5)
C(10)-C(15)-S(2)	119.3(5)
C(15)-S(2)-C(16)	103.9(3)
C(15)-S(2)-Pd(1)	104.6(2)
C(16)-S(2)-Pd(1)	114.8(2)
C(18)-C(16)-C(17)	113.1(6)
C(18)-C(16)-S(2)	113.8(4)
C(17)-C(16)-S(2)	106.4(4)
C(18)-C(16)-H(16)	107.8
C(17)-C(16)-H(16)	107.8
S(2)-C(16)-H(16)	107.8
C(16)-C(17)-H(17)	109.5
C(16)-C(17)-H(18)	109.5
H(17)-C(17)-H(18)	109.5
C(16)-C(17)-H(19)	109.5

H(17)-C(17)-H(19)	109.5
H(18)-C(17)-H(19)	109.5
C(16)-C(18)-H(20)	109.5
C(16)-C(18)-H(21)	109.5
H(20)-C(18)-H(21)	109.5
C(16)-C(18)-H(22)	109.5
H(20)-C(18)-H(22)	109.5
H(21)-C(18)-H(22)	109.5
C(24)-C(19)-C(20)	119.7(5)
C(24)-C(19)-P(1)	117.9(4)
C(20)-C(19)-P(1)	122.4(5)
C(21)-C(20)-C(19)	120.5(6)
C(21)-C(20)-H(23)	119.8
C(19)-C(20)-H(23)	119.8
C(22)-C(21)-C(20)	119.2(6)
C(22)-C(21)-H(24)	120.4
C(20)-C(21)-H(24)	120.4
C(23)-C(22)-C(21)	121.2(6)
C(23)-C(22)-H(25)	119.4
C(21)-C(22)-H(25)	119.4
C(22)-C(23)-C(24)	119.5(7)
C(22)-C(23)-H(26)	120.3
C(24)-C(23)-H(26)	120.3
C(19)-C(24)-C(23)	119.9(6)
C(19)-C(24)-S(3)	121.8(4)
C(23)-C(24)-S(3)	118.3(5)
C(24)-S(3)-C(25)	100.7(3)
C(24)-S(3)-Pd(1)	102.6(2)
C(25)-S(3)-Pd(1)	109.2(2)
C(27)-C(25)-C(26)	113.1(6)
C(27)-C(25)-S(3)	112.8(5)
C(26)-C(25)-S(3)	107.5(5)
C(27)-C(25)-H(27)	107.7
C(26)-C(25)-H(27)	107.7
S(3)-C(25)-H(27)	107.7
C(25)-C(26)-H(28)	109.5

C(25)-C(26)-H(29)	109.5
H(28)-C(26)-H(29)	109.5
C(25)-C(26)-H(30)	109.5
H(28)-C(26)-H(30)	109.5
H(29)-C(26)-H(30)	109.5
C(25)-C(27)-H(31)	109.5
C(25)-C(27)-H(32)	109.5
H(31)-C(27)-H(32)	109.5
C(25)-C(27)-H(33)	109.5
H(31)-C(27)-H(33)	109.5
H(32)-C(27)-H(33)	109.5
S(4)-O(1)-Pd(1)	129.1(3)
O(2)-S(4)-O(3)	117.9(4)
O(2)-S(4)-O(1)	113.1(3)
O(3)-S(4)-O(1)	113.6(4)
O(2)-S(4)-C(28)	104.9(3)
O(3)-S(4)-C(28)	104.7(4)
O(1)-S(4)-C(28)	100.1(3)
F(2)-C(28)-F(1)	108.1(7)
F(2)-C(28)-F(3)	106.0(7)
F(1)-C(28)-F(3)	108.6(7)
F(2)-C(28)-S(4)	112.0(5)
F(1)-C(28)-S(4)	112.2(6)
F(3)-C(28)-S(4)	109.6(5)
O(4)-S(5)-O(6)	119.2(4)
O(4)-S(5)-O(5)	114.2(5)
O(6)-S(5)-O(5)	110.7(4)
O(4)-S(5)-C(29)	105.4(4)
O(6)-S(5)-C(29)	104.0(4)
O(5)-S(5)-C(29)	100.9(4)
F(5)-C(29)-F(4)	109.6(7)
F(5)-C(29)-F(6)	104.0(7)
F(4)-C(29)-F(6)	104.6(6)
F(5)-C(29)-S(5)	114.2(6)
F(4)-C(29)-S(5)	113.8(6)
F(6)-C(29)-S(5)	109.8(6)

O(7)-Pd(2)-P(2)	171.82(17)
O(7)-Pd(2)-S(7)	88.33(18)
P(2)-Pd(2)-S(7)	86.40(6)
O(7)-Pd(2)-S(8)	91.63(18)
P(2)-Pd(2)-S(8)	86.93(6)
S(7)-Pd(2)-S(8)	129.66(6)
O(7)-Pd(2)-S(6)	102.76(17)
P(2)-Pd(2)-S(6)	85.04(6)
S(7)-Pd(2)-S(6)	112.02(6)
S(8)-Pd(2)-S(6)	116.98(6)
C(30)-P(2)-C(39)	108.6(3)
C(30)-P(2)-C(48)	107.6(3)
C(39)-P(2)-C(48)	109.6(3)
C(30)-P(2)-Pd(2)	111.7(2)
C(39)-P(2)-Pd(2)	109.2(2)
C(48)-P(2)-Pd(2)	110.1(2)
C(35)-C(30)-C(31)	119.7(6)
C(35)-C(30)-P(2)	119.2(5)
C(31)-C(30)-P(2)	121.1(5)
C(32)-C(31)-C(30)	119.7(6)
C(32)-C(31)-H(34)	120.1
C(30)-C(31)-H(34)	120.1
C(33)-C(32)-C(31)	120.2(6)
C(33)-C(32)-H(35)	119.9
C(31)-C(32)-H(35)	119.9
C(32)-C(33)-C(34)	121.4(7)
C(32)-C(33)-H(36)	119.3
C(34)-C(33)-H(36)	119.3
C(33)-C(34)-C(35)	119.6(7)
C(33)-C(34)-H(37)	120.2
C(35)-C(34)-H(37)	120.2
C(34)-C(35)-C(30)	119.3(6)
C(34)-C(35)-S(6)	119.5(5)
C(30)-C(35)-S(6)	121.0(5)
C(35)-S(6)-C(36)	102.0(3)
C(35)-S(6)-Pd(2)	101.4(2)

C(36)-S(6)-Pd(2)	115.8(3)
C(38)-C(36)-C(37)	112.6(7)
C(38)-C(36)-S(6)	111.9(5)
C(37)-C(36)-S(6)	106.7(5)
C(38)-C(36)-H(38)	108.5
C(37)-C(36)-H(38)	108.5
S(6)-C(36)-H(38)	108.5
C(36)-C(37)-H(39)	109.5
C(36)-C(37)-H(40)	109.5
H(39)-C(37)-H(40)	109.5
C(36)-C(37)-H(41)	109.5
H(39)-C(37)-H(41)	109.5
H(40)-C(37)-H(41)	109.5
C(36)-C(38)-H(42)	109.5
C(36)-C(38)-H(43)	109.5
H(42)-C(38)-H(43)	109.5
C(36)-C(38)-H(44)	109.5
H(42)-C(38)-H(44)	109.5
H(43)-C(38)-H(44)	109.5
C(40)-C(39)-C(44)	120.3(6)
C(40)-C(39)-P(2)	123.1(5)
C(44)-C(39)-P(2)	116.5(4)
C(39)-C(40)-C(41)	119.5(6)
C(39)-C(40)-H(45)	120.2
C(41)-C(40)-H(45)	120.2
C(42)-C(41)-C(40)	120.7(6)
C(42)-C(41)-H(46)	119.6
C(40)-C(41)-H(46)	119.6
C(41)-C(42)-C(43)	119.9(6)
C(41)-C(42)-H(47)	120.1
C(43)-C(42)-H(47)	120.1
C(44)-C(43)-C(42)	119.4(6)
C(44)-C(43)-H(48)	120.3
C(42)-C(43)-H(48)	120.3
C(43)-C(44)-C(39)	120.1(6)
C(43)-C(44)-S(7)	119.3(5)

C(39)-C(44)-S(7)	120.5(5)
C(44)-S(7)-C(45)	103.8(3)
C(44)-S(7)-Pd(2)	103.3(2)
C(45)-S(7)-Pd(2)	116.2(2)
C(47)-C(45)-C(46)	113.6(6)
C(47)-C(45)-S(7)	114.0(4)
C(46)-C(45)-S(7)	105.8(4)
C(47)-C(45)-H(49)	107.7
C(46)-C(45)-H(49)	107.7
S(7)-C(45)-H(49)	107.7
C(45)-C(46)-H(50)	109.5
C(45)-C(46)-H(51)	109.5
H(50)-C(46)-H(51)	109.5
C(45)-C(46)-H(52)	109.5
H(50)-C(46)-H(52)	109.5
H(51)-C(46)-H(52)	109.5
C(45)-C(47)-H(53)	109.5
C(45)-C(47)-H(54)	109.5
H(53)-C(47)-H(54)	109.5
C(45)-C(47)-H(55)	109.5
H(53)-C(47)-H(55)	109.5
H(54)-C(47)-H(55)	109.5
C(53)-C(48)-C(49)	119.4(6)
C(53)-C(48)-P(2)	117.8(5)
C(49)-C(48)-P(2)	122.8(5)
C(50)-C(49)-C(48)	119.2(7)
C(50)-C(49)-H(56)	120.4
C(48)-C(49)-H(56)	120.4
C(51)-C(50)-C(49)	121.0(7)
C(51)-C(50)-H(57)	119.5
C(49)-C(50)-H(57)	119.5
C(50)-C(51)-C(52)	120.4(6)
C(50)-C(51)-H(58)	119.8
C(52)-C(51)-H(58)	119.8
C(51)-C(52)-C(53)	119.0(7)
C(51)-C(52)-H(59)	120.5

C(53)-C(52)-H(59)	120.5
C(48)-C(53)-C(52)	120.9(6)
C(48)-C(53)-S(8)	120.4(5)
C(52)-C(53)-S(8)	118.7(5)
C(53)-S(8)-C(54)	100.3(3)
C(53)-S(8)-Pd(2)	103.8(2)
C(54)-S(8)-Pd(2)	110.1(2)
C(56)-C(54)-C(55)	113.1(7)
C(56)-C(54)-S(8)	113.3(5)
C(55)-C(54)-S(8)	107.0(6)
C(56)-C(54)-H(60)	107.7
C(55)-C(54)-H(60)	107.7
S(8)-C(54)-H(60)	107.7
C(54)-C(55)-H(61)	109.5
C(54)-C(55)-H(62)	109.5
H(61)-C(55)-H(62)	109.5
C(54)-C(55)-H(63)	109.5
H(61)-C(55)-H(63)	109.5
H(62)-C(55)-H(63)	109.5
C(54)-C(56)-H(64)	109.5
C(54)-C(56)-H(65)	109.5
H(64)-C(56)-H(65)	109.5
C(54)-C(56)-H(66)	109.5
H(64)-C(56)-H(66)	109.5
H(65)-C(56)-H(66)	109.5
S(9)-O(7)-Pd(2)	137.7(4)
O(9)-S(9)-O(8)	118.0(5)
O(9)-S(9)-O(7)	114.2(4)
O(8)-S(9)-O(7)	112.5(4)
O(9)-S(9)-C(57)	104.7(4)
O(8)-S(9)-C(57)	104.1(5)
O(7)-S(9)-C(57)	101.0(4)
F(7)-C(57)-F(8)	110.1(10)
F(7)-C(57)-F(9)	109.3(9)
F(8)-C(57)-F(9)	104.8(8)
F(7)-C(57)-S(9)	113.4(7)

F(8)-C(57)-S(9)	110.5(7)
F(9)-C(57)-S(9)	108.3(7)
O(10)-S(10)-O(11)	114.5(5)
O(10)-S(10)-O(12)	115.6(4)
O(11)-S(10)-O(12)	114.7(4)
O(10)-S(10)-C(58)	103.9(3)
O(11)-S(10)-C(58)	101.7(4)
O(12)-S(10)-C(58)	104.1(3)
F(11)-C(58)-F(10)	107.9(6)
F(11)-C(58)-F(12)	106.6(7)
F(10)-C(58)-F(12)	105.9(6)
F(11)-C(58)-S(10)	111.9(5)
F(10)-C(58)-S(10)	113.2(6)
F(12)-C(58)-S(10)	110.9(5)

Table 7-49. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12
Pd(1)	18(1)	30(1)	32(1)	13(1)	0(1)	-3(1)
P(1)	18(1)	19(1)	24(1)	5(1)	3(1)	-2(1)
C(1)	24(3)	21(3)	23(3)	6(3)	4(2)	-5(2)
C(2)	25(3)	24(3)	28(3)	2(3)	6(3)	-6(3)
C(3)	35(4)	35(4)	29(3)	5(3)	8(3)	-10(3)
C(4)	42(4)	29(4)	38(4)	-10(3)	7(3)	-9(3)
C(5)	32(4)	26(4)	45(4)	-7(3)	11(3)	2(3)
C(6)	26(3)	20(3)	31(3)	5(3)	9(3)	-1(3)
S(1)	24(1)	26(1)	31(1)	-1(1)	5(1)	4(1)
C(7)	24(3)	51(5)	32(4)	-11(3)	5(3)	-3(3)
C(8)	32(4)	90(7)	40(4)	-9(4)	13(3)	-7(4)
C(9)	39(4)	69(6)	46(4)	8(4)	19(4)	2(4)
C(10)	19(3)	23(3)	24(3)	2(3)	0(2)	0(2)
C(11)	23(3)	21(3)	33(3)	-2(3)	-2(3)	1(3)
C(12)	26(3)	33(4)	42(4)	-4(3)	8(3)	0(3)
C(13)	27(4)	52(5)	37(4)	2(3)	10(3)	0(3)
C(14)	30(4)	48(4)	28(3)	2(3)	11(3)	4(3)
C(15)	22(3)	28(3)	27(3)	0(3)	3(2)	-2(3)
S(2)	22(1)	28(1)	21(1)	6(1)	3(1)	0(1)

C(16)	30(3)	24(3)	36(4)	12(3)	12(3)	-2(3)
C(17)	40(4)	38(4)	48(4)	16(4)	3(3)	5(3)
C(18)	38(4)	31(4)	49(4)	7(3)	3(3)	-2(3)
C(19)	28(3)	17(3)	27(3)	9(3)	8(3)	0(2)
C(20)	36(4)	27(4)	35(4)	10(3)	-3(3)	-7(3)
C(21)	49(4)	35(4)	33(4)	18(3)	-7(3)	-1(3)
C(22)	51(5)	33(4)	46(4)	25(4)	-5(4)	-6(3)
C(23)	53(5)	32(4)	46(4)	13(4)	0(4)	-20(4)
C(24)	31(3)	22(3)	25(3)	9(3)	3(3)	-3(3)
S(3)	29(1)	21(1)	28(1)	3(1)	4(1)	-5(1)
C(25)	53(5)	23(4)	33(4)	1(3)	0(3)	2(3)
C(26)	52(5)	48(5)	43(4)	-15(4)	-7(4)	-5(4)
C(27)	51(5)	55(5)	42(4)	-10(4)	9(4)	7(4)
O(1)	19(2)	54(3)	39(3)	8(2)	-4(2)	0(2)
S(4)	20(1)	36(1)	29(1)	1(1)	-2(1)	-2(1)
O(2)	56(3)	64(4)	36(3)	-3(3)	13(2)	-33(3)
O(3)	75(4)	41(3)	59(4)	-6(3)	-3(3)	22(3)
C(28)	39(4)	63(6)	33(4)	2(4)	7(3)	6(4)
F(1)	69(4)	122(5)	39(3)	29(3)	-1(2)	-12(3)
F(2)	75(4)	82(4)	49(3)	-30(3)	4(3)	-2(3)
F(3)	29(3)	136(5)	52(3)	-10(3)	-9(2)	15(3)
S(5)	49(1)	32(1)	26(1)	7(1)	-4(1)	-4(1)
O(4)	103(5)	53(4)	62(4)	22(3)	-37(4)	-35(4)
O(5)	51(4)	77(5)	75(4)	4(4)	16(3)	19(3)
O(6)	82(4)	61(4)	24(3)	14(3)	-10(3)	-9(3)
C(29)	49(5)	46(5)	39(4)	5(4)	3(4)	-3(4)
F(4)	106(4)	45(3)	42(3)	19(2)	30(3)	24(3)
F(5)	120(5)	37(3)	69(3)	-9(3)	29(3)	-20(3)
F(6)	79(4)	96(5)	83(4)	20(3)	36(3)	39(3)
Pd(2)	18(1)	28(1)	36(1)	4(1)	-1(1)	-3(1)
P(2)	19(1)	20(1)	28(1)	4(1)	2(1)	0(1)
C(30)	27(3)	23(3)	23(3)	6(3)	9(2)	3(3)
C(31)	25(3)	30(4)	32(3)	7(3)	2(3)	-2(3)
C(32)	32(4)	35(4)	30(3)	4(3)	2(3)	-10(3)
C(33)	50(5)	35(4)	30(4)	-9(3)	11(3)	-11(3)
C(34)	44(4)	25(4)	35(4)	-9(3)	10(3)	3(3)

C(35)	32(4)	32(4)	26(3)	9(3)	5(3)	1(3)
S(6)	23(1)	30(1)	29(1)	1(1)	4(1)	7(1)
C(36)	26(4)	67(5)	32(4)	-17(4)	11(3)	-8(3)
C(37)	22(4)	90(7)	50(5)	-19(5)	12(3)	-6(4)
C(38)	52(5)	106(8)	39(4)	17(5)	19(4)	-13(5)
C(39)	20(3)	14(3)	35(3)	1(3)	3(3)	2(2)
C(40)	24(3)	21(3)	37(4)	0(3)	2(3)	0(3)
C(41)	19(3)	23(3)	49(4)	-2(3)	4(3)	-3(3)
C(42)	24(3)	40(4)	43(4)	-3(3)	16(3)	-3(3)
C(43)	29(3)	44(4)	25(3)	-2(3)	12(3)	-1(3)
C(44)	25(3)	20(3)	32(3)	-4(3)	4(3)	2(3)
S(7)	22(1)	24(1)	23(1)	2(1)	3(1)	1(1)
C(45)	31(3)	28(3)	29(3)	9(3)	8(3)	-3(3)
C(46)	34(4)	31(4)	44(4)	13(3)	-4(3)	0(3)
C(47)	40(4)	27(4)	34(4)	0(3)	2(3)	-9(3)
C(48)	23(3)	25(3)	31(3)	7(3)	8(3)	4(3)
C(49)	34(4)	31(4)	38(4)	11(3)	3(3)	1(3)
C(50)	40(4)	46(4)	36(4)	17(3)	6(3)	6(3)
C(51)	47(4)	38(4)	49(4)	22(4)	11(4)	4(4)
C(52)	51(5)	31(4)	46(4)	13(3)	12(4)	-11(3)
C(53)	36(4)	25(3)	33(3)	7(3)	14(3)	1(3)
S(8)	30(1)	23(1)	34(1)	1(1)	9(1)	-8(1)
C(54)	57(5)	27(4)	43(4)	2(3)	19(4)	2(3)
C(55)	77(7)	62(6)	56(5)	-26(5)	12(5)	-17(5)
C(56)	65(5)	39(4)	52(5)	3(4)	29(4)	6(4)
O(7)	24(3)	72(4)	72(4)	-15(3)	-13(3)	0(3)
S(9)	21(1)	43(1)	30(1)	7(1)	-2(1)	-1(1)
O(8)	87(5)	51(4)	67(4)	7(3)	-2(4)	31(4)
O(9)	80(5)	92(5)	47(3)	-8(3)	24(3)	-54(4)
C(57)	65(6)	92(8)	38(5)	7(5)	3(4)	-24(6)
F(7)	171(8)	167(7)	42(3)	17(4)	23(4)	-84(6)
F(8)	100(5)	104(5)	63(4)	-37(4)	15(3)	-22(4)
F(9)	67(4)	185(8)	65(4)	16(4)	-38(3)	1(4)
S(10)	34(1)	46(1)	23(1)	4(1)	5(1)	-8(1)
O(10)	154(7)	38(3)	43(3)	-8(3)	37(4)	-28(4)
O(11)	33(3)	200(9)	77(5)	56(5)	25(3)	17(4)

F(12)	50(3)	89(4)	65(3)	12(3)	16(2)	-24(3)
F(11)	184(7)	34(3)	44(3)	-10(2)	28(4)	-9(4)
F(10)	75(3)	47(3)	30(2)	9(2)	10(2)	12(2)
C(58)	55(5)	39(4)	33(4)	-6(3)	6(3)	1(4)
O(12)	66(4)	56(4)	28(3)	8(3)	-10(2)	-5(3)

Table 7-50. 水素原子座標と等方性温度因子

atom	X	у	Z	U(eq)
H(1)	-471	1580	-1277	31
H(2)	-707	360	-2065	40
H(3)	811	-525	-2173	45
H(4)	2578	-193	-1507	42
H(5)	4238	931	-1357	44
H(6)	5744	1163	-443	81
H(7)	5448	2308	-404	81
H(8)	5873	1899	-978	81
H(9)	2932	2193	-1708	74
H(10)	4117	2540	-1769	74
H(11)	3686	2955	-1198	74
H(12)	-931	3012	-671	33
H(13)	-2240	2719	-123	41
H(14)	-1712	2004	867	46
H(15)	169	1690	1361	42
H(16)	1836	456	1460	35
H(17)	3738	843	1860	65
H(18)	3931	553	1193	65
H(19)	3577	-282	1605	65
H(20)	1022	111	389	62
H(21)	1883	-736	691	62
H(22)	2219	93	268	62
H(23)	-141	3277	-1528	42
H(24)	-226	4707	-2121	51
H(25)	1190	5895	-1814	56
H(26)	2731	5639	-958	56
H(27)	3233	5719	289	47
H(28)	4971	5156	896	78

H(29)	4376	4417	1259	78
H(30)	4289	5589	1350	78
H(31)	1569	4944	316	76
H(32)	2162	5463	985	76
H(33)	2229	4288	895	76
H(34)	4528	1305	3644	36
H(35)	4380	-38	2948	41
H(36)	5947	-870	2891	46
H(37)	7686	-431	3551	42
H(38)	9333	757	3679	50
H(39)	10779	1063	4614	81
H(40)	10469	2211	4603	81
H(41)	10954	1747	4065	81
H(42)	8041	1992	3252	96
H(43)	9246	2329	3218	96
H(44)	8751	2792	3752	96
H(45)	4007	2777	4187	34
H(46)	2744	2609	4784	37
H(47)	3358	2188	5844	41
H(48)	5257	1893	6316	38
H(49)	6913	615	6427	35
H(50)	8807	1052	6782	59
H(51)	8977	680	6124	59
H(52)	8665	-99	6586	59
H(53)	6062	162	5379	53
H(54)	6949	-652	5705	53
H(55)	7243	129	5238	53
H(56)	4728	2941	3269	43
H(57)	4435	4361	2659	50
H(58)	5636	5701	2931	54
H(59)	7245	5610	3781	52
H(60)	7709	5753	5000	49
H(61)	9561	5451	5575	100
H(62)	9148	4686	6007	100
H(63)	8876	5839	6040	100
H(64)	6235	4784	5133	74

H(65)	6793	5424	5762	74
H(66)	7057	4269	5730	74

Table 7-51. ねじれ角[°]

atom-atom-atom	angle / °
O(1)-Pd(1)-P(1)-C(1)	-137.1(11)
S(2)-Pd(1)-P(1)-C(1)	-102.8(2)
S(3)-Pd(1)-P(1)-C(1)	123.2(2)
S(1)-Pd(1)-P(1)-C(1)	14.6(2)
O(1)-Pd(1)-P(1)-C(10)	-17.6(12)
S(2)-Pd(1)-P(1)-C(10)	16.7(2)
S(3)-Pd(1)-P(1)-C(10)	-117.3(2)
S(1)-Pd(1)-P(1)-C(10)	134.1(2)
O(1)-Pd(1)-P(1)-C(19)	104.7(12)
S(2)-Pd(1)-P(1)-C(19)	139.0(2)
S(3)-Pd(1)-P(1)-C(19)	4.9(2)
S(1)-Pd(1)-P(1)-C(19)	-103.6(2)
C(10)-P(1)-C(1)-C(6)	-138.3(5)
C(19)-P(1)-C(1)-C(6)	102.4(5)
Pd(1)-P(1)-C(1)-C(6)	-17.8(5)
C(10)-P(1)-C(1)-C(2)	45.8(5)
C(19)-P(1)-C(1)-C(2)	-73.5(5)
Pd(1)-P(1)-C(1)-C(2)	166.3(4)
C(6)-C(1)-C(2)-C(3)	-3.4(9)
P(1)-C(1)-C(2)-C(3)	172.5(5)
C(1)-C(2)-C(3)-C(4)	2.3(9)
C(2)-C(3)-C(4)-C(5)	-0.2(10)
C(3)-C(4)-C(5)-C(6)	-1.0(10)
C(2)-C(1)-C(6)-C(5)	2.3(9)
P(1)-C(1)-C(6)-C(5)	-173.6(5)
C(2)-C(1)-C(6)-S(1)	-176.6(4)
P(1)-C(1)-C(6)-S(1)	7.5(7)
C(4)-C(5)-C(6)-C(1)	-0.1(10)
C(4)-C(5)-C(6)-S(1)	178.8(5)
C(1)-C(6)-S(1)-C(7)	-119.0(5)
C(5)-C(6)-S(1)-C(7)	62.1(6)

C(1)-C(6)-S(1)-Pd(1)
C(5)-C(6)-S(1)-Pd(1)
O(1)-Pd(1)-S(1)-C(6)
P(1)-Pd(1)-S(1)-C(6)
S(2)-Pd(1)-S(1)-C(6)
S(3)-Pd(1)-S(1)-C(6)
O(1)-Pd(1)-S(1)-C(7)
P(1)-Pd(1)-S(1)-C(7)
S(2)-Pd(1)-S(1)-C(7)
S(3)-Pd(1)-S(1)-C(7)
C(6)-S(1)-C(7)-C(8)
Pd(1)-S(1)-C(7)-C(8)
C(6)-S(1)-C(7)-C(9)
Pd(1)-S(1)-C(7)-C(9)
C(1)-P(1)-C(10)-C(11)
C(19)-P(1)-C(10)-C(11)
Pd(1)-P(1)-C(10)-C(11)
C(1)-P(1)-C(10)-C(15)
C(19)-P(1)-C(10)-C(15)
Pd(1)-P(1)-C(10)-C(15)
C(15)-C(10)-C(11)-C(12)
P(1)-C(10)-C(11)-C(12)
C(10)-C(11)-C(12)-C(13)
C(11)-C(12)-C(13)-C(14)
C(12)-C(13)-C(14)-C(15)
C(13)-C(14)-C(15)-C(10)
C(13)-C(14)-C(15)-S(2)
C(11)-C(10)-C(15)-C(14)
P(1)-C(10)-C(15)-C(14)
C(11)-C(10)-C(15)-S(2)
P(1)-C(10)-C(15)-S(2)
C(14)-C(15)-S(2)-C(16)
C(10)-C(15)-S(2)-C(16)
C(14)-C(15)-S(2)-Pd(1)
C(10)-C(15)-S(2)-Pd(1)
O(1)-Pd(1)-S(2)-C(15)

4.2(5)
-174.7(5)
165.6(2)
-10.9(2)
72.3(2)
-96.2(2)
-85.3(3)
98.2(2)
-178.7(2)
12.8(3)
179.2(5)
70.6(6)
55.3(6)
-53.3(6)
-74.1(6)
42.3(6)
163.9(5)
100.6(5)
-143.0(5)
-21.5(5)
-3.0(9)
-3.0(9) 171.5(5)
-3.0(9) 171.5(5) 0.3(10)
-3.0(9) 171.5(5) 0.3(10) 2.8(11)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5) -172.2(5)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5) -172.2(5) 12.9(7)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5) -172.2(5) 12.9(7) 65.3(6)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5) -172.2(5) 12.9(7) 65.3(6) -119.8(5)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5) -172.2(5) 12.9(7) 65.3(6) -119.8(5) -174.0(5)
-3.0(9) 171.5(5) 0.3(10) 2.8(11) -3.1(11) 0.3(10) 175.2(6) 2.7(9) -172.3(5) -172.2(5) 12.9(7) 65.3(6) -119.8(5) -174.0(5) 1.0(6)

P(1)-Pd(1)-S(2)-C(15)S(3)-Pd(1)-S(2)-C(15)S(1)-Pd(1)-S(2)-C(15)O(1)-Pd(1)-S(2)-C(16)P(1)-Pd(1)-S(2)-C(16)S(3)-Pd(1)-S(2)-C(16)S(1)-Pd(1)-S(2)-C(16)C(15)-S(2)-C(16)-C(18) Pd(1)-S(2)-C(16)-C(18) C(15)-S(2)-C(16)-C(17) Pd(1)-S(2)-C(16)-C(17) C(1)-P(1)-C(19)-C(24) C(10)-P(1)-C(19)-C(24) Pd(1)-P(1)-C(19)-C(24) C(1)-P(1)-C(19)-C(20) C(10)-P(1)-C(19)-C(20) Pd(1)-P(1)-C(19)-C(20) C(24)-C(19)-C(20)-C(21)P(1)-C(19)-C(20)-C(21) C(19)-C(20)-C(21)-C(22)C(20)-C(21)-C(22)-C(23) C(21)-C(22)-C(23)-C(24) C(20)-C(19)-C(24)-C(23) P(1)-C(19)-C(24)-C(23) C(20)-C(19)-C(24)-S(3) P(1)-C(19)-C(24)-S(3)C(22)-C(23)-C(24)-C(19) C(22)-C(23)-C(24)-S(3)C(19)-C(24)-S(3)-C(25) C(23)-C(24)-S(3)-C(25) C(19)-C(24)-S(3)-Pd(1)C(23)-C(24)-S(3)-Pd(1)O(1)-Pd(1)-S(3)-C(24) P(1)-Pd(1)-S(3)-C(24)S(2)-Pd(1)-S(3)-C(24)S(1)-Pd(1)-S(3)-C(24)

-10.8(2)72.6(2) -92.3(2)-81.7(3)102.3(2) -174.3(2)20.9(2) 54.4(6) -59.2(5) 179.6(5) 66.0(5) -127.6(5) 115.2(5) -6.1(6) 50.3(6) -66.9(6)171.8(5) -1.8(11)-179.7(6) -0.1(12)1.8(13) -1.5(14)2.2(10) -179.9(6) -174.8(5) 3.2(8) -0.5(12)176.5(7) -111.7(6) 71.3(7) 0.9(6) -176.1(6) -176.4(3)-3.5(2)-86.5(2)79.2(2)

O(1)-Pd(1)-S(3)-C(25)P(1)-Pd(1)-S(3)-C(25)S(2)-Pd(1)-S(3)-C(25)S(1)-Pd(1)-S(3)-C(25)C(24)-S(3)-C(25)-C(27) Pd(1)-S(3)-C(25)-C(27) C(24)-S(3)-C(25)-C(26) Pd(1)-S(3)-C(25)-C(26) P(1)-Pd(1)-O(1)-S(4)S(2)-Pd(1)-O(1)-S(4)S(3)-Pd(1)-O(1)-S(4)S(1)-Pd(1)-O(1)-S(4)Pd(1)-O(1)-S(4)-O(2)Pd(1)-O(1)-S(4)-O(3)Pd(1)-O(1)-S(4)-C(28) O(2)-S(4)-C(28)-F(2) O(3)-S(4)-C(28)-F(2) O(1)-S(4)-C(28)-F(2) O(2)-S(4)-C(28)-F(1) O(3)-S(4)-C(28)-F(1) O(1)-S(4)-C(28)-F(1) O(2)-S(4)-C(28)-F(3) O(3)-S(4)-C(28)-F(3) O(1)-S(4)-C(28)-F(3) O(4)-S(5)-C(29)-F(5) O(6)-S(5)-C(29)-F(5) O(5)-S(5)-C(29)-F(5) O(4)-S(5)-C(29)-F(4) O(6)-S(5)-C(29)-F(4) O(5)-S(5)-C(29)-F(4) O(4)-S(5)-C(29)-F(6) O(6)-S(5)-C(29)-F(6) O(5)-S(5)-C(29)-F(6) O(7)-Pd(2)-P(2)-C(30)S(7)-Pd(2)-P(2)-C(30)S(8)-Pd(2)-P(2)-C(30)

-70.2(3)102.7(3) 19.6(3) -174.6(2)59.6(6) -47.8(5)-175.0(5) 77.6(5) 178.3(8) 144.0(4)-82.3(4)27.2(4) 69.1(5) -68.7(5)-179.8(4) 55.1(7) 179.8(6) -62.3(6)176.9(6) -58.4(7)59.5(7) -62.3(7)62.4(7) -179.7(6) 175.6(7) 49.4(7) -65.4(7)-57.6(7)176.2(6) 61.4(7)59.2(7) -66.9(6) 178.3(6) -152.0(13) -102.0(2)127.9(2)
S(6)-Pd(2)-P(2)-C(30)O(7)-Pd(2)-P(2)-C(39) S(7)-Pd(2)-P(2)-C(39)S(8)-Pd(2)-P(2)-C(39)S(6)-Pd(2)-P(2)-C(39)O(7)-Pd(2)-P(2)-C(48) S(7)-Pd(2)-P(2)-C(48) S(8)-Pd(2)-P(2)-C(48) S(6)-Pd(2)-P(2)-C(48)C(39)-P(2)-C(30)-C(35) C(48)-P(2)-C(30)-C(35) Pd(2)-P(2)-C(30)-C(35) C(39)-P(2)-C(30)-C(31) C(48)-P(2)-C(30)-C(31)Pd(2)-P(2)-C(30)-C(31) C(35)-C(30)-C(31)-C(32) P(2)-C(30)-C(31)-C(32) C(30)-C(31)-C(32)-C(33) C(31)-C(32)-C(33)-C(34) C(32)-C(33)-C(34)-C(35) C(33)-C(34)-C(35)-C(30) C(33)-C(34)-C(35)-S(6) C(31)-C(30)-C(35)-C(34) P(2)-C(30)-C(35)-C(34) C(31)-C(30)-C(35)-S(6) P(2)-C(30)-C(35)-S(6) C(34)-C(35)-S(6)-C(36) C(30)-C(35)-S(6)-C(36) C(34)-C(35)-S(6)-Pd(2)C(30)-C(35)-S(6)-Pd(2)O(7)-Pd(2)-S(6)-C(35) P(2)-Pd(2)-S(6)-C(35)S(7)-Pd(2)-S(6)-C(35)S(8)-Pd(2)-S(6)-C(35)O(7)-Pd(2)-S(6)-C(36) P(2)-Pd(2)-S(6)-C(36)

10.5(2) -31.9(13) 18.1(2) -112.0(2)130.6(2) 88.4(13) 138.4(2) 8.4(2) -109.1(2)-135.4(5) 106.0(5) -15.0(5)47.6(5) -70.9(5)168.1(4) -4.0(9)172.9(5) 1.9(9) 1.5(10) -2.9(10)0.8(10) 176.8(5) 2.6(9)-174.4(5) -173.3(5) 9.7(7) 63.6(6) -120.5(6) -176.6(5) -0.7(5)171.3(3) -6.2(2)77.9(2) -90.2(2)-79.2(3)103.3(3)

S(7)-Pd(2)-S(6)-C(36)S(8)-Pd(2)-S(6)-C(36) C(35)-S(6)-C(36)-C(38) Pd(2)-S(6)-C(36)-C(38) C(35)-S(6)-C(36)-C(37) Pd(2)-S(6)-C(36)-C(37) C(30)-P(2)-C(39)-C(40) C(48)-P(2)-C(39)-C(40) Pd(2)-P(2)-C(39)-C(40) C(30)-P(2)-C(39)-C(44) C(48)-P(2)-C(39)-C(44) Pd(2)-P(2)-C(39)-C(44) C(44)-C(39)-C(40)-C(41) P(2)-C(39)-C(40)-C(41) C(39)-C(40)-C(41)-C(42) C(40)-C(41)-C(42)-C(43)C(41)-C(42)-C(43)-C(44) C(42)-C(43)-C(44)-C(39)C(42)-C(43)-C(44)-S(7)C(40)-C(39)-C(44)-C(43)P(2)-C(39)-C(44)-C(43) C(40)-C(39)-C(44)-S(7) P(2)-C(39)-C(44)-S(7)C(43)-C(44)-S(7)-C(45) C(39)-C(44)-S(7)-C(45) C(43)-C(44)-S(7)-Pd(2)C(39)-C(44)-S(7)-Pd(2) O(7)-Pd(2)-S(7)-C(44)P(2)-Pd(2)-S(7)-C(44)S(8)-Pd(2)-S(7)-C(44)S(6)-Pd(2)-S(7)-C(44) O(7)-Pd(2)-S(7)-C(45) P(2)-Pd(2)-S(7)-C(45)S(8)-Pd(2)-S(7)-C(45)S(6)-Pd(2)-S(7)-C(45)C(44)-S(7)-C(45)-C(47)

-172.6(3)19.3(3) 57.8(6) -51.4(6)-178.7(6) 72.2(6) -74.5(6)42.8(6) 163.5(5) 101.8(5) -140.9(5)-20.2(5)-1.6(9)174.6(5) 0.8(9) -0.5(10)0.9(10) -1.7(10)175.8(5) 2.1(9) -174.4(5)-175.4(5) 8.1(7) 67.2(6) -115.3(5) -171.2(5)6.3(5) 159.6(3) -14.2(2)68.8(2)-97.3(2)-87.5(3)98.8(2) -178.2(2)15.6(2) 54.4(6)

Pd(2)-S(7)-C(45)-C(47) C(44)-S(7)-C(45)-C(46) Pd(2)-S(7)-C(45)-C(46) C(30)-P(2)-C(48)-C(53) C(39)-P(2)-C(48)-C(53) Pd(2)-P(2)-C(48)-C(53) C(30)-P(2)-C(48)-C(49) C(39)-P(2)-C(48)-C(49) Pd(2)-P(2)-C(48)-C(49) C(53)-C(48)-C(49)-C(50) P(2)-C(48)-C(49)-C(50) C(48)-C(49)-C(50)-C(51) C(49)-C(50)-C(51)-C(52) C(50)-C(51)-C(52)-C(53) C(49)-C(48)-C(53)-C(52) P(2)-C(48)-C(53)-C(52) C(49)-C(48)-C(53)-S(8) P(2)-C(48)-C(53)-S(8) C(51)-C(52)-C(53)-C(48) C(51)-C(52)-C(53)-S(8) C(48)-C(53)-S(8)-C(54) C(52)-C(53)-S(8)-C(54) C(48)-C(53)-S(8)-Pd(2) C(52)-C(53)-S(8)-Pd(2) O(7)-Pd(2)-S(8)-C(53) P(2)-Pd(2)-S(8)-C(53)S(7)-Pd(2)-S(8)-C(53) S(6)-Pd(2)-S(8)-C(53)O(7)-Pd(2)-S(8)-C(54) P(2)-Pd(2)-S(8)-C(54)S(7)-Pd(2)-S(8)-C(54) S(6)-Pd(2)-S(8)-C(54)C(53)-S(8)-C(54)-C(56) Pd(2)-S(8)-C(54)-C(56) C(53)-S(8)-C(54)-C(55) Pd(2)-S(8)-C(54)-C(55)

-58.2(5)180.0(5) 67.3(5) -133.1(5)109.0(5) -11.2(6)47.7(6) -70.2(6) 169.7(5) -3.3(10)175.8(6) 0.7(12) 2.6(12) -3.3(12)2.6(10) -176.6(6)-173.9(5) 6.9(8) 0.7(11) 177.3(6) -113.7(6)69.7(6) 0.1(6)-176.5(5) -177.3(3) -5.3(2)-88.1(2)77.5(2) -70.7(3)101.3(3)18.5(3) -175.9(3) 64.7(6) -44.3(6)-170.1(6)81.0(6)

P(2)-Pd(2)-O(7)-S(9)	-179.8(7)
S(7)-Pd(2)-O(7)-S(9)	130.3(6)
S(8)-Pd(2)-O(7)-S(9)	-100.0(6)
S(6)-Pd(2)-O(7)-S(9)	18.1(6)
Pd(2)-O(7)-S(9)-O(9)	82.7(7)
Pd(2)-O(7)-S(9)-O(8)	-55.3(7)
Pd(2)-O(7)-S(9)-C(57)	-165.7(6)
O(9)-S(9)-C(57)-F(7)	-178.7(9)
O(8)-S(9)-C(57)-F(7)	-54.3(10)
O(7)-S(9)-C(57)-F(7)	62.5(10)
O(9)-S(9)-C(57)-F(8)	57.1(8)
O(8)-S(9)-C(57)-F(8)	-178.5(7)
O(7)-S(9)-C(57)-F(8)	-61.7(8)
O(9)-S(9)-C(57)-F(9)	-57.2(9)
O(8)-S(9)-C(57)-F(9)	67.2(8)
O(7)-S(9)-C(57)-F(9)	-176.0(7)
O(10)-S(10)-C(58)-F(11)	-173.3(6)
O(11)-S(10)-C(58)-F(11)	67.6(7)
O(12)-S(10)-C(58)-F(11)	-51.9(7)
O(10)-S(10)-C(58)-F(10)	64.5(7)
O(11)-S(10)-C(58)-F(10)	-54.7(7)
O(12)-S(10)-C(58)-F(10)	-174.1(6)
O(10)-S(10)-C(58)-F(12)	-54.3(6)
O(11)-S(10)-C(58)-F(12)	-173.5(6)
O(12)-S(10)-C(58)-F(12)	67.0(6)

Figure 7-38. ¹H NMR (benzene-*d*₆, 400 MHz).

Figure 7-39. ³¹P NMR (benzene-*d*₆, 162 MHz).

Figure 7-40. ¹⁹F NMR (benzene-*d*₆, 376 MHz)

Figure 7-41. ¹³C NMR (benzene-*d*₆, 151 MHz).

Figure 7-42. ¹H NMR (Acetone-*d*₆, 400 MHz).

Figure 7-43. ³¹P NMR (Acetone-*d*₆, 162 MHz).

Figure 7-44. ¹⁹F NMR (Acetone-*d*₆, 376 MHz).

Table 7-52. X 線結晶構造解析の結果

Identification code	ro1702a	
Empirical formula	C ₃₁ H ₃₃ F ₆ O ₄ P Pd S ₃	
Formula weight	817.12	
Temperature	123 K	
Wavelength	0.71075 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	$a = 10.788(4) \text{ Å} \qquad \Box \alpha = 90.611(6)^{\circ}.$	
	$b = 12.198(5) \text{ Å} \qquad \Box \beta = 91.164(9)^{\circ}.$	
	$c = 13.614(4) \text{ Å} \qquad \Box \gamma = 110.187(10)^{\circ}.$	
Volume	1680.8(11) Å ³	
Ζ	2	
Density (calculated)	1.615 Mg/m ³	
Absorption coefficient	0.855 mm ⁻¹	
<i>F</i> (000)	828	
Crystal size	0.05 x 0.04 x 0.01 mm ³	
Theta range for data collection	3.113 to 27.494°.	
Index ranges	-13<=h<=13, -15<=k<=15, -17<=l<=17	
Reflections collected	27724	
Independent reflections	7617 [$R(int) = 0.1381$]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Numerical	
Max. and min. transmission	0.993 and 0.968	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7617 / 0 / 415	
Goodness-of-fit on F^2	0.939	
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0745, wR2 = 0.1517	
<i>R</i> indices (all data)	R1 = 0.1471, wR2 = 0.1783	
Extinction coefficient	n/a	
Largest diff. peak and hole	2.124 and -0.767 e.Å ⁻³	

atom	X	у	Z	U(eq)
Pd(1)	4770(1)	8077(1)	7340(1)	29(1)
P(1)	6191(2)	7177(1)	7384(1)	25(1)
C(1)	7216(6)	7558(5)	8482(5)	23(1)
C(2)	8329(7)	7223(6)	8639(5)	31(2)
C(3)	8952(7)	7382(6)	9540(5)	35(2)
C(4)	8523(7)	7910(7)	10310(5)	39(2)
C(5)	7477(7)	8301(6)	10154(5)	39(2)
C(6)	6812(7)	8117(6)	9253(5)	28(2)
S (1)	5471(2)	8651(1)	9071(1)	28(1)
C(7)	4250(7)	7747(6)	9935(5)	32(2)
C(8)	3974(8)	6446(6)	9787(6)	39(2)
C(9)	3016(8)	8090(7)	9825(6)	42(2)
C(10)	5329(7)	5602(5)	7399(5)	28(2)
C(11)	5968(7)	4813(6)	7626(5)	30(2)
C(12)	5258(8)	3639(6)	7614(5)	34(2)
C(13)	3928(8)	3239(6)	7392(5)	38(2)
C(14)	3273(8)	4006(6)	7185(5)	36(2)
C(15)	3981(7)	5194(6)	7200(5)	25(2)
S(2)	3122(2)	6200(1)	7009(1)	27(1)
C(16)	2632(7)	5969(6)	5696(5)	33(2)
C(17)	3803(8)	6146(7)	5029(5)	41(2)
C(18)	1865(8)	6762(8)	5473(6)	47(2)
C(19)	7214(7)	7532(6)	6303(5)	27(2)
C(20)	7978(7)	6872(6)	5992(5)	30(2)
C(21)	8735(7)	7211(6)	5170(5)	32(2)
C(22)	8775(8)	8189(7)	4669(6)	41(2)
C(23)	8008(8)	8842(6)	4960(5)	38(2)
C(24)	7232(7)	8508(5)	5777(5)	29(2)
S(3)	6167(2)	9308(2)	6098(1)	32(1)
C(25)	7399(7)	10715(6)	6532(6)	36(2)
C(26)	8247(8)	10591(7)	7376(6)	46(2)
C(27)	6622(9)	11516(6)	6768(7)	52(2)
O(1)	3209(5)	8734(4)	7208(4)	36(1)
C(28)	3083(7)	9609(6)	7648(5)	29(2)

Table 7-53. 原子座標と等方性温度因子

O(2)	3856(5)	10408(4)	8119(4)	37(1)
F(1)	919(4)	8937(4)	6831(4)	58(1)
F(2)	1018(5)	9184(4)	8393(4)	61(1)
C(29)	1619(7)	9577(6)	7563(6)	33(2)
F(3)	1565(4)	10648(3)	7463(3)	44(1)
O(3)	8828(6)	4804(5)	6870(4)	57(2)
C(30)	9587(8)	4325(6)	7184(6)	36(2)
O(4)	10062(5)	3645(4)	6789(4)	43(1)
C(31)	9966(9)	4625(7)	8279(6)	45(2)
F(4)	8909(6)	4213(6)	8841(4)	95(2)
F(5)	10907(6)	4261(5)	8621(4)	75(2)
F(6)	10424(5)	5778(5)	8464(4)	72(2)

Table 7-54. 結合距離[Å]

	[▲ ▲] all: ad *4 + [▲] [▲ ▲] [▲] [▲ ▲] [▲] [▲] [▲] [▲ ▲] [▲] [▲ ▲] [
atom–atom	distance / Å	
Pd(1)-O(1)	2.105(5)	
Pd(1)-P(1)	2.1726(19)	
Pd(1)-S(2)	2.3970(19)	
Pd(1)-S(3)	2.445(2)	
Pd(1)-S(1)	2.4783(19)	
P(1)-C(1)	1.799(7)	
P(1)-C(19)	1.822(7)	
P(1)-C(10)	1.823(7)	
C(1)-C(6)	1.402(9)	
C(1)-C(2)	1.409(9)	
C(2)-C(3)	1.366(10)	
C(2)-H(1)	0.9500	
C(3)-C(4)	1.392(10)	
C(3)-H(2)	0.9500	
C(4)-C(5)	1.382(10)	
C(4)-H(3)	0.9500	
C(5)-C(6)	1.384(10)	
C(5)-H(4)	0.9500	
C(6)-S(1)	1.794(7)	
S(1)-C(7)	1.850(7)	
C(7)-C(8)	1.520(9)	

C(7)-C(9)	1.532(10)
C(7)-H(5)	1.0000
C(8)-H(6)	0.9800
C(8)-H(7)	0.9800
C(8)-H(8)	0.9800
C(9)-H(9)	0.9800
C(9)-H(10)	0.9800
C(9)-H(11)	0.9800
C(10)-C(15)	1.385(10)
C(10)-C(11)	1.398(9)
C(11)-C(12)	1.371(9)
C(11)-H(12)	0.9500
C(12)-C(13)	1.373(11)
C(12)-H(13)	0.9500
C(13)-C(14)	1.381(10)
C(13)-H(14)	0.9500
C(14)-C(15)	1.386(9)
C(14)-H(15)	0.9500
C(15)-S(2)	1.792(6)
S(2)-C(16)	1.844(7)
C(16)-C(18)	1.503(10)
C(16)-C(17)	1.526(10)
C(16)-H(16)	1.0000
C(17)-H(17)	0.9800
C(17)-H(18)	0.9800
C(17)-H(19)	0.9800
C(18)-H(20)	0.9800
C(18)-H(21)	0.9800
C(18)-H(22)	0.9800
C(19)-C(24)	1.390(9)
C(19)-C(20)	1.405(9)
C(20)-C(21)	1.380(10)
C(20)-H(23)	0.9500
C(21)-C(22)	1.368(10)
C(21)-H(24)	0.9500
C(22)-C(23)	1.391(10)

C(22)-H(25)	0.9500
C(23)-C(24)	1.385(10)
C(23)-H(26)	0.9500
C(24)-S(3)	1.802(7)
S(3)-C(25)	1.853(7)
C(25)-C(26)	1.495(11)
C(25)-C(27)	1.527(10)
C(25)-H(27)	1.0000
C(26)-H(28)	0.9800
C(26)-H(29)	0.9800
C(26)-H(30)	0.9800
C(27)-H(31)	0.9800
C(27)-H(32)	0.9800
C(27)-H(33)	0.9800
O(1)-C(28)	1.267(7)
C(28)-O(2)	1.208(8)
C(28)-C(29)	1.568(10)
F(1)-C(29)	1.311(8)
F(2)-C(29)	1.324(8)
C(29)-F(3)	1.335(7)
O(3)-C(30)	1.231(9)
C(30)-O(4)	1.239(8)
C(30)-C(31)	1.544(11)
C(31)-F(5)	1.320(9)
C(31)-F(4)	1.336(10)
C(31)-F(6)	1.339(9)

Table 7-55.	結合角[°]
-------------	--------

atom–atom–atom	angle / °	
O(1)-Pd(1)-P(1)	172.02(14)	
O(1)-Pd(1)-S(2)	85.70(14)	
P(1)-Pd(1)-S(2)	86.55(7)	
O(1)-Pd(1)-S(3)	96.82(15)	
P(1)-Pd(1)-S(3)	86.04(7)	
S(2)-Pd(1)-S(3)	124.56(7)	
O(1)-Pd(1)-S(1)	99.63(14)	

S(2)-Pd(1)-S(1) 118.44(6) S(3)-Pd(1)-S(1) 115.64(7) C(1)-P(1)-C(19) 110.0(3) C(1)-P(1)-C(10) 108.9(3) C(1)-P(1)-Pd(1) 111.2(2) C(19)-P(1)-Pd(1) 109.8(2) C(10)-P(1)-Pd(1) 100.0(2) C(6)-C(1)-P(1) 118.5(6) C(6)-C(1)-P(1) 118.1(5) C(2)-C(1)-P(1) 123.1(5) C(2)-C(1)-P(1) 120.4(6) C(3)-C(2)-H(1) 119.8 C(1)-C(2)-H(1) 119.8 C(1)-C(2)-H(1) 119.7 C(2)-C(3)-H(2) 119.7 C(4)-C(3)-H(2) 119.7 C(5)-C(4)-H(3) 120.2 C(4)-C(5)-H(4) 119.8 C(5)-C(4)-H(3) 120.2 C(4)-C(5)-H(4) 119.8 C(5)-C(6)-C(1) 120.3(6) C(5)-C(6)-S(1) 120.3(6) C(5)-C(6)-S(1) 120.5(5) C(1)-C(5)-S(1) 101.5(3) C(6)-S(1)-Pd(1) 112.8(5) C(6)-S(1)-Pd(1) 102.8(2) C(7)-S(1)-Pd(1) 112.8(5) C(6)-C(7)-S(1) 106.8(5)	P(1)-Pd(1)-S(1)	85.73(6)
S(3)-Pd(1)-S(1) 115.64(7) C(1)-P(1)-C(19) 110.0(3) C(1)-P(1)-C(10) 106.9(3) C(19)-P(1)-C(10) 108.9(3) C(1)-P(1)-Pd(1) 111.2(2) C(10)-P(1)-Pd(1) 109.8(2) C(10)-P(1)-Pd(1) 100.0(2) C(6)-C(1)-C(2) 118.5(6) C(6)-C(1)-P(1) 123.1(5) C(2)-C(1)-P(1) 123.1(5) C(2)-C(1)-P(1) 123.1(5) C(3)-C(2)-C(1) 120.4(6) C(3)-C(2)-C(1) 120.4(6) C(3)-C(2)-H(1) 119.8 C(1)-C(2)-H(1) 119.7 C(2)-C(3)-H(2) 119.7 C(4)-C(3)-H(2) 119.7 C(5)-C(4)-H(3) 120.2 C(4)-C(5)-H(4) 119.8 C(5)-C(4)-H(3) 120.2 C(4)-C(5)-H(4) 119.8 C(5)-C(6)-C(1) 120.3(6) C(5)-C(6)-S(1) 120.3(6) C(5)-C(6)-S(1) 120.5(5) C(1)-C(6)-S(1) 120.5(5) C(1)-C(6)-S(1) 120.2(2) C(7)-S(1)-Pd(1) 111.4(2) C(8)-C(7)-Fd(1) 112.8(5)	S(2)-Pd(1)-S(1)	118.44(6)
C(1)-P(1)-C(19) $110.0(3)$ $C(1)-P(1)-C(10)$ $106.9(3)$ $C(19)-P(1)-Pd(1)$ $111.2(2)$ $C(19)-P(1)-Pd(1)$ $109.8(2)$ $C(10)-P(1)-Pd(1)$ $109.8(2)$ $C(10)-P(1)-Pd(1)$ $109.8(2)$ $C(10)-P(1)-Pd(1)$ $100.0(2)$ $C(6)-C(1)-C(2)$ $118.5(6)$ $C(6)-C(1)-P(1)$ $123.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-H(3)$ 120.2 $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(4)-C(5)-H(4)$ 119.8 $C(5)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $112.8(5)$ $C(9)-C(7)-S(1)$ $106.8(5)$ $C(8)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	S(3)-Pd(1)-S(1)	115.64(7)
C(1)-P(1)-C(10) $106.9(3)$ $C(19)-P(1)-P(1)$ $108.9(3)$ $C(1)-P(1)-Pd(1)$ $111.2(2)$ $C(10)-P(1)-Pd(1)$ $109.8(2)$ $C(10)-P(1)-Pd(1)$ $110.0(2)$ $C(6)-C(1)-C(2)$ $118.5(6)$ $C(6)-C(1)-P(1)$ $118.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-P(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(5)-C(4)-H(3)$ 120.2 $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $111.4(2)$ $C(6)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-S(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $112.8(5)$ $C(9)-C(7)-S(1)$ 107.8 $S(1)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(1)-P(1)-C(19)	110.0(3)
C(19)-P(1)-C(10) $108.9(3)$ $C(1)-P(1)-Pd(1)$ $111.2(2)$ $C(19)-P(1)-Pd(1)$ $109.8(2)$ $C(10)-P(1)-Pd(1)$ $110.0(2)$ $C(6)-C(1)-C(2)$ $118.5(6)$ $C(6)-C(1)-P(1)$ $118.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-P(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.7 $C(2)-C(3)-P(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-H(3)$ 120.2 $C(4)-C(5)-H(4)$ 119.8 $C(5)-C(4)-H(3)$ 120.2 $C(4)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $111.4(2)$ $C(6)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ 107.8 $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(1)-P(1)-C(10)	106.9(3)
C(1)-P(1)-Pd(1) $111.2(2)$ $C(19)-P(1)-Pd(1)$ $109.8(2)$ $C(10)-P(1)-Pd(1)$ $110.0(2)$ $C(6)-C(1)-C(2)$ $118.5(6)$ $C(6)-C(1)-P(1)$ $118.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-Pd(1)$ $112.8(5)$ $C(6)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ 107.8 $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(19)-P(1)-C(10)	108.9(3)
C(19)-P(1)-Pd(1) $109.8(2)$ $C(10)-P(1)-Pd(1)$ $110.0(2)$ $C(6)-C(1)-C(2)$ $118.5(6)$ $C(6)-C(1)-P(1)$ $118.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.7 $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(1)-P(1)-Pd(1)	111.2(2)
C(10)-P(1)-Pd(1) $110.0(2)$ $C(6)-C(1)-C(2)$ $118.5(6)$ $C(6)-C(1)-P(1)$ $123.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ $119.7(7)$ $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-S(1)$ 107.8 $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(19)-P(1)-Pd(1)	109.8(2)
C(6)-C(1)-C(2)118.5(6) $C(6)-C(1)-P(1)$ 118.1(5) $C(2)-C(1)-P(1)$ 123.1(5) $C(3)-C(2)-C(1)$ 120.4(6) $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.7 $C(2)-C(3)-C(4)$ 120.6(7) $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 119.2(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(10)-P(1)-Pd(1)	110.0(2)
C(6)-C(1)-P(1) $118.1(5)$ $C(2)-C(1)-P(1)$ $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ $119.7(7)$ $C(5)-C(4)-C(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(6)-C(1)-C(2)	118.5(6)
C(2)-C(1)-P(1) $123.1(5)$ $C(3)-C(2)-C(1)$ $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ $119.7(7)$ $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(6)-C(1)-P(1)	118.1(5)
C(3)-C(2)-C(1) $120.4(6)$ $C(3)-C(2)-H(1)$ 119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ $119.7(7)$ $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-S(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $120.5(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(2)-C(1)-P(1)	123.1(5)
C(3)-C(2)-H(1)119.8 $C(1)-C(2)-H(1)$ 119.8 $C(2)-C(3)-C(4)$ 120.6(7) $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7(7) $C(5)-C(4)-C(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(3)-C(2)-C(1)	120.4(6)
C(1)-C(2)-H(1)119.8 $C(2)-C(3)-C(4)$ 120.6(7) $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ 119.7(7) $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 120.5(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(3)-C(2)-H(1)	119.8
C(2)-C(3)-C(4) $120.6(7)$ $C(2)-C(3)-H(2)$ 119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ $119.7(7)$ $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(1)-C(2)-H(1)	119.8
C(2)-C(3)-H(2)119.7 $C(4)-C(3)-H(2)$ 119.7 $C(5)-C(4)-C(3)$ 119.7(7) $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 119.2(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-S(1)$ 107.8 $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(2)-C(3)-C(4)	120.6(7)
C(4)-C(3)-H(2)119.7 $C(5)-C(4)-C(3)$ 119.7(7) $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-C(1)$ 120.5(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(2)-C(3)-H(2)	119.7
C(5)-C(4)-C(3) $119.7(7)$ $C(5)-C(4)-H(3)$ 120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(4)-C(3)-H(2)	119.7
C(5)-C(4)-H(3)120.2 $C(3)-C(4)-H(3)$ 120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 119.2(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(5)-C(4)-C(3)	119.7(7)
C(3)-C(4)-H(3)120.2 $C(4)-C(5)-C(6)$ 120.4(7) $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 119.2(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-S(1)$ 107.8 $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(5)-C(4)-H(3)	120.2
C(4)-C(5)-C(6) $120.4(7)$ $C(4)-C(5)-H(4)$ 119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $106.8(5)$ $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(3)-C(4)-H(3)	120.2
C(4)-C(5)-H(4)119.8 $C(6)-C(5)-H(4)$ 119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 119.2(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(4)-C(5)-C(6)	120.4(7)
C(6)-C(5)-H(4)119.8 $C(5)-C(6)-C(1)$ 120.3(6) $C(5)-C(6)-S(1)$ 119.2(5) $C(1)-C(6)-S(1)$ 120.5(5) $C(6)-S(1)-C(7)$ 101.5(3) $C(6)-S(1)-Pd(1)$ 102.8(2) $C(7)-S(1)-Pd(1)$ 111.4(2) $C(8)-C(7)-C(9)$ 113.5(6) $C(8)-C(7)-S(1)$ 106.8(5) $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(4)-C(5)-H(4)	119.8
C(5)-C(6)-C(1) $120.3(6)$ $C(5)-C(6)-S(1)$ $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $112.8(5)$ $C(9)-C(7)-S(1)$ $106.8(5)$ $C(8)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(6)-C(5)-H(4)	119.8
C(5)-C(6)-S(1) $119.2(5)$ $C(1)-C(6)-S(1)$ $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $112.8(5)$ $C(9)-C(7)-S(1)$ $106.8(5)$ $C(8)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(5)-C(6)-C(1)	120.3(6)
C(1)-C(6)-S(1) $120.5(5)$ $C(6)-S(1)-C(7)$ $101.5(3)$ $C(6)-S(1)-Pd(1)$ $102.8(2)$ $C(7)-S(1)-Pd(1)$ $111.4(2)$ $C(8)-C(7)-C(9)$ $113.5(6)$ $C(8)-C(7)-S(1)$ $112.8(5)$ $C(9)-C(7)-S(1)$ $106.8(5)$ $C(8)-C(7)-H(5)$ 107.8 $C(9)-C(7)-H(5)$ 107.8 $S(1)-C(7)-H(5)$ 107.8	C(5)-C(6)-S(1)	119.2(5)
C(6)- $S(1)$ - $C(7)$ $101.5(3)$ $C(6)$ - $S(1)$ - $Pd(1)$ $102.8(2)$ $C(7)$ - $S(1)$ - $Pd(1)$ $111.4(2)$ $C(8)$ - $C(7)$ - $C(9)$ $113.5(6)$ $C(8)$ - $C(7)$ - $S(1)$ $112.8(5)$ $C(9)$ - $C(7)$ - $S(1)$ $106.8(5)$ $C(8)$ - $C(7)$ - $H(5)$ 107.8 $C(9)$ - $C(7)$ - $H(5)$ 107.8 $S(1)$ - $C(7)$ - $H(5)$ 107.8	C(1)-C(6)-S(1)	120.5(5)
C(6)- $S(1)$ - $Pd(1)$ $102.8(2)$ $C(7)$ - $S(1)$ - $Pd(1)$ $111.4(2)$ $C(8)$ - $C(7)$ - $C(9)$ $113.5(6)$ $C(8)$ - $C(7)$ - $S(1)$ $112.8(5)$ $C(9)$ - $C(7)$ - $S(1)$ $106.8(5)$ $C(8)$ - $C(7)$ - $H(5)$ 107.8 $C(9)$ - $C(7)$ - $H(5)$ 107.8 $S(1)$ - $C(7)$ - $H(5)$ 107.8	C(6)-S(1)-C(7)	101.5(3)
C(7)-S(1)-Pd(1)111.4(2)C(8)-C(7)-C(9)113.5(6)C(8)-C(7)-S(1)112.8(5)C(9)-C(7)-S(1)106.8(5)C(8)-C(7)-H(5)107.8C(9)-C(7)-H(5)107.8S(1)-C(7)-H(5)107.8	C(6)-S(1)-Pd(1)	102.8(2)
C(8)-C(7)-C(9)113.5(6)C(8)-C(7)-S(1)112.8(5)C(9)-C(7)-S(1)106.8(5)C(8)-C(7)-H(5)107.8C(9)-C(7)-H(5)107.8S(1)-C(7)-H(5)107.8	C(7)-S(1)-Pd(1)	111.4(2)
C(8)-C(7)-S(1)112.8(5)C(9)-C(7)-S(1)106.8(5)C(8)-C(7)-H(5)107.8C(9)-C(7)-H(5)107.8S(1)-C(7)-H(5)107.8	C(8)-C(7)-C(9)	113.5(6)
C(9)-C(7)-S(1)106.8(5)C(8)-C(7)-H(5)107.8C(9)-C(7)-H(5)107.8S(1)-C(7)-H(5)107.8	C(8)-C(7)-S(1)	112.8(5)
C(8)-C(7)-H(5) 107.8 C(9)-C(7)-H(5) 107.8 S(1)-C(7)-H(5) 107.8	C(9)-C(7)-S(1)	106.8(5)
C(9)-C(7)-H(5) 107.8 S(1)-C(7)-H(5) 107.8	C(8)-C(7)-H(5)	107.8
S(1)-C(7)-H(5) 107.8	C(9)-C(7)-H(5)	107.8
	S(1)-C(7)-H(5)	107.8

C(7)-C(8)-H(6)	109.5
C(7)-C(8)-H(7)	109.5
H(6)-C(8)-H(7)	109.5
C(7)-C(8)-H(8)	109.5
H(6)-C(8)-H(8)	109.5
H(7)-C(8)-H(8)	109.5
C(7)-C(9)-H(9)	109.5
C(7)-C(9)-H(10)	109.5
H(9)-C(9)-H(10)	109.5
C(7)-C(9)-H(11)	109.5
H(9)-C(9)-H(11)	109.5
H(10)-C(9)-H(11)	109.5
C(15)-C(10)-C(11)	119.7(6)
C(15)-C(10)-P(1)	117.6(5)
C(11)-C(10)-P(1)	122.7(5)
C(12)-C(11)-C(10)	119.4(7)
C(12)-C(11)-H(12)	120.3
C(10)-C(11)-H(12)	120.3
C(11)-C(12)-C(13)	120.5(7)
C(11)-C(12)-H(13)	119.8
C(13)-C(12)-H(13)	119.8
C(12)-C(13)-C(14)	121.0(7)
C(12)-C(13)-H(14)	119.5
C(14)-C(13)-H(14)	119.5
C(13)-C(14)-C(15)	118.9(7)
C(13)-C(14)-H(15)	120.5
C(15)-C(14)-H(15)	120.5
C(10)-C(15)-C(14)	120.4(6)
C(10)-C(15)-S(2)	120.4(5)
C(14)-C(15)-S(2)	119.2(5)
C(15)-S(2)-C(16)	102.8(3)
C(15)-S(2)-Pd(1)	104.0(2)
C(16)-S(2)-Pd(1)	112.4(2)
C(18)-C(16)-C(17)	113.5(6)
C(18)-C(16)-S(2)	106.5(5)
C(17)-C(16)-S(2)	112.9(5)

C(18)-C(16)-H(16)	107.9
C(17)-C(16)-H(16)	107.9
S(2)-C(16)-H(16)	107.9
С(16)-С(17)-Н(17)	109.5
С(16)-С(17)-Н(18)	109.5
H(17)-C(17)-H(18)	109.5
С(16)-С(17)-Н(19)	109.5
H(17)-C(17)-H(19)	109.5
H(18)-C(17)-H(19)	109.5
C(16)-C(18)-H(20)	109.5
C(16)-C(18)-H(21)	109.5
H(20)-C(18)-H(21)	109.5
C(16)-C(18)-H(22)	109.5
H(20)-C(18)-H(22)	109.5
H(21)-C(18)-H(22)	109.5
C(24)-C(19)-C(20)	119.5(6)
C(24)-C(19)-P(1)	117.6(5)
C(20)-C(19)-P(1)	122.9(5)
C(21)-C(20)-C(19)	119.0(6)
C(21)-C(20)-H(23)	120.5
C(19)-C(20)-H(23)	120.5
C(22)-C(21)-C(20)	121.3(6)
C(22)-C(21)-H(24)	119.4
C(20)-C(21)-H(24)	119.4
C(21)-C(22)-C(23)	120.4(7)
C(21)-C(22)-H(25)	119.8
C(23)-C(22)-H(25)	119.8
C(24)-C(23)-C(22)	119.2(7)
C(24)-C(23)-H(26)	120.4
C(22)-C(23)-H(26)	120.4
C(23)-C(24)-C(19)	120.6(6)
C(23)-C(24)-S(3)	118.6(5)
C(19)-C(24)-S(3)	120.6(5)
C(24)-S(3)-C(25)	100.8(3)
C(24)-S(3)-Pd(1)	102.6(2)
C(25)-S(3)-Pd(1)	116.9(2)

C(26)-C(25)-C(27)	113.1(7)
C(26)-C(25)-S(3)	113.4(5)
C(27)-C(25)-S(3)	106.2(5)
C(26)-C(25)-H(27)	108.0
C(27)-C(25)-H(27)	108.0
S(3)-C(25)-H(27)	108.0
C(25)-C(26)-H(28)	109.5
C(25)-C(26)-H(29)	109.5
H(28)-C(26)-H(29)	109.5
C(25)-C(26)-H(30)	109.5
H(28)-C(26)-H(30)	109.5
H(29)-C(26)-H(30)	109.5
C(25)-C(27)-H(31)	109.5
C(25)-C(27)-H(32)	109.5
H(31)-C(27)-H(32)	109.5
C(25)-C(27)-H(33)	109.5
H(31)-C(27)-H(33)	109.5
H(32)-C(27)-H(33)	109.5
C(28)-O(1)-Pd(1)	128.3(5)
O(2)-C(28)-O(1)	132.1(7)
O(2)-C(28)-C(29)	117.1(6)
O(1)-C(28)-C(29)	110.8(6)
F(1)-C(29)-F(2)	108.6(6)
F(1)-C(29)-F(3)	106.8(6)
F(2)-C(29)-F(3)	105.7(6)
F(1)-C(29)-C(28)	114.9(6)
F(2)-C(29)-C(28)	109.0(6)
F(3)-C(29)-C(28)	111.4(5)
O(3)-C(30)-O(4)	131.8(7)
O(3)-C(30)-C(31)	112.1(7)
O(4)-C(30)-C(31)	116.0(7)
F(5)-C(31)-F(4)	109.0(7)
F(5)-C(31)-F(6)	104.3(7)
F(4)-C(31)-F(6)	104.5(7)
F(5)-C(31)-C(30)	114.8(6)
F(4)-C(31)-C(30)	111.0(7)

F(6)-C(31)-C(30) 112.5(7)

_ ____

Table 7-56. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12
Pd(1)	28.8(3)	25.3(3)	36.8(3)	-9.9(2)	-2(2)	14(2)
P(1)	26.3(10)	22.9(8)	27.3(10)	-5.2(7)	0.7(8)	10.7(7)
C(1)	20(3)	17(3)	28(4)	-2(3)	2(3)	1(3)
C(2)	27(4)	30(4)	36(4)	-5(3)	3(3)	12(3)
C(3)	30(4)	40(4)	37(4)	-4(3)	-3(3)	18(3)
C(4)	33(4)	55(5)	29(4)	-10(4)	-7(3)	16(4)
C(5)	37(4)	42(4)	35(4)	-9(4)	4(4)	11(4)
C(6)	26(4)	28(3)	27(4)	-4(3)	0(3)	7(3)
S (1)	30.4(10)	27.9(8)	27.9(9)	-6.8(7)	2.1(8)	11.5(8)
C(7)	33(4)	33(4)	27(4)	-1(3)	3(3)	10(3)
C(8)	48(5)	33(4)	37(4)	0(3)	6(4)	15(4)
C(9)	38(5)	41(4)	46(5)	-1(4)	13(4)	11(4)
C(10)	39(4)	23(3)	24(4)	-7(3)	3(3)	12(3)
C(11)	29(4)	35(4)	29(4)	-4(3)	2(3)	15(3)
C(12)	44(5)	26(3)	36(4)	1(3)	8(4)	17(3)
C(13)	46(5)	25(3)	43(5)	-6(3)	4(4)	14(3)
C(14)	34(4)	27(4)	42(5)	4(3)	11(4)	5(3)
C(15)	29(4)	31(3)	21(3)	-7(3)	-3(3)	18(3)
S(2)	27.7(9)	24.5(8)	31.6(10)	-5.4(7)	0.3(8)	11.4(7)
C(16)	36(4)	29(4)	33(4)	-8(3)	-5(3)	10(3)
C(17)	46(5)	44(4)	39(4)	-6(4)	-3(4)	24(4)
C(18)	51(5)	70(6)	35(4)	-6(4)	-5(4)	41(5)
C(19)	30(4)	29(3)	23(4)	-9(3)	3(3)	10(3)
C(20)	34(4)	27(3)	30(4)	-6(3)	-1(3)	14(3)
C(21)	32(4)	32(4)	31(4)	-14(3)	-4(3)	14(3)
C(22)	38(5)	48(5)	41(5)	-4(4)	8(4)	19(4)
C(23)	50(5)	38(4)	32(4)	5(3)	12(4)	19(4)
C(24)	33(4)	24(3)	31(4)	-5(3)	-2(3)	12(3)
S(3)	34.9(10)	29.6(9)	35.8(10)	2.5(8)	6.6(8)	16.3(8)
C(25)	35(4)	25(3)	49(5)	3(3)	18(4)	11(3)
C(26)	40(5)	34(4)	62(6)	-5(4)	7(4)	8(4)
C(27)	52(5)	28(4)	81(6)	3(4)	28(5)	17(4)

O(1)	32(3)	38(3)	45(3)	-13(2)	-4(2)	21(2)
C(28)	38(4)	27(3)	24(4)	1(3)	7(3)	14(3)
O(2)	33(3)	34(3)	47(3)	-14(2)	-2(2)	15(2)
F(1)	40(3)	55(3)	84(4)	-38(3)	-23(3)	23(2)
F(2)	40(3)	77(3)	69(3)	26(3)	21(3)	23(3)
C(29)	26(4)	27(4)	44(5)	-2(3)	6(4)	7(3)
F(3)	36(2)	36(2)	66(3)	-3(2)	0(2)	22(2)
O(3)	59(4)	68(4)	61(4)	-11(3)	-15(3)	45(3)
C(30)	33(4)	30(4)	41(5)	-1(3)	1(4)	6(3)
O(4)	38(3)	44(3)	51(3)	-17(3)	2(3)	20(3)
C(31)	50(5)	52(5)	41(5)	-6(4)	1(4)	27(4)
F(4)	80(5)	121(5)	73(4)	7(4)	45(4)	18(4)
F(5)	100(5)	103(4)	45(3)	-3(3)	-13(3)	64(4)
F(6)	71(4)	73(4)	76(4)	-37(3)	-3(3)	31(3)

Table 7-57. ねじれ角[°]

atom-atom-atom	angle / °
C(19)–P(1)–C(1)–C(6)	136.8(5)
C(10)–P(1)–C(1)–C(6)	-105.1(5)
Pd(1)-P(1)-C(1)-C(6)	14.9(6)
C(19)–P(1)–C(1)–C(2)	-49.5(6)
C(10)–P(1)–C(1)–C(2)	68.6(6)
Pd(1)-P(1)-C(1)-C(2)	-171.4(5)
C(6)-C(1)-C(2)-C(3)	3.6(10)
P(1)-C(1)-C(2)-C(3)	-170.0(5)
C(1)-C(2)-C(3)-C(4)	-2.0(11)
C(2)-C(3)-C(4)-C(5)	-1.6(12)
C(3)-C(4)-C(5)-C(6)	3.4(11)
C(4)-C(5)-C(6)-C(1)	-1.7(11)
C(4)-C(5)-C(6)-S(1)	-179.3(6)
C(2)-C(1)-C(6)-C(5)	-1.8(10)
P(1)-C(1)-C(6)-C(5)	172.2(5)
C(2)-C(1)-C(6)-S(1)	175.8(5)
P(1)-C(1)-C(6)-S(1)	-10.2(7)
C(5)-C(6)-S(1)-C(7)	-65.7(6)
C(1)-C(6)-S(1)-C(7)	116.6(6)

C(5)-C(6)-S(1)-Pd(1)C(1)-C(6)-S(1)-Pd(1)C(6)-S(1)-C(7)-C(8)Pd(1)-S(1)-C(7)-C(8)C(6)-S(1)-C(7)-C(9)Pd(1)-S(1)-C(7)-C(9)C(1)-P(1)-C(10)-C(15)C(19)–P(1)–C(10)–C(15) Pd(1)-P(1)-C(10)-C(15)C(1)-P(1)-C(10)-C(11)C(19)-P(1)-C(10)-C(11)Pd(1)-P(1)-C(10)-C(11)C(15)-C(10)-C(11)-C(12)P(1)-C(10)-C(11)-C(12)C(10)-C(11)-C(12)-C(13)C(11)-C(12)-C(13)-C(14)C(12)-C(13)-C(14)-C(15)C(11)-C(10)-C(15)-C(14)P(1)-C(10)-C(15)-C(14)C(11)-C(10)-C(15)-S(2)P(1)-C(10)-C(15)-S(2)C(13)-C(14)-C(15)-C(10) C(13)-C(14)-C(15)-S(2)C(10)-C(15)-S(2)-C(16)C(14)-C(15)-S(2)-C(16)C(10)-C(15)-S(2)-Pd(1)C(14)-C(15)-S(2)-Pd(1)C(15)-S(2)-C(16)-C(18)Pd(1)-S(2)-C(16)-C(18)C(15)-S(2)-C(16)-C(17)Pd(1)-S(2)-C(16)-C(17)C(1)-P(1)-C(19)-C(24)C(10)-P(1)-C(19)-C(24)Pd(1)-P(1)-C(19)-C(24)C(1)-P(1)-C(19)-C(20)C(10)-P(1)-C(19)-C(20)

178.9(5) 1.3(6) -52.6(6) 56.2(6) -178.0(5) -69.2(5)132.4(5) -108.8(6) 11.6(6) -45.8(6)73.0(6) -166.6(5) 2.4(10) -179.4(5) -0.7(10)-0.6(11)0.3(11) -2.7(10)179.0(5) 174.8(5) -3.5(8)1.4(10) -176.1(5)112.1(6) -70.4(6)-5.3(6)172.3(5) 178.5(5) -70.3(6)-56.2(6)55.0(5) -105.4(6) 137.8(5) 17.3(6) 74.0(6) -42.8(7)

Pd(1)-P(1)-C(19)-C(20)	-163.2(5)
C(24)-C(19)-C(20)-C(21)	0.1(10)
P(1)-C(19)-C(20)-C(21)	-179.4(5)
C(19)-C(20)-C(21)-C(22)	1.5(10)
C(20)-C(21)-C(22)-C(23)	-2.5(11)
C(21)-C(22)-C(23)-C(24)	1.8(12)
C(22)-C(23)-C(24)-C(19)	-0.1(11)
C(22)-C(23)-C(24)-S(3)	-176.1(6)
C(20)-C(19)-C(24)-C(23)	-0.8(10)
P(1)-C(19)-C(24)-C(23)	178.7(6)
C(20)-C(19)-C(24)-S(3)	175.1(5)
P(1)-C(19)-C(24)-S(3)	-5.4(8)
C(23)-C(24)-S(3)-C(25)	-70.5(6)
C(19)-C(24)-S(3)-C(25)	113.5(6)
C(23)-C(24)-S(3)-Pd(1)	168.6(5)
C(19)-C(24)-S(3)-Pd(1)	-7.4(6)
C(24)-S(3)-C(25)-C(26)	-58.9(6)
Pd(1)–S(3)–C(25)–C(26)	51.3(6)
C(24)-S(3)-C(25)-C(27)	176.3(5)
Pd(1)-S(3)-C(25)-C(27)	-73.5(6)
Pd(1)-O(1)-C(28)-O(2)	14.0(11)
Pd(1)-O(1)-C(28)-C(29)	-163.9(4)
O(2)-C(28)-C(29)-F(1)	160.3(6)
O(1)-C(28)-C(29)-F(1)	-21.4(8)
O(2)-C(28)-C(29)-F(2)	-77.6(8)
O(1)-C(28)-C(29)-F(2)	100.7(7)
O(2)-C(28)-C(29)-F(3)	38.6(9)
O(1)-C(28)-C(29)-F(3)	-143.1(6)
O(3)-C(30)-C(31)-F(5)	-171.6(7)
O(4)-C(30)-C(31)-F(5)	9.9(10)
O(3)-C(30)-C(31)-F(4)	64.2(9)
O(4)-C(30)-C(31)-F(4)	-114.3(8)
O(3)-C(30)-C(31)-F(6)	-52.5(9)
O(4)–C(30)–C(31)–F(6)	128.9(7)

 $[Pd(CH_3)P(C_6H_4-2-SCH(CH_3)_2)_3]BF_4$ (16a)

Figure 7-45. ¹H NMR (Acetone–*d*₆, 400 MHz).

Figure 7-46. ³¹P NMR (Acetone–*d*₆, 162 MHz).

Figure 7-47. ¹⁹F NMR (Acetone–*d*₆, 376 MHz).

Figure 7-48.¹³C NMR (Acetone–*d*₆, 151 MHz).

[Pd(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃] BF₄ (**16b**)

Figure 7-49. ¹H NMR (acetone– d_6 , 400 MHz).

Figure 7-50.³¹P NMR (acetone–*d*₆, 162 MHz).

Figure 7-51. ¹⁹F NMR (acetone–*d*₆, 376 MHz).

[Pd(OH₂) P(C₆H₄-2-SCH(CH₃)₂)₃](BF₄)₂ (17a)

Figure 7-52. ¹H NMR (Acetone-*d*₆, 400 MHz)

Figure 7-53. ³¹P NMR (Acetone-*d*₆, 162 MHz)

Figure 7-54. ¹⁹F NMR (Acetone-*d*₆, 376 MHz)

Table 7-58. X 線結晶構造解析の結果

Identification code	ydkr			
Empirical formula	C ₂₇ H ₃₅ B ₂ F ₈ O P Pd S ₃			
Formula weight	782.72			
Temperature	120 K			
Wavelength	0.71075 Å			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 11.2068(7) Å	$\alpha = 83.089(8)^{\circ}.$		
	<i>b</i> = 12.2394(10) Å	$\beta = 70.900(7)^{\circ}.$		
	c = 13.9814(14) Å	$\gamma = 65.810(6)^{\circ}.$		
Volume	1652.8(3) Å ³			
Ζ	2			
Density (calculated)	1.573 Mg/m ³			
Absorption coefficient	0.866 mm ⁻¹			
<i>F</i> (000)	792			
Crystal size	$0.12 \text{ x } 0.04 \text{ x } 0.01 \text{ mm}^3$			
Theta range for data collection	2.957 to 27.484°.			
Index ranges	-14<=h<=14, -15<=k<=15, -17<=l<=18			
Reflections collected	27437			
Independent reflections	7555 [<i>R</i> (int) = 0.0585]			
Completeness to theta = 25.242°	99.5 %			
Absorption correction	Numerical			
Max. and min. transmission	0.994 and 0.935			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	7555 / 20 / 470	7555 / 20 / 470		
Goodness-of-fit on F^2	0.963			
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0374, wR2 = 0.0818	R1 = 0.0374, wR2 = 0.0818		
R indices (all data)	R1 = 0.0557, wR2 = 0.0876			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.979 and -0.546 e.Å ⁻³			

atom	Х	У	Z	U(eq)
Pd(1)	4907(1)	3878(1)	6986(1)	22(1)
P(1)	5464(1)	1956(1)	7003(1)	20(1)
C(1)	3962(3)	1637(2)	7637(2)	22(1)
C(2)	4030(3)	471(3)	7764(2)	26(1)
C(3)	2851(3)	278(3)	8307(2)	31(1)
C(4)	1642(3)	1231(3)	8747(2)	34(1)
C(5)	1588(3)	2384(3)	8669(2)	33(1)
C(6)	2749(3)	2595(3)	8095(2)	25(1)
S (1)	2707(1)	4083(1)	8040(1)	25(1)
C(7)	1549(3)	4901(3)	7267(2)	32(1)
C(8)	53(3)	5323(3)	7917(3)	44(1)
C(9)	1878(4)	4190(3)	6330(2)	43(1)
C(10)	6248(3)	1503(2)	5681(2)	22(1)
C(11)	6254(3)	541(3)	5246(2)	26(1)
C(12)	6990(3)	248(3)	4226(2)	31(1)
C(13)	7685(3)	923(3)	3645(2)	33(1)
C(14)	7664(3)	1910(3)	4070(2)	29(1)
C(15)	6962(3)	2182(3)	5085(2)	25(1)
S(2)	6935(1)	3442(1)	5641(1)	25(1)
C(16)	8474(3)	2743(3)	6091(2)	31(1)
C(17)	9763(3)	2443(4)	5186(3)	52(1)
C(18)	8367(4)	3612(3)	6840(3)	46(1)
C(19)	6726(3)	1054(2)	7624(2)	22(1)
C(20)	7687(3)	-79(3)	7230(2)	28(1)
C(21)	8604(3)	-804(3)	7732(2)	32(1)
C(22)	8595(3)	-385(3)	8615(2)	38(1)
C(23)	7674(3)	736(3)	9007(2)	35(1)
C(24)	6710(3)	1471(3)	8526(2)	26(1)
S(3)	5534(1)	2926(1)	9002(1)	30(1)
C(25)	4747(3)	2695(3)	10347(2)	29(1)
C(26)	4017(4)	1860(3)	10486(3)	48(1)
C(27)	3774(3)	3941(3)	10794(2)	40(1)
O(1)	4367(2)	5749(2)	6897(2)	34(1)
B(1)	1829(3)	7179(3)	9101(3)	33(1)

Table 7-59. 原子座標と等方性温度因子

F(1A)	3277(6)	6681(16)	8782(11)	47(3)
F(2A)	1350(18)	8342(7)	9423(11)	42(2)
F(3A)	1417(7)	7163(7)	8258(4)	40(2)
F(4A)	1332(11)	6497(8)	9841(6)	61(2)
F(1B)	3249(13)	6530(30)	8700(20)	44(5)
F(2B)	1530(40)	8377(14)	9210(20)	37(4)
F(3B)	1200(20)	7015(19)	8500(20)	95(7)
F(4B)	1430(20)	6760(20)	10081(17)	91(8)
B(2)	6697(4)	7241(4)	6225(3)	42(1)
F(5A)	6700(15)	6157(8)	6051(13)	54(3)
F(6A)	5485(8)	7828(10)	6996(8)	61(3)
F(7A)	6737(19)	7944(12)	5380(8)	70(4)
F(8A)	7771(10)	7080(20)	6562(8)	85(4)
F(5B)	6290(30)	6380(20)	5983(19)	59(5)
F(6B)	5740(30)	7869(19)	7024(14)	117(8)
F(7B)	6870(20)	7866(15)	5324(10)	51(5)
F(8B)	7974(16)	6588(18)	6320(30)	92(7)

Table 7-60. 結合距離[Å]

atom-atom	distance / Å	
Pd(1)-O(1)	2.114(2)	
Pd(1)-P(1)	2.1723(7)	
Pd(1)-S(2)	2.3319(7)	
Pd(1)-S(1)	2.3495(7)	
P(1)-C(1)	1.803(3)	
P(1)-C(19)	1.808(3)	
P(1)-C(10)	1.811(3)	
C(1)-C(2)	1.391(4)	
C(1)-C(6)	1.392(4)	
C(2)-C(3)	1.391(4)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.381(4)	
C(3)-H(3)	0.9500	
C(4)-C(5)	1.380(5)	
C(4)-H(4)	0.9500	
C(5)-C(6)	1.395(4)	

C(5)-H(5)	0.9500
C(6)-S(1)	1.795(3)
S(1)-C(7)	1.857(3)
C(7)-C(9)	1.518(4)
C(7)-C(8)	1.519(4)
C(7)-H(6)	1.0000
C(8)-H(7)	0.9800
C(8)-H(8)	0.9800
C(8)-H(9)	0.9800
C(9)-H(10)	0.9800
C(9)-H(11)	0.9800
C(9)-H(12)	0.9800
C(10)-C(11)	1.386(4)
C(10)-C(15)	1.402(4)
C(11)-C(12)	1.398(4)
C(11)-H(13)	0.9500
C(12)-C(13)	1.379(4)
C(12)-H(14)	0.9500
C(13)-C(14)	1.396(4)
C(13)-H(15)	0.9500
C(14)-C(15)	1.383(4)
C(14)-H(16)	0.9500
C(15)-S(2)	1.794(3)
S(2)-C(16)	1.863(3)
C(16)-C(17)	1.518(4)
C(16)-C(18)	1.525(4)
C(16)-H(17)	1.0000
C(17)-H(18)	0.9800
C(17)-H(19)	0.9800
C(17)-H(20)	0.9800
C(18)-H(21)	0.9800
C(18)-H(22)	0.9800
C(18)-H(23)	0.9800
C(19)-C(20)	1.399(4)
C(19)-C(24)	1.407(4)
C(20)-C(21)	1.383(4)

C(20)-H(24)	0.9500
C(21)-C(22)	1.388(4)
C(21)-H(25)	0.9500
C(22)-C(23)	1.378(4)
C(22)-H(26)	0.9500
C(23)-C(24)	1.402(4)
C(23)-H(27)	0.9500
C(24)-S(3)	1.772(3)
S(3)-C(25)	1.840(3)
C(25)-C(26)	1.512(4)
C(25)-C(27)	1.525(4)
C(25)-H(28)	1.0000
C(26)-H(29)	0.9800
C(26)-H(30)	0.9800
C(26)-H(31)	0.9800
C(27)-H(32)	0.9800
C(27)-H(33)	0.9800
C(27)-H(34)	0.9800
O(1)-H(1)	0.83(4)
O(1)-H(1A)	0.81(4)
B(1)-F(3B)	1.343(12)
B(1)-F(4A)	1.369(7)
B(1)-F(2A)	1.373(8)
B(1)-F(2B)	1.381(13)
B(1)-F(4B)	1.400(14)
B(1)-F(1B)	1.403(12)
B(1)-F(3A)	1.404(5)
B(1)-F(1A)	1.410(7)
B(2)-F(6B)	1.317(12)
B(2)-F(8A)	1.365(7)
B(2)-F(8B)	1.366(11)
B(2)-F(7A)	1.374(8)
B(2)-F(5A)	1.377(9)
B(2)-F(7B)	
	1.391(11)
B(2)-F(6A)	1.391(11) 1.398(7)
B(2)-F(6A) B(2)-F(5B)	1.391(11) 1.398(7) 1.418(11)

Table 7-61. 結合角[°]

atom-atom-atom	angle / °
O(1)-Pd(1)-P(1)	177.30(7)
O(1)-Pd(1)-S(2)	93.85(7)
P(1)-Pd(1)-S(2)	84.72(3)
O(1)-Pd(1)-S(1)	93.23(7)
P(1)-Pd(1)-S(1)	87.61(3)
S(2)-Pd(1)-S(1)	164.37(2)
C(1)-P(1)-C(19)	105.53(12)
C(1)-P(1)-C(10)	114.61(12)
C(19)-P(1)-C(10)	105.72(12)
C(1)-P(1)-Pd(1)	109.81(10)
C(19)-P(1)-Pd(1)	117.20(9)
C(10)-P(1)-Pd(1)	104.27(9)
C(2)-C(1)-C(6)	120.4(2)
C(2)-C(1)-P(1)	121.8(2)
C(6)-C(1)-P(1)	117.4(2)
C(3)-C(2)-C(1)	119.2(3)
C(3)-C(2)-H(2)	120.4
C(1)-C(2)-H(2)	120.4
C(4)-C(3)-C(2)	120.3(3)
C(4)-C(3)-H(3)	119.9
C(2)-C(3)-H(3)	119.9
C(5)-C(4)-C(3)	120.7(3)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(4)-C(5)-C(6)	119.6(3)
C(4)-C(5)-H(5)	120.2
C(6)-C(5)-H(5)	120.2
C(1)-C(6)-C(5)	119.7(3)
C(1)-C(6)-S(1)	120.5(2)
C(5)-C(6)-S(1)	119.7(2)
C(6)-S(1)-C(7)	103.59(13)
C(6)-S(1)-Pd(1)	104.07(9)
C(7)-S(1)-Pd(1)	104.64(10)

C(9)-C(7)-C(8)	113.8(3)
C(9)-C(7)-S(1)	112.1(2)
C(8)-C(7)-S(1)	110.7(2)
C(9)-C(7)-H(6)	106.6
C(8)-C(7)-H(6)	106.6
S(1)-C(7)-H(6)	106.6
C(7)-C(8)-H(7)	109.5
C(7)-C(8)-H(8)	109.5
H(7)-C(8)-H(8)	109.5
C(7)-C(8)-H(9)	109.5
H(7)-C(8)-H(9)	109.5
H(8)-C(8)-H(9)	109.5
C(7)-C(9)-H(10)	109.5
C(7)-C(9)-H(11)	109.5
H(10)-C(9)-H(11)	109.5
C(7)-C(9)-H(12)	109.5
H(10)-C(9)-H(12)	109.5
H(11)-C(9)-H(12)	109.5
C(11)-C(10)-C(15)	119.4(2)
C(11)-C(10)-P(1)	126.2(2)
C(15)-C(10)-P(1)	114.4(2)
C(10)-C(11)-C(12)	119.6(3)
C(10)-C(11)-H(13)	120.2
C(12)-C(11)-H(13)	120.2
C(13)-C(12)-C(11)	120.6(3)
C(13)-C(12)-H(14)	119.7
C(11)-C(12)-H(14)	119.7
C(12)-C(13)-C(14)	120.3(3)
C(12)-C(13)-H(15)	119.8
C(14)-C(13)-H(15)	119.8
C(15)-C(14)-C(13)	119.0(3)
C(15)-C(14)-H(16)	120.5
C(13)-C(14)-H(16)	120.5
C(14)-C(15)-C(10)	121.1(3)
C(14)-C(15)-S(2)	119.4(2)
C(10)-C(15)-S(2)	119.5(2)

C(15)-S(2)-C(16)	101.89(13)
C(15)-S(2)-Pd(1)	99.79(9)
C(16)-S(2)-Pd(1)	111.30(10)
C(17)-C(16)-C(18)	113.0(3)
C(17)-C(16)-S(2)	109.2(2)
C(18)-C(16)-S(2)	108.0(2)
C(17)-C(16)-H(17)	108.9
C(18)-C(16)-H(17)	108.9
S(2)-C(16)-H(17)	108.9
C(16)-C(17)-H(18)	109.5
C(16)-C(17)-H(19)	109.5
H(18)-C(17)-H(19)	109.5
C(16)-C(17)-H(20)	109.5
H(18)-C(17)-H(20)	109.5
H(19)-C(17)-H(20)	109.5
C(16)-C(18)-H(21)	109.5
C(16)-C(18)-H(22)	109.5
H(21)-C(18)-H(22)	109.5
C(16)-C(18)-H(23)	109.5
H(21)-C(18)-H(23)	109.5
H(22)-C(18)-H(23)	109.5
C(20)-C(19)-C(24)	120.0(2)
C(20)-C(19)-P(1)	120.0(2)
C(24)-C(19)-P(1)	120.0(2)
C(21)-C(20)-C(19)	120.3(3)
C(21)-C(20)-H(24)	119.8
C(19)-C(20)-H(24)	119.8
C(20)-C(21)-C(22)	119.5(3)
C(20)-C(21)-H(25)	120.2
C(22)-C(21)-H(25)	120.2
C(23)-C(22)-C(21)	121.1(3)
C(23)-C(22)-H(26)	119.5
C(21)-C(22)-H(26)	119.5
C(22)-C(23)-C(24)	120.3(3)
C(22)-C(23)-H(27)	119.9
C(24)-C(23)-H(27)	119.9

C(23)-C(24)-C(19)	118.8(3)
C(23)-C(24)-S(3)	121.1(2)
C(19)-C(24)-S(3)	120.0(2)
C(24)-S(3)-C(25)	104.18(13)
C(26)-C(25)-C(27)	112.3(3)
C(26)-C(25)-S(3)	112.0(2)
C(27)-C(25)-S(3)	105.6(2)
C(26)-C(25)-H(28)	108.9
C(27)-C(25)-H(28)	108.9
S(3)-C(25)-H(28)	108.9
C(25)-C(26)-H(29)	109.5
C(25)-C(26)-H(30)	109.5
H(29)-C(26)-H(30)	109.5
C(25)-C(26)-H(31)	109.5
H(29)-C(26)-H(31)	109.5
H(30)-C(26)-H(31)	109.5
C(25)-C(27)-H(32)	109.5
C(25)-C(27)-H(33)	109.5
H(32)-C(27)-H(33)	109.5
C(25)-C(27)-H(34)	109.5
H(32)-C(27)-H(34)	109.5
H(33)-C(27)-H(34)	109.5
Pd(1)-O(1)-H(1)	112(2)
Pd(1)-O(1)-H(1A)	108(3)
H(1)-O(1)-H(1A)	110(4)
F(4A)-B(1)-F(2A)	111.8(7)
F(3B)-B(1)-F(2B)	111.8(16)
F(3B)-B(1)-F(4B)	112.5(11)
F(2B)-B(1)-F(4B)	105.9(15)
F(3B)-B(1)-F(1B)	109.1(15)
F(2B)-B(1)-F(1B)	110.9(16)
F(4B)-B(1)-F(1B)	106.5(13)
F(4A)-B(1)-F(3A)	108.5(5)
F(2A)-B(1)-F(3A)	109.3(8)
F(4A)-B(1)-F(1A)	110.4(8)
F(2A)-B(1)-F(1A)	109.7(9)

F(3A)-B(1)-F(1A)	107.0(7)
F(6B)-B(2)-F(8B)	117.0(13)
F(8A)-B(2)-F(7A)	109.7(8)
F(8A)-B(2)-F(5A)	110.9(8)
F(7A)-B(2)-F(5A)	112.4(9)
F(6B)-B(2)-F(7B)	116.0(12)
F(8B)-B(2)-F(7B)	107.3(13)
F(8A)-B(2)-F(6A)	107.5(7)
F(7A)-B(2)-F(6A)	109.2(9)
F(5A)-B(2)-F(6A)	107.0(7)
F(6B)-B(2)-F(5B)	108.8(13)
F(8B)-B(2)-F(5B)	104.5(8)
F(7B)-B(2)-F(5B)	101.6(12)

Table 7-62. 異方性温度因子

atom	U11	U22	U33	U23	U13	U12	
Pd(1)	22.52(11) 20.79(12) 24.68(12) -1.05(8) -6(8) -9.92(8)						
P(1)	22.4(3)	21(4)	18.4(3)	0.5(3)	-6.4(3)	-10.8(3)	
C(1)	26.3(13)	28.8(16)	17.7(13)	2.7(11)	-8.5(10)	-15.8(11)	
C(2)	32.4(15)	30.3(17)	20.3(14)	0.6(12)	-7.9(11)	-16.1(12)	
C(3)	42.6(17)	38.2(18)	23.3(15)	7.2(13)	-10(12)	-28.8(15)	
C(4)	36.6(16)	54(2)	23.1(15)	11.9(14)	-9.1(12)	-32.3(15)	
C(5)	29.8(15)	44(2)	25(15)	1.6(13)	-5.6(12)	-17.3(14)	
C(6)	28(14)	32(16)	18.9(13)	2.5(11)	-8.6(11)	-14.2(12)	
S (1)	23(3)	26.9(4)	24.9(4)	-3.8(3)	-6.8(3)	-9.4(3)	
C(7)	33(15)	25.6(16)	39.8(18)	1.8(13)	-17.6(13)) -9.8(12)	
C(8)	30.9(16)	43(2)	61(2)	-6.3(17)	-19.4(15)) -10.7(14)	
C(9)	52(2)	45(2)	36.6(19)	4.7(15)	-24.8(16)) -17.6(16)	
C(10)	21.1(12)	26.2(15)	18.1(13)	0.7(11)	-6.8(10)	-9(11)	
C(11)	29.4(14)	26.1(16)	24.6(14)	-0.1(11)	-9.8(11)	-11.6(12)	
C(12)	37.2(16)	33.8(17)	24.8(15)	-4.3(12)	-10.5(12)) -15.1(13)	
C(13)	35.9(16)	41.7(19)	19.3(14)	-3.1(13)	-6.2(12)	-13.6(14)	
C(14)	29.5(15)	33.2(17)	24.6(15)	3.6(12)	-5.1(11)	-14.7(13)	
C(15)	24.8(13)	26.9(16)	25.3(14)	1.8(11)	-7.5(11)	-11.4(11)	
S(2)	25.7(3)	24.7(4)	25.6(4)	1.2(3)	-5.4(3)	-13.4(3)	
C(16)	27.4(14)	34.5(17)	37.5(17)	5.9(13)	-14.1(12)) -17.3(13)	
C(17)	28(16)	74(3)	48(2)	-3.8(19)	-5.3(15)	-17.9(17)	
-------	----------	----------	----------	----------	-----------	-----------	
C(18)	47(2)	50(2)	55(2)	-0.6(17)	-22(17)	-29.2(17)	
C(19)	25(13)	24.6(15)	20.2(13)	3.5(11)	-7.7(10)	-13(11)	
C(20)	29.3(14)	31.7(17)	24.4(15)	1.2(12)	-9.2(11)	-13.4(12)	
C(21)	28.2(15)	30.4(17)	27.8(16)	1.6(12)	-4.7(12)	-4.3(12)	
C(22)	30.3(15)	47(2)	29(17)	3.7(14)	-13.3(13)	-7(14)	
C(23)	35.2(16)	46(2)	27.2(16)	-0.5(14)	-14.2(13)	-14.2(14)	
C(24)	28.3(14)	28.8(16)	23.3(14)	-0.6(12)	-8.2(11)	-13.3(12)	
S(3)	41.6(4)	27.6(4)	23.4(4)	-1.4(3)	-12(3)	-13.6(3)	
C(25)	33.3(15)	34.8(17)	20.2(14)	0.3(12)	-8.9(11)	-13.8(13)	
C(26)	56(2)	51(2)	44(2)	1.6(17)	-9.1(17)	-33.2(18)	
C(27)	46.6(19)	38(2)	30.1(17)	-3.9(14)	-9.7(14)	-12.3(15)	
O(1)	35.4(12)	23.3(12)	38.5(14)	-3.1(10)	-4.1(10)	-11.6(10)	
B(1)	27.4(17)	34(2)	37(2)	-4(16)	-5.9(14)	-13.4(15)	
F(1)A	23(3)	81(6)	37(3)	-30(3)	0(3)	-19(3)	
F(2)A	41(3)	46(3)	43(6)	-14(3)	-10(4)	-19(3)	
F(3)A	38(3)	55(3)	34(3)	-9.7(19)	-16.7(16)	-17(2)	
F(4)A	58(4)	50(4)	46(3)	6(2)	13(2)	-15(2)	
F(1)B	28(6)	57(8)	46(9)	-14(7)	-17(5)	-8(5)	
F(2)B	51(11)	44(6)	33(9)	3(4)	-16(8)	-33(6)	
F(3)B	25(5)	62(9)	209(18)	-82(11)	-37(9)	-3(5)	
F(4)B	36(5)	51(10)	131(14)	46(10)	9(9)	-4(6)	
B(2)	47(2)	32(2)	50(3)	3.3(19)	-17.3(19)	-19.9(18)	
F(5)A	54(5)	26(3)	59(4)	-10(2)	19(4)	-18(3)	
F(6)A	53(4)	44(4)	67(5)	-27(3)	7(3)	-15(3)	
F(7)A	82(7)	48(6)	73(7)	30(5)	-24(5)	-25(5)	
F(8)A	67(4)	155(10)	66(4)	26(5)	-35(3)	-71(5)	
F(5)B	58(10)	56(8)	62(6)	-18(7)	17(7)	-45(8)	
F(6)B	201(19)	57(9)	67(10)	-26(7)	-44(11)	-18(11)	
F(7)B	88(10)	31(8)	49(9)	2(6)	-31(7)	-33(7)	
F(8)B	76(6)	72(9)	153(16)	64(8)	-66(8)	-48(6)	

Table 7-63.	ねじれ角[°]
-------------	---------

atom-atom-atom	angle / °
C(19)–P(1)–C(1)–C(2)	-52.2(2)
C(10)-P(1)-C(1)-C(2)	63.7(2)

Pd(1)-P(1)-C(1)-C(2)C(19)-P(1)-C(1)-C(6)C(10)-P(1)-C(1)-C(6)Pd(1)-P(1)-C(1)-C(6)C(6)-C(1)-C(2)-C(3)P(1)-C(1)-C(2)-C(3)C(1)-C(2)-C(3)-C(4)C(2)-C(3)-C(4)-C(5)C(3)-C(4)-C(5)-C(6)C(2)-C(1)-C(6)-C(5)P(1)-C(1)-C(6)-C(5)C(2)-C(1)-C(6)-S(1)P(1)-C(1)-C(6)-S(1)C(4)-C(5)-C(6)-C(1)C(4)-C(5)-C(6)-S(1)C(1)-C(6)-S(1)-C(7)C(5)-C(6)-S(1)-C(7)C(1)-C(6)-S(1)-Pd(1)C(5)-C(6)-S(1)-Pd(1)C(6)-S(1)-C(7)-C(9)Pd(1)-S(1)-C(7)-C(9)C(6)-S(1)-C(7)-C(8)Pd(1)-S(1)-C(7)-C(8)C(1)-P(1)-C(10)-C(11)C(19)-P(1)-C(10)-C(11) Pd(1)-P(1)-C(10)-C(11)C(1)-P(1)-C(10)-C(15)C(19)-P(1)-C(10)-C(15)Pd(1)-P(1)-C(10)-C(15)C(15)-C(10)-C(11)-C(12)P(1)-C(10)-C(11)-C(12)C(10)-C(11)-C(12)-C(13)C(11)-C(12)-C(13)-C(14)C(12)-C(13)-C(14)-C(15)C(13)-C(14)-C(15)-C(10)C(13)-C(14)-C(15)-S(2)

-179.38(19)121.0(2) -123.1(2)-6.2(2)3.5(4) 176.6(2) -2.5(4)-1.0(4)3.3(4) -1.2(4)-174.6(2) 173.63(19) 0.3(3)-2.2(4)-177.1(2)114.3(2)-70.9(2)5.1(2) 180.0(2) -45.6(3)63.2(2)82.7(2) -168.6(2)-30.9(3)84.9(2) -150.9(2)152.47(19) -91.8(2) 32.4(2) 1.2(4)-175.3(2)-1.4(4)0.1(4) 1.4(4) -1.6(4)179.6(2)

C(11)-C(10)-C(15)-C(14)	0.3(4)
P(1)-C(10)-C(15)-C(14)	177.2(2)
C(11)-C(10)-C(15)-S(2)	179.1(2)
P(1)-C(10)-C(15)-S(2)	-4.0(3)
C(14)-C(15)-S(2)-C(16)	-90.5(2)
C(10)-C(15)-S(2)-C(16)	90.7(2)
C(14)-C(15)-S(2)-Pd(1)	155.1(2)
C(10)–C(15)–S(2)–Pd(1)	-23.7(2)
C(15)-S(2)-C(16)-C(17)	72.7(2)
Pd(1)–S(2)–C(16)–C(17)	178.3(2)
C(15)-S(2)-C(16)-C(18)	-164.1(2)
Pd(1)–S(2)–C(16)–C(18)	-58.5(2)
C(1)-P(1)-C(19)-C(20)	94.0(2)
C(10)-P(1)-C(19)-C(20)	-27.8(3)
Pd(1)-P(1)-C(19)-C(20)	-143.45(19)
C(1)-P(1)-C(19)-C(24)	-83.6(2)
C(10)-P(1)-C(19)-C(24)	154.6(2)
Pd(1)-P(1)-C(19)-C(24)	39.0(2)
C(24)-C(19)-C(20)-C(21)	1.4(4)
P(1)-C(19)-C(20)-C(21)	-176.2(2)
C(19)-C(20)-C(21)-C(22)	-2.1(4)
C(20)-C(21)-C(22)-C(23)	0.9(5)
C(21)-C(22)-C(23)-C(24)	0.9(5)
C(22)-C(23)-C(24)-C(19)	-1.6(4)
C(22)-C(23)-C(24)-S(3)	-178.9(2)
C(20)-C(19)-C(24)-C(23)	0.5(4)
P(1)-C(19)-C(24)-C(23)	178.0(2)
C(20)-C(19)-C(24)-S(3)	177.8(2)
P(1)-C(19)-C(24)-S(3)	-4.7(3)
C(23)-C(24)-S(3)-C(25)	-51.3(3)
C(19)-C(24)-S(3)-C(25)	131.5(2)
C(24)-S(3)-C(25)-C(26)	-60.0(3)
<u>C(24)–S(3)–C(25)–C(27)</u>	177.5(2)

[Pd(CH₃COO)(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (**18a**)

Figure 7-55. ¹H NMR (benzene– d_6 , 400MHz).

Figure 7-56. ³¹P NMR (benzene–*d*₆, 162 MHz).

Figure 7-57. ¹³C NMR (benzene–*d*₆, 151 MHz).

Table 7-64. X 線結晶構造解析の結果

Identification code	ro1601a		
Empirical formula	C ₃₀ H ₄₁ O ₃ P Pd S ₃		
Formula weight	683.18		
Temperature	123 K		
Wavelength	0.71075 Å		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 17.2288(19) Å	$\Box \alpha = 90^{\circ}.$	
	b = 9.6579(7) Å	$\Box \beta = 108.3960(18)^{\circ}.$	
	c = 20.616(2) Å	$\Box \gamma = 90^{\circ}.$	
Volume	3255.1(5) Å ³		
Ζ	4		
Density (calculated)	1.394 Mg/m ³		
Absorption coefficient	0.840 mm ⁻¹		
<i>F</i> (000)	1416		
Crystal size	0.30 x 0.13 x 0.07 mm ³		
Theta range for data collection	2.744 to 27.490°.		
Index ranges	-22<= <i>h</i> <=22, -12<= <i>k</i> <=12, -26<= <i>l</i> <=26		
Reflections collected	52001		
Independent reflections	7459 [<i>R</i> (int) = 0.0860]		
Completeness to theta = 25.242° 99.7 %			
Absorption correction	Numerical		
Max. and min. transmission	0.961 and 0.838		
Refinement method	Full-matrix least-squares on	F^2	
Data / restraints / parameters	7459 / 0 / 351		
Goodness-of-fit on F^2	0.911		
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0248, wR2 = 0.0572		
R indices (all data)	R1 = 0.0301, wR2 = 0.0579		
Extinction coefficient n/a			
Largest diff. peak and hole 0.814 and -0.697 e.Å ⁻³			

atom	X	у	Z	U(eq)
Pd(1)	2197(1)	8800(1)	2207(1)	19(1)
C(1)	2940(1)	8967(2)	1609(1)	26(1)
O(1)	1614(1)	7195(1)	1533(1)	28(1)
C(2)	1065(1)	7550(2)	994(1)	28(1)
O(2)	804(1)	8752(2)	859(1)	44(1)
C(3)	714(2)	6411(2)	481(1)	41(1)
P(1)	2932(1)	10214(1)	3014(1)	19(1)
C(4)	2839(1)	9452(2)	3801(1)	25(1)
C(5)	3444(1)	9578(2)	4431(1)	35(1)
C(6)	3359(2)	8911(3)	5000(1)	51(1)
C(7)	2665(2)	8126(3)	4940(1)	56(1)
C(8)	2058(2)	7999(2)	4323(1)	43(1)
C(9)	2139(1)	8680(2)	3752(1)	28(1)
S(1)	1370(1)	8454(1)	2943(1)	27(1)
C(10)	720(1)	10007(2)	2851(1)	35(1)
C(11)	370(2)	10149(3)	3434(1)	61(1)
C(12)	75(2)	9874(3)	2161(1)	56(1)
C(13)	2621(1)	12022(2)	3069(1)	24(1)
C(14)	2441(1)	12475(2)	3652(1)	32(1)
C(15)	2177(2)	13814(2)	3699(1)	42(1)
C(16)	2101(1)	14727(2)	3169(1)	44(1)
C(17)	2286(1)	14324(2)	2593(1)	38(1)
C(18)	2542(1)	12966(2)	2534(1)	27(1)
S(2)	2811(1)	12468(1)	1808(1)	30(1)
C(19)	1911(2)	12998(3)	1107(1)	47(1)
C(20)	1160(2)	12223(3)	1139(1)	56(1)
C(21)	2110(2)	12728(4)	455(1)	71(1)
C(22)	4029(1)	10294(2)	3150(1)	20(1)
C(23)	4409(1)	11558(2)	3130(1)	23(1)
C(24)	5217(1)	11640(2)	3149(1)	27(1)
C(25)	5664(1)	10435(2)	3185(1)	27(1)
C(26)	5306(1)	9173(2)	3219(1)	26(1)
C(27)	4495(1)	9069(2)	3206(1)	22(1)
S(3)	4033(1)	7448(1)	3244(1)	27(1)

Table 7-65. 原子座標と等方性温度因子

C(28)	4895(1)	6388(2)	3745(1)	36(1)	
O(3)	821(1)	9774(2)	-433(1)	56(1)	
C(30)	4530(2)	4963(2)	3758(1)	55(1)	
C(29)	5298(2)	6956(3)	4460(1)	57(1)	

Table 7-66. 結合距離[Å]

Table /-60. 宿?	了此時E[A]
atom-atom	distance / Å
Pd(1)-C(1)	2.0448(18)
Pd(1)-O(1)	2.1124(13)
Pd(1)-P(1)	2.2159(5)
Pd(1)-S(1)	2.4104(5)
C(1)-H(1)	0.9800
C(1)-H(2)	0.9800
C(1)-H(3)	0.9800
O(1)-C(2)	1.257(2)
C(2)-O(2)	1.244(2)
C(2)-C(3)	1.515(3)
C(3)-H(4)	0.9800
C(3)-H(5)	0.9800
C(3)-H(6)	0.9800
P(1)-C(22)	1.8224(18)
P(1)-C(4)	1.8341(19)
P(1)-C(13)	1.8407(18)
C(4)-C(5)	1.390(3)
C(4)-C(9)	1.395(3)
C(5)-C(6)	1.386(3)
C(5)-H(7)	0.9500
C(6)-C(7)	1.387(4)
C(6)-H(8)	0.9500
C(7)-C(8)	1.373(4)
C(7)-H(9)	0.9500
C(8)-C(9)	1.394(3)
C(8)-H(10)	0.9500
C(9)-S(1)	1.785(2)
S(1)-C(10)	1.846(2)
C(10)-C(12)	1.509(3)

C(10)-C(11)	1.511(3)
C(10)-H(11)	1.0000
C(11)-H(12)	0.9800
C(11)-H(13)	0.9800
C(11)-H(14)	0.9800
C(12)-H(15)	0.9800
C(12)-H(16)	0.9800
C(12)-H(17)	0.9800
C(13)-C(14)	1.403(3)
C(13)-C(18)	1.403(3)
C(14)-C(15)	1.384(3)
C(14)-H(18)	0.9500
C(15)-C(16)	1.378(3)
C(15)-H(19)	0.9500
C(16)-C(17)	1.379(3)
C(16)-H(20)	0.9500
C(17)-C(18)	1.401(3)
C(17)-H(21)	0.9500
C(18)-S(2)	1.768(2)
S(2)-C(19)	1.826(2)
C(19)-C(21)	1.512(4)
C(19)-C(20)	1.514(4)
C(19)-H(22)	1.0000
C(20)-H(23)	0.9800
C(20)-H(24)	0.9800
C(20)-H(25)	0.9800
C(21)-H(26)	0.9800
C(21)-H(27)	0.9800
C(21)-H(28)	0.9800
C(22)-C(23)	1.391(3)
C(22)-C(27)	1.414(2)
C(23)-C(24)	1.382(3)
C(23)-H(29)	0.9500
C(24)-C(25)	1.384(3)
C(24)-H(30)	0.9500
C(25)-C(26)	1.378(3)

C(25)-H(31)	0.9500
C(26)-C(27)	1.393(3)
C(26)-H(32)	0.9500
C(27)-S(3)	1.7685(18)
S(3)-C(28)	1.831(2)
C(29)-C(28)	1.520(3)
C(29)-H(33)	0.9800
C(29)-H(34)	0.9800
C(29)-H(35)	0.9800
C(30)-C(28)	1.516(3)
C(30)-H(36)	0.9800
C(30)-H(37)	0.9800
C(30)-H(38)	0.9800
O(3)-H(40)	1.01(3)
O(3)-H(41)	1.00(4)
C(28)-H(39)	1.0000

Table 7-67. 結合角[°]

atom-atom-atom	angle / °	
C(1)-Pd(1)-O(1)	85.40(7)	
C(1)-Pd(1)-P(1)	94.93(6)	
O(1)-Pd(1)-P(1)	170.76(4)	
C(1)-Pd(1)-S(1)	175.96(6)	
O(1)-Pd(1)-S(1)	93.41(4)	
P(1)-Pd(1)-S(1)	85.627(18)	
Pd(1)-C(1)-H(1)	109.5	
Pd(1)-C(1)-H(2)	109.5	
H(1)-C(1)-H(2)	109.5	
Pd(1)-C(1)-H(3)	109.5	
H(1)-C(1)-H(3)	109.5	
H(2)-C(1)-H(3)	109.5	
C(2)-O(1)-Pd(1)	116.72(13)	
O(2)-C(2)-O(1)	124.73(19)	
O(2)-C(2)-C(3)	119.02(18)	
O(1)-C(2)-C(3)	116.24(18)	
C(2)-C(3)-H(4)	109.5	

C(2)-C(3)-H(5)	109.5
H(4)-C(3)-H(5)	109.5
C(2)-C(3)-H(6)	109.5
H(4)-C(3)-H(6)	109.5
H(5)-C(3)-H(6)	109.5
C(22)-P(1)-C(4)	104.90(8)
C(22)-P(1)-C(13)	104.99(8)
C(4)-P(1)-C(13)	102.59(8)
C(22)-P(1)-Pd(1)	117.42(6)
C(4)-P(1)-Pd(1)	103.19(6)
C(13)-P(1)-Pd(1)	121.49(6)
C(5)-C(4)-C(9)	119.39(18)
C(5)-C(4)-P(1)	122.86(16)
C(9)-C(4)-P(1)	117.72(14)
C(6)-C(5)-C(4)	120.1(2)
C(6)-C(5)-H(7)	119.9
C(4)-C(5)-H(7)	119.9
C(5)-C(6)-C(7)	119.8(2)
C(5)-C(6)-H(8)	120.1
C(7)-C(6)-H(8)	120.1
C(8)-C(7)-C(6)	121.0(2)
C(8)-C(7)-H(9)	119.5
C(6)-C(7)-H(9)	119.5
C(7)-C(8)-C(9)	119.3(2)
C(7)-C(8)-H(10)	120.3
C(9)-C(8)-H(10)	120.3
C(8)-C(9)-C(4)	120.4(2)
C(8)-C(9)-S(1)	119.27(17)
C(4)-C(9)-S(1)	120.22(14)
C(9)-S(1)-C(10)	104.14(10)
C(9)-S(1)-Pd(1)	99.17(6)
C(10)-S(1)-Pd(1)	106.40(7)
C(12)-C(10)-C(11)	113.4(2)
C(12)-C(10)-S(1)	105.70(16)
C(11)-C(10)-S(1)	111.90(16)
C(12)-C(10)-H(11)	108.6

C(11)-C(10)-H(11)	108.6
S(1)-C(10)-H(11)	108.6
C(10)-C(11)-H(12)	109.5
C(10)-C(11)-H(13)	109.5
H(12)-C(11)-H(13)	109.5
C(10)-C(11)-H(14)	109.5
H(12)-C(11)-H(14)	109.5
H(13)-C(11)-H(14)	109.5
C(10)-C(12)-H(15)	109.5
C(10)-C(12)-H(16)	109.5
H(15)-C(12)-H(16)	109.5
C(10)-C(12)-H(17)	109.5
H(15)-C(12)-H(17)	109.5
H(16)-C(12)-H(17)	109.5
C(14)-C(13)-C(18)	118.56(17)
C(14)-C(13)-P(1)	119.71(14)
C(18)-C(13)-P(1)	121.72(14)
C(15)-C(14)-C(13)	121.1(2)
C(15)-C(14)-H(18)	119.4
C(13)-C(14)-H(18)	119.4
C(16)-C(15)-C(14)	119.6(2)
C(16)-C(15)-H(19)	120.2
C(14)-C(15)-H(19)	120.2
C(15)-C(16)-C(17)	120.8(2)
C(15)-C(16)-H(20)	119.6
C(17)-C(16)-H(20)	119.6
C(16)-C(17)-C(18)	120.2(2)
C(16)-C(17)-H(21)	119.9
C(18)-C(17)-H(21)	119.9
C(17)-C(18)-C(13)	119.73(19)
C(17)-C(18)-S(2)	120.04(16)
C(13)-C(18)-S(2)	120.17(15)
C(18)-S(2)-C(19)	102.14(11)
C(21)-C(19)-C(20)	112.9(2)
C(21)-C(19)-S(2)	106.31(18)
C(20)-C(19)-S(2)	110.51(16)

C(21)-C(19)-H(22)	109.0
C(20)-C(19)-H(22)	109.0
S(2)-C(19)-H(22)	109.0
C(19)-C(20)-H(23)	109.5
C(19)-C(20)-H(24)	109.5
H(23)-C(20)-H(24)	109.5
C(19)-C(20)-H(25)	109.5
H(23)-C(20)-H(25)	109.5
H(24)-C(20)-H(25)	109.5
C(19)-C(21)-H(26)	109.5
C(19)-C(21)-H(27)	109.5
H(26)-C(21)-H(27)	109.5
C(19)-C(21)-H(28)	109.5
H(26)-C(21)-H(28)	109.5
H(27)-C(21)-H(28)	109.5
C(23)-C(22)-C(27)	118.43(17)
C(23)-C(22)-P(1)	120.48(13)
C(27)-C(22)-P(1)	120.76(14)
C(24)-C(23)-C(22)	121.90(17)
C(24)-C(23)-H(29)	119.1
C(22)-C(23)-H(29)	119.1
C(23)-C(24)-C(25)	119.46(18)
C(23)-C(24)-H(30)	120.3
C(25)-C(24)-H(30)	120.3
C(26)-C(25)-C(24)	119.73(18)
C(26)-C(25)-H(31)	120.1
C(24)-C(25)-H(31)	120.1
C(25)-C(26)-C(27)	121.66(18)
C(25)-C(26)-H(32)	119.2
C(27)-C(26)-H(32)	119.2
C(26)-C(27)-C(22)	118.80(17)
C(26)-C(27)-S(3)	121.66(14)
C(22)-C(27)-S(3)	119.53(14)
C(27)-S(3)-C(28)	102.99(9)
C(28)-C(29)-H(33)	109.5
C(28)-C(29)-H(34)	109.5

H(33)-C(29)-H(34)	109.5
C(28)-C(29)-H(35)	109.5
H(33)-C(29)-H(35)	109.5
H(34)-C(29)-H(35)	109.5
C(28)-C(30)-H(36)	109.5
C(28)-C(30)-H(37)	109.5
H(36)-C(30)-H(37)	109.5
C(28)-C(30)-H(38)	109.5
H(36)-C(30)-H(38)	109.5
H(37)-C(30)-H(38)	109.5
H(40)-O(3)-H(41)	101(3)
C(30)-C(28)-C(29)	112.04(19)
C(30)-C(28)-S(3)	104.57(16)
C(29)-C(28)-S(3)	112.71(16)
C(30)-C(28)-H(39)	109.1
C(29)-C(28)-H(39)	109.1
S(3)-C(28)-H(39)	109.1

Table 7-68. 異方性温度因子

			•			
atom	U11	U22	U33	U23	U13	U12
Pd(1)	18.02(7)	18.19(7)	20.9(7)	-0.61(5)	7.36(5)	0.75(6)
C(1)	25.3(10)	32.9(11)	21.7(9)	-0.6(8)	11.2(7)	2.7(8)
O(1)	29(7)	23.7(7)	28(7)	-0.9(6)	3(6)	-2.3(6)
C(2)	27(10)	31.8(11)	27.6(10)	0.7(8)	10.3(8)	-2(9)
O(2)	46.7(10)	37.3(9)	41.5(8)	5.5(7)	4(7)	12.1(7)
C(3)	41.9(13)	41.8(14)	30.6(11)	-3.3(10)	-0.1(9)	-4(10)
P(1)	20.8(2)	16.1(2)	21.1(2)	-0.52(17)	9.76(18)	0.57(18)
C(4)	34.3(11)	20.9(9)	22.9(9)	-0.7(7)	14.9(8)	6(8)
C(5)	42.1(13)	36.5(12)	25.6(10)	-3.3(9)	10.4(9)	7.1(10)
C(6)	65.7(17)	65(18)	22(10)	3.8(11)	13.6(11)	15(14)
C(7)	81(2)	61.7(18)	34.8(13)	17(12)	32.8(13)	12.1(15)
C(8)	57.6(15)	39.8(13)	41.9(13)	12(10)	32.2(12)	5.3(11)
C(9)	37.3(11)	23.6(10)	30.8(10)	2.3(8)	20.4(9)	5.3(9)
S (1)	26.8(2)	22.8(2)	36.3(3)	1(2)	17.9(2)	-1.76(19)
C(10)	30.2(11)	33(12)	47.4(12)	1.9(10)	22(10)	5.6(9)
C(11)	64.2(18)	68.7(19)	66.6(17)	7.5(14)	45.3(15)	25.9(15)

C(12)	39.8(14)	68.8(19)	57.4(16)	-0.6(14)	10.9(12)	21.1(13)
C(13)	20.7(9)	18.6(9)	32.4(10)	-1.7(8)	10(8)	1.7(7)
C(14)	37.2(12)	24.9(10)	38.4(11)	-3.8(9)	16.6(9)	4.4(9)
C(15)	45.8(14)	30.7(12)	53.2(14)	-12.8(11)	22.7(11)	4.9(10)
C(16)	40.7(13)	22.6(11)	71.1(17)	-6.2(11)	19(12)	8.3(10)
C(17)	31.3(12)	22.7(11)	56.6(14)	7.4(10)	11.1(10)	4.6(9)
C(18)	18(9)	23.7(10)	40.5(11)	2.2(9)	9.2(8)	1.5(8)
S(2)	26(3)	30.8(3)	35.2(3)	9.3(2)	12.7(2)	1.1(2)
C(19)	49.3(15)	40(14)	41.8(13)	15.4(11)	0.8(11)	10.8(11)
C(20)	30.7(13)	65.4(18)	58.2(15)	1.6(13)	-5.2(11)	8.4(12)
C(21)	87(2)	83(2)	38(14)	20.5(14)	13.1(14)	0.9(18)
C(22)	21(9)	19.9(9)	18.7(8)	-1.5(7)	6(7)	0.8(7)
C(23)	22.5(9)	18.9(9)	26.7(9)	0.4(7)	5.1(7)	1.6(7)
C(24)	24.1(10)	24.7(10)	29.6(10)	1.6(8)	5.3(8)	-5.6(8)
C(25)	21.1(10)	32.2(11)	26.8(10)	0.2(8)	6.9(8)	0.2(8)
C(26)	24(10)	24.9(10)	27.2(9)	-0.4(8)	7.7(8)	4.4(8)
C(27)	25.1(9)	19.4(9)	21.3(8)	-1.8(7)	7.9(7)	1.2(7)
S(3)	29.3(3)	16.5(2)	37.7(3)	-0.3(2)	12.5(2)	1.36(19)
C(29)	74(19)	41.7(15)	40.8(13)	8.9(11)	-4.1(12)	-6.3(14)
C(30)	66.7(18)	21.4(12)	65.8(17)	7.8(11)	5.7(14)	2.2(12)
O(3)	50.9(12)	72(13)	50.3(11)	11.6(10)	21.1(9)	13.4(10)
C(28)	41.5(13)	23(11)	39(12)	4.3(9)	5.9(9)	5.4(9)atom

Table 7-69. ねじれ角[°]

atom–atom–atom	angle / °
Pd(1)-O(1)-C(2)-O(2)	-5.7(3)
Pd(1)-O(1)-C(2)-C(3)	173.76(14)
C(22)-P(1)-C(4)-C(5)	27.31(18)
C(13)-P(1)-C(4)-C(5)	-82.18(17)
Pd(1)-P(1)-C(4)-C(5)	150.80(15)
C(22)-P(1)-C(4)-C(9)	-150.61(14)
C(13)-P(1)-C(4)-C(9)	99.90(15)
Pd(1)-P(1)-C(4)-C(9)	-27.12(15)
C(9)-C(4)-C(5)-C(6)	1.6(3)
P(1)-C(4)-C(5)-C(6)	-176.24(17)
C(4)-C(5)-C(6)-C(7)	-0.5(4)

C(5)-C(6)-C(7)-C(8)C(6)-C(7)-C(8)-C(9)C(7)-C(8)-C(9)-C(4)C(7)-C(8)-C(9)-S(1)C(5)-C(4)-C(9)-C(8)P(1)-C(4)-C(9)-C(8)C(5)-C(4)-C(9)-S(1)P(1)-C(4)-C(9)-S(1)C(8)-C(9)-S(1)-C(10)C(4)-C(9)-S(1)-C(10)C(8)-C(9)-S(1)-Pd(1)C(4)-C(9)-S(1)-Pd(1)C(9)-S(1)-C(10)-C(12)Pd(1)-S(1)-C(10)-C(12)C(9)-S(1)-C(10)-C(11)Pd(1)-S(1)-C(10)-C(11)C(22)-P(1)-C(13)-C(14)C(4)-P(1)-C(13)-C(14)Pd(1)-P(1)-C(13)-C(14)C(22)-P(1)-C(13)-C(18)C(4)-P(1)-C(13)-C(18)Pd(1)-P(1)-C(13)-C(18)C(18)-C(13)-C(14)-C(15)P(1)-C(13)-C(14)-C(15)C(13)-C(14)-C(15)-C(16) C(14)-C(15)-C(16)-C(17)C(15)-C(16)-C(17)-C(18) C(16)-C(17)-C(18)-C(13)C(16)-C(17)-C(18)-S(2)C(14)-C(13)-C(18)-C(17)P(1)-C(13)-C(18)-C(17)C(14)-C(13)-C(18)-S(2)P(1)-C(13)-C(18)-S(2)C(17)-C(18)-S(2)-C(19)C(13)-C(18)-S(2)-C(19)C(18)-S(2)-C(19)-C(21)

-0.1(4)-0.5(4)1.7(3) 177.33(19) -2.2(3)175.75(16) -177.86(15)0.1(2) 98.95(18) -85.39(17) -151.44(16)24.22(16) 178.35(16) 74.14(16) -57.7(2)-161.95(17)-105.60(16) 3.82(18) 118.09(15) 75.59(17) -174.99(15)-60.72(17) 1.2(3)-177.66(17) -1.0(3)-0.1(4)1.1(3) -1.0(3)-177.98(17) -0.2(3)178.64(15) 176.83(15) -4.3(2)-52.84(19) 130.15(17) 175.21(18)

C(18)–S(2)–C(19)–C(20)	-61.9(2)
C(4)–P(1)–C(22)–C(23)	-120.35(15)
C(13)–P(1)–C(22)–C(23)	-12.61(16)
Pd(1)-P(1)-C(22)-C(23)	125.82(13)
C(4)-P(1)-C(22)-C(27)	66.32(15)
C(13)–P(1)–C(22)–C(27)	174.06(14)
Pd(1)-P(1)-C(22)-C(27)	-47.51(16)
C(27)-C(22)-C(23)-C(24)	1.4(3)
P(1)-C(22)-C(23)-C(24)	-172.11(14)
C(22)-C(23)-C(24)-C(25)	0.3(3)
C(23)-C(24)-C(25)-C(26)	-1.5(3)
C(24)-C(25)-C(26)-C(27)	1.1(3)
C(25)-C(26)-C(27)-C(22)	0.6(3)
C(25)-C(26)-C(27)-S(3)	179.67(14)
C(23)-C(22)-C(27)-C(26)	-1.8(3)
P(1)-C(22)-C(27)-C(26)	171.68(13)
C(23)-C(22)-C(27)-S(3)	179.13(13)
P(1)-C(22)-C(27)-S(3)	-7.4(2)
C(26)–C(27)–S(3)–C(28)	29.95(18)
C(22)–C(27)–S(3)–C(28)	-151.00(15)
C(27)–S(3)–C(28)–C(30)	-177.15(16)
C(27)–S(3)–C(28)–C(29)	60.90(19)

[Pd(CH₃COO)(CH₃)P(C₆H₄-2-SC(CH₃)₃)₃] (**18b**)

Figure 7-58. ¹H NMR (benzene- d_6 , 400 MHz).

Figure 7-59.³¹P NMR (benzene-*d*₆, 162 MHz).

 $[Pd(SC_6H_5)(CH_3)P(C_6H_4-2-SCH(CH_3)_2)_3]$ (19a)

Figure 7-60. ¹H NMR (acetone-*d*₆, 400 MHz).

Figure 7-61.³¹P NMR (acetone-*d*₆, 162 MHz).

Figure 7-62. ¹³C NMR (acetone-*d*₆, 151 MHz).

[Pd(OC₆H₅)(CH₃)P(C₆H₄-2-SCH(CH₃)₂)₃] (**20a**)

Figure 7-63. ¹H NMR (acetone–*d*₆, 400 MHz).

Figure 7-64. ³¹P NMR (acetone–*d*₆, 162 MHz).

Figure 7-65. ¹³C NMR (acetone–*d*₆, 151 MHz).