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Disrupted local beta band networks in schizophrenia revealed
through graph analysis: A magnetoencephalography study

Minami Tagawa, MD,1,2 Yuichi Takei, MD, PhD ,1* Yutaka Kato, MD, PhD,1,3 Tomohiro Suto, MD, PhD,2

Naruhito Hironaga, PhD,4 Takefumi Ohki, PhD,5 Yumiko Takahashi, MD, PhD,1 Kazuyuki Fujihara, MD, PhD,1,6

Noriko Sakurai,1 Koichi Ujita,7 Yoshito Tsushima, MD, PhD7 and Masato Fukuda, MD, PhD1

Aims: Schizophrenia (SZ) is characterized by psychotic
symptoms and cognitive impairment, and is hypothesized to
be a ‘dysconnection’ syndrome due to abnormal neural net-
work formation. Although numerous studies have helped
elucidate the pathophysiology of SZ, many aspects of the
mechanism underlying psychotic symptoms remain
unknown. This study used graph theory analysis to evaluate
the characteristics of the resting-state network (RSN) in
terms of microscale and macroscale indices, and to identify
candidates as potential biomarkers of SZ. Specifically, we
discriminated topological characteristics in the frequency
domain and investigated them in the context of psychotic
symptoms in patients with SZ.

Methods: We performed graph theory analysis of electro-
physiological RSN data using magnetoencephalography to
compare topological characteristics represented by micro-
scale (degree centrality and clustering coefficient) and mac-
roscale (global efficiency, local efficiency, and small-
worldness) indices in 29 patients with SZ and 38 healthy

controls. In addition, we investigated the aberrant topologi-
cal characteristics of the RSN in patients with SZ and their
relationship with SZ symptoms.

Results: SZ was associated with a decreased clustering coef-
ficient, local efficiency, and small-worldness, especially in the
high beta band. In addition, macroscale changes in the low
beta band are closely associated with negative symptoms.

Conclusions: The local networks of patients with SZ may
disintegrate at both the microscale and macroscale levels,
mainly in the beta band. Adopting an electrophysiological
perspective of SZ as a failure to form local networks in the
beta band will provide deeper insights into the pathophysiol-
ogy of SZ as a ‘dysconnection’ syndrome.
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Schizophrenia (SZ) is considered one of the most debilitating psychi-
atric disorders, owing to the profound cognitive dysfunction associ-
ated with this condition. Although numerous studies have helped
elucidate the pathophysiology of SZ, many aspects of the mechanism
underlying psychotic symptoms remain unknown. Interestingly, alter-
ations in neural activity in certain neurophysiological circuits of the
brain have been observed to induce pathological symptoms, such as
disconnection syndrome1–4 and cognitive impairment.5,6

This disconnection hypothesis adds the perspective of large cor-
tical networks to the pathophysiology of SZ. First proposed in the
19th century, this hypothesis emphasized that reduced interactions
among brain regions may result from abnormal axonal connections.3

This concept was recently revived because of the important contribu-
tions of Friston and Frith.1 Pettersson-Yeo et al. reviewed evidence
from emerging functional magnetic resonance imaging (fMRI) stud-
ies, which showed reduced functional interactions among brain
regions identified by the correlation of blood oxygenation level-
dependent signals.7 Subsequently, Uhlhaas et al. modified the original
term disconnection (‘dis’ = ‘apart’) to dysconnection to emphasize

that functional and anatomical connectivity are not generally reduced,
but may also involve abnormal increases in SZ (‘dys’ = ‘bad,’ ‘dis-
ease’).8 Indeed, a review of EEG/magnetoencephalography (MEG)
studies of the resting-state network (RSN) in SZ showed inconsistent
connectivity strength patterns of increased, decreased, and non-
significant effects ranging from delta through to gamma for both
source-level and sensor-level analysis methods.9 Despite the inconsis-
tency in connectivity strength changes, SZ consistently exhibits psy-
chotic symptoms, such as positive and negative symptoms. Therefore,
we considered the change of ‘architecture’ of the connectivity of the
RSN; that is a topological change in RSN is more important for
symptom formation rather than individual connectivity strength
change among brain regions in the pathophysiology of SZ.

Recently, the concept of functional templates has been devel-
oped.10 A functional template is a partial connectivity set of RSN that
expects or processes upcoming stimuli and events, both with and
without explicit stimuli or tasks. This concept is based on studies
using fMRI that showed that the RSN typically remains unchanged
once a task begins, and that the RSN correlates with perceptual and
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behavioral performance.11 The interactions between neural activities
in brain regions formed at various frequencies in the resting state act
as functional templates in the resting state and task-related activi-
ties.12 Previous studies have shown that whole-brain network struc-
tures across dozens of task states are very similar to the RSN
structures.11 This suggests the existence of a functional template that
serves as the standard architecture for functional brain organization.
Furthermore, the small but consistent changes that were common
across tasks suggest the existence of a task-general network architec-
ture that distinguishes between task and resting states.12 These results
indicate that the functional network architecture during task execution
is primarily shaped by functional templates that also exist at rest, and
secondarily by evoked task-general and task-specific network
changes. This indicates a strong relationship between the RSN and
functional connectivity evoked during the task. These mechanisms
are thought to be responsible for cognitive functioning,10 and indeed,
results have been obtained correlating RSN with perceptual and
behavioral performance.13,14

Patients with SZ show deficits in extensive cognitive domains,15

which may be due to changes in the network structure that lead to
various cognitive functions. There are several reports on cognitive
functions and network changes in SZ.16,17 These findings suggest that
the symptoms of SZ may be interpreted as a disruption of the func-
tional template resulting from abnormal interactions among brain
regions. We postulated that ‘dysconnection’ in SZ is related to the
disruption of the functional template, and that it is important to assess
the functional template of RSN.

Owing to the complicated structure of the RSN, it is not possible
to quantify the properties that reflect the entire picture by comparing
the strength of connectivity among brain regions. Therefore, an
advanced analysis is required to quantify the characteristics that
reflect the entire picture of the RSN. The present study used a graph
theory-based analysis, which has provided insights into topological
characteristics, such as the imbalance between local and distributed
interactions in the SZ.18,19 A graph, a mathematical representation of
the network, consists of vertices (nodes) and edges (also called links).
In this case, the vertices correspond to brain regions, and edges repre-
sent connections or statistical dependencies between vertices.20 Sev-
eral measures were used to characterize the graphs. The path length is
the most commonly used parameter. A path is a trial in which all ver-
tices are distinct, and the path length expresses the paths through
which the information travels from one vertex to the remote vertices.
The shortest path length is that with the minimum number of edges
between two vertices. By applying graph theory to the analysis of
brain networks, we were able to evaluate microscale indices, and thus
observe how brain activation forms clusters and how these focus on a
particular region, and macroscale indices, which reflect the quality
and degree of local and global connections of the entire brain.

In this study, microscale indices such as degree centrality (DG-
CENT) and clustering coefficient (C-COEF) were used to indicate
how the vertex (a marked point on the cortex) is functionally con-
nected to other vertices. DG-CENT represents the number of edges
on the vertex, indicating the importance of the vertex in the brain net-
work. C-COEF is calculated based on the number of edges between
neighboring vertices around the vertex, and C-COEF indicates the
local cluster coefficient but not the mean clustering coefficient in this
study. The term ‘neighboring vertices’ refers to other vertices that are
connected to that vertex. C-COEF is a representative measure of func-
tional segregation, the ability of specialized processing within densely
interconnected groups of brain regions.20 Macroscale indices include
local efficiency (LOC-E), global efficiency (GLOB-E), and small-
worldness (SWN). GLOB-E expresses the efficiency of information
transfer to the entire network. LOC-E reveals how much the system is
fault-tolerant; thus, it measures the efficiency of communication
between the neighbors of a node when the node is removed.21 While
random networks are characterized by weak clustering and high
global integration, a network with a high SWN is characterized by
strong clustering and high global integration.22

Studies using MEG, with a temporal resolution of milliseconds,
can identify local and long-range changes in differentiated neural syn-
chronization patterns. MEG addresses the discriminated frequency
range that fMRI cannot capture,23–26 because it detects fast rhythmic
fluctuations in activity with periodicity in multiple frequency bands,
ranging from <1 Hz to well above 100 Hz. In recent years, there have
been some reports of an association between resting activity, differen-
tiated by carrier frequency, and gamma-amino butyric acid levels
assessed by magnetic resonance spectroscopy (MRS). The carrier fre-
quency of the RSN has different physiological implications, such as
neurotransmitter concentration, and provides key information for
understanding the pathology of SZ.27–29 Recently, MEG analysis tools
have remarkably improved,30,31 and the MEG oscillatory network is
comparable to the fMRI network.23,24 The results of previous fMRI
studies have increased the credibility of resting networks analyzed by
MEG. In addition, a higher temporal resolution than fMRI allows for
more detailed frequency analysis. However, few studies have analyzed
the resting network in SZ using MEG,32–36 and only one study inves-
tigated the topological characteristics of SZ using graph analysis.37

Their study had a small sample size, calculated network connectivity
by the coherence method without source leakage correction, and eval-
uated only limited types of graph metrics (degree, path length, and
small-worldness).

In this study, we hypothesized that psychotic symptoms in SZ
originate from changes in the topological characteristics of local and
global networks across different frequency bands and evaluated the
topological characteristics of local and global networks in patients
with SZ and their relationship with psychotic symptoms.

Methods
Participants
Forty-three patients with SZ and 38 healthy controls (HCs) were rec-
ruited from Gunma University Hospital, Japan (Table 1) between
September 2014 and February 2020. This study was approved by the
ethics committee of the Gunma University Hospital. After a detailed
description of the study, each participant provided written informed
consent before the start of the study. This study was conducted
according to the principles of the Declaration of Helsinki. We used
the Edinburgh Handedness Inventory to ensure that all the registered
participants were right-handed.38 To diagnose SZ and exclude partici-
pants with a history of psychiatric disorders from the HCs, we con-
ducted the Structured Clinical Interview for DSM Disorders, 4th
Edition Axis I39 and Axis II Disorders.40 Psychopathology ratings
were obtained using the Positive and Negative Syndrome Scale
(PANSS),41 Japanese Adult Reading Test (JART),42 and Global
Assessment of Functioning (GAF).43 We calculated the chlorproma-
zine equivalent dose of antipsychotics for SZ.44 Details of the recruit-
ment of participants are provided in the Appendix S1.

MEG data acquisition and preprocessing
We acquired 7 min of MEG data for each patient. The only instruc-
tions for participants were to relax with their eyes open, gazing at a
fixed point, and to remain awake in an upright position during acqui-
sition. MEG data were acquired inside a magnetically shielded room
(JFE Mechanical Co., Tokyo, Japan) using a 306-channel Elekta Neu-
roMag (Oy, Helsinki, Finland).

We used the Stanford Sleepiness Scale45 to evaluate the extent
of sleepiness (i.e. check awake levels) during MEG acquisition. There
was no significant difference in sleepiness between the SZ and HC
groups (median, interquartile range: 3.0, 2.0–4.0 vs 3.0, 3.0–4.0, z-
score = �0.386, P = 0.3445). Data from 14 SZ patients were
excluded owing to excessive artifacts (5 SZ), interruption of MEG
measurement (4 SZ), and failure of FreeSurfer reconstruction (5 SZ),
resulting in a final sample of 29 SZ patients (Table 1).

For preprocessing, we applied the ‘oversampled temporal projec-
tion ‘method, signal space separation method,46,47 notch filter, and
independent component analysis (ICA) to the sensor data (Fig. 1a).
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The details of data acquisition and preprocessing are described in the
Appendix S1.

MEG source imaging
We applied a source localization analysis to MEG time-series data by
using the minimum norm estimates (MNE) suite and MNE Python.48

The FreeSurfer reconstruction process was used to generate individual
T1-weighed MRI data (details of scanning are provided in the
Appendix S1) and cortical reconstructions for each participant.49–51

The boundary element method using a single compartment sur-
rounded by the inner surface of the skull was used for head model-
ing.52 Noise-normalized dynamic statistical parameter mapping was
further applied to estimate the current source waveform using the
noise covariance matrix created from the entire empty room
measurement.53

Connectivity analysis for RSNs
The schematic images of the data analysis procedure used in this
study are shown in Fig. 1. First, source distribution was evaluated
using the aforementioned method (Fig. 1a). We then acquired the
morphed source distribution using ‘fsaverage’ and the reconstructed
brain surface was decimated to 1000 vertices (Fig. 1b). One of the
major problems in estimating connectivity in MEG analysis is source
leakage.54 There are two ways to deal with this problem: using source
leakage-independent indices, such as imaginary coherence and the
phase lag index, or using orthogonalized amplitude envelope correla-
tion.55 The former results from the phase coupling of band-limited
oscillating signals, whereas the latter results from the coupling of ape-
riodic fluctuations of the signal envelope per frequency band. Func-
tional coupling provides a tuning window for spatially separated

neuronal populations to increase or decrease excitability, and both
approaches reflect similar intrinsic functional connectivity.56 Evalua-
tion by envelope correlation is thought to adjust on a longer time-
scale, whereas phase coupling adjusts on a faster timescale. In our
study, we used orthogonalized envelope correlations, as we thought it
would be more suitable for assessing consistent patterns of the resting
state network and not for assessing transient network formation, such
as stimulus-related changes. Furthermore, the orthogonalized enve-
lope correlation showed the most stable results from the viewpoint of
group-level repeatability, within-subject consistency, and between-
subject consistency in previous studies that examined the stability of
connectivity assessment.57 We applied source leakage correction to
MEG data using ‘envelope correlation’ that was implemented in
MNE python24,58 at delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
low beta (13–20 Hz), high beta (20–30 Hz), and gamma (30–80 Hz)
bands (Fig. 1c). The high beta band (20–29 Hz) is sometimes
included as part of the gamma band in data analysis, and the basic
inhibition-based mechanisms underlying gamma rhythms have been
shown experimentally to extend into this range.59 Therefore, we
divided the beta band activity into low-and high-beta bands. The
details of the formula for the orthogonal envelope correlation are pro-
vided in the Appendix S1. After calculating the median sliding corre-
lation values (Fig. S1), graph theory analysis was performed on these
values, as described below.

Graph analysis
The connectivity matrices were evaluated using undirected graph
analysis as both microscale and macroscale indices to characterize the
RSN in each frequency band. The details of the formula for the
graph-theoretical measures are provided in the Appendix S1. In this
graph analysis,20–22,60–63 each brain region where the source time

Table 1. Participant characteristics

SZ HC

χ2 P

Total cases n = 43
Dropped cases n = 14
Survived cases n = 29

Total cases n = 38
Dropped cases n = 0
Survived cases n = 38

M F M F 0 1
Sex (male) 12 17 16 22

Mean SD Mean SD t P

Age (year) 40.8 6.7 40.4 6.1 −0.249 0.8038
Age range (year) 28–52 29–55
JART 105.4 12 110.8 7.2 2.325 0.0232*
GAF 48.1 11.3

PANSS Mean SD

Positive symptoms 13.6 5.8
Negative symptoms 19.0 7.9
General psychopathology 31.3 11.0
Total score 63.8 22.6

Medications Mean SD n

Antipsychotic (chlorpromazine equivalent dose mg/day) 451.0 414.7 24
Antidepressant (imipramine equivalent dose mg/day) 2.6 14 2
Anxiolytic (diazepam equivalent dose mg/day) 0.7 3 2
Hypnotic (flunitrazepam equivalent dose mg/day) 0.6 0.9 11

*Indicate statistically significant results: P < 0.05.
GAF, Global Assessment of Functioning; HC, healthy controls; JART, Japanese Adult Reading Test; PANSS, Positive and Negative Syndrome
Scale; SZ, schizophrenia patients; SD, standard deviation.
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course was acquired was defined as a vertex, and the binarized connec-
tivity between vertices was defined as an edge. A connectivity matrix A,
which included orthogonal correlations between all N � N vertex pairs
(N = 1000 in the present case) at each frequency band (we used six fre-
quency ranges as described in subsection Connectivity analysis for
resting-state networks), was calculated for each subject to apply graph
theory to the extracted source waveform. Next, an adjacency matrix B,
consisting of binarized connectivity indices (i.e. edges), was calculated
over a threshold range of 5–30% in increments of 5% (six steps) to eval-
uate the topological indices. Matrix B was used to ensure an equal num-
ber of edges for all the participants (Fig. S2, Table S1). We then
computed the topological characteristics of the microscale, DG-CENT,
and C-COEF. DG-CENT is a simple centrality measure that counts the
number of neighboring vertices that are present. C-COEF measures the
clustering of vertices in a graph. The C-COEF of a vertex can be evalu-
ated by calculating the number of neighboring vertices that are connected
to each other. Triangles are formed when adjacent vertices are connected.
The degree of clustering can be evaluated by taking the ratio of the num-
ber of triangles to the maximum possible number of triangles centered
on the vertex.

Next, we calculated the topological characteristics at the mac-
roscale (GLOB-E, LOC-E, and SWN). GLOB-E measures provide
an indication of how effectively information is integrated through-
out the network and is related to the average inverse shortest path
length in the network. LOC-E provides an indication of how effec-
tively information is integrated among the nearest neighboring ver-
tices of a given network vertex and indicates how efficiently
neighboring vertices can communicate once a vertex is removed.
Small-world networks are a class of networks that are highly clus-
tered, similar to regular lattice graphs, and have an average shortest
path length similar to random graphs.62 A lattice graph is a graph
in which the vertices are such that each vertex connects to the sub-
sequent vertices, which are exactly one unit away from it, and is

characterized by high clustering. A random graph is a graph in
which the connections between vertices are determined randomly,
and the graph is characterized by a low shortest path length. SWN
is a measure of the balance between local and global connections.60

The SWN is measured by the mean C-COEF across all vertices and
the average shortest path length, L.

Statistical analyses
We compared the graph theory indices between the HC and SZ
groups using the Mann–Whitney rank test in SciPy64 because the dis-
tribution of the graph indices indicated a non-Gaussian distribution.
We applied a false discovery rate correction (FDR) to the P-values of
DG-CENT and C-COEF for the number of frequencies (6) � number
of thresholds (6) � number of vertices (1000) and to the p-values of
GLOB-E, LOC-E, and SWN for the number of frequencies (6) �
number of thresholds (6) to avoid type 1 errors.65

A multiple stepwise linear regression analysis was conducted to
examine the relationship between significantly different graph indices in
SZ and clinical measures. Before the regression analysis, we investi-
gated the partial correlation between independent factors. The results
showed a high correlation between sleepiness before and during the
measurements (r = 0.683, P = 0.0001). We also found a high correla-
tion between LOC-E and GLOB-E (r = 0.500, P = 0.0068 at the low
beta band), and LOC-E and SWN (r = 0.999, P < 0.0001 at the low
beta band) were also highly correlated. Therefore, we conducted three
models using any one of graph index (GLOB-E, LOC-E, or SWN) as
independent variables to avoid multicollinearity. We used clinical mea-
sures (PANSS and GAF) as dependent variables and graph index, sex,
age, the dosage of antipsychotics, sleepiness during measurement, and
JART as independent variables in this multiple regression analysis. Var-
iables were excluded based on the Akaike information criterion (AIC)
to select the model with the minimum AIC.
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Fig.1 A scheme of the analysis flow. (a) Starting from sensor detections from 306-ch MEG. (b) The source distribution image was estimated using MNE, and source
waveforms were extracted from 1000 vertices. (c) The correlation of the power envelopes of the corrected source waveforms. (d) The threshold level in the correlation
matrix was adjusted, ranging from 5 to 30% in increments of 5%; all parameter settings, such as the density or number of connections of the network, were identified
across all individuals. (e) The graph matrices were calculated from adjacency matrices. MEG, magnetoencephalography; MNE, minimum norm estimates.
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Results
Original correlation matrix
First, we describe the original correlation matrix and provide an overview of
the differences between the SZ and HC groups (Fig. S1). Connectivity of

the two groups showed similar distributions for each frequency band. The
correlation values at each threshold of the SZ group were lower than those
of the HC group in the alpha and low beta bands (Table S1). However, there
were no significant differences in the delta, theta, and gamma bands.
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Fig.2 Topological characteristics of the vertex level. (a) DG-CENT and C-COEF of the HC group (blue) and the SZ group (red) at thresholding 20%. The two columns on the left
indicate DG-CENT, and the two columns on the right indicate C-COEF at each frequency band. The circles (blue or red) indicate median values of each index, and the translu-
cent bands indicate standard error. Each figure is separated by brain regions with dashed lines. The black squares indicated the C-COEF that showed a remarkable difference
between HC and SZ. (b) Distribution of the z-scores calculated using Mann–Whitney U-test of the C-COEF between the HC and SZ groups at the high beta band at a threshold
of 20%. The regions that showed significant differences are colored blue or yellow-red under FDR-corrected p 5%. The blue regions indicate that the SZ group has significantly
lower values than the HC group. Histogram plots show the clustering coefficients of each group (HC group; blue, SZ group; red) at the vertex pointed by the arrow. A.U., arbi-
trary unit; C-COEF, clustering coefficient; DG-CENT, degree centrality; FDR, false discovery rate; HC, healthy control; l, left; r, right; SZ, schizophrenia.
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Topological characteristics of microscale indices
First, we compared DG-CENT and C-COEF as the topological character-
istics of the microscale indices to investigate the differences in the charac-
teristics of each vertex between the HC and SZ groups (Fig. 2, Table 2).

There was no significant difference in DG-CENT between the SZ and
HC groups on the vertices in any frequency band (Fig. 2a, left). However,
significant differences were clearly observed in the C-COEF at the 20%
threshold between the SZ and HC groups, especially in the alpha,
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Fig.3 Topological characteristics of the macroscale and Spearman’s rank correlation between graph indices and clinical measures. (a) Local efficiency and SWN of SZ and HC
groups at the 20% threshold. The solid lines indicate the median value of each index, and the translucent bands indicate standard error. Histogram plots show the distribution of
graph indices of each group at frequency bands that showed significant differences. *FDR-corrected P < 0.05; **FDR-corrected P < 0.01. (b) Scatter plot of the significant
results of a multiple stepwise linear regression analysis to assess the relationship between graph indices and clinical measures in the SZ group. Translucent bands indicate a
95% confidence interval for the regression estimate. A.U., arbitrary unit; PANSS, Positive and Negative Syndrome Scale; LOC-E low beta, local efficiency; SZ, schizophrenia.

Table 2. Topological characteristics of the microscale at the 20% threshold

HC median (IQR) SZ median (IQR) Number of the vertices under significant level

DG-CENT Delta 180.0 (125.0 to 252.0) 180.0 (124.0 to 252.0) 0
Theta 183.0 (127.0 to 254.0) 182.0 (132.0 to 248.0) 0
Alpha 181.0 (111.0 to 272.0) 182.0 (125.75 to 255.0) 0
Low beta 177.0 (123.0 to 251.0) 185.0 (135.0 to 247.0) 0
High beta 174.0 (115.0 to 254.0) 185.0 (137.0 to 244.0) 0
Gamma 176.0 (106.0 to 267.0) 184.0 (118.0 to 262.0) 0

C-COEF Delta 0.292 (0.26 to 0.335) 0.289 (0.247 to 0.338) 6
Theta 0.284 (0.248 to 0.338) 0.274 (0.241 to 0.329) 2
Alpha 0.325 (0.278 to 0.38) 0.29 (0.251 to 0.339) 155
Low beta 0.309 (0.267 to 0.371) 0.272 (0.241 to 0.318) 254
High beta 0.338 (0.282 to 0.443) 0.27 (0.238 to 0.32) 850
Gamma 0.378 (0.311 to 0.475) 0.332 (0.285 to 0.398) 65

Mann to Whitney rank test

U value ranges of all vertices Z-score ranges of all vertices FDR-corrected P ranges of all vertices

DG-CENT Delta 222.5 to 825.0 �4.157 to 3.467 0.052 to 1.0
Theta 270.5 to 799.0 �3.55 to 3.138 0.08 to 1.0
Alpha 346.0 to 761.0 �2.594 to 2.657 0.172 to 1.0
Low beta 275.5 to 829.0 �3.486 to 3.518 0.08 to 1.0
High beta 205.5 to 896.0 �4.372 to 4.366 0.052 to 1.0
Gamma 235.0 to 891.5 �3.999 to 4.309 0.052 to 1.0

C-COEF Delta 303.0 to 727.0 �3.138 to 2.227 0.019* to 0.996
Theta 333.0 to 686.0 �2.759 to 1.708 0.037* to 0.996
Alpha 209.0 to 580.0 �4.328 to 0.367 0.006** to 0.991
Low beta 214.0 to 556.0 �4.265 to 0.063 0.006** to 0.973
High beta 174.0 to 530.0 �4.771 to �0.266 0.006** to 0.869
Gamma 289.0 to 575.0 �3.315 to 0.304 0.013* to 0.996

*Indicate statistically significant results: FDR-corrected P < 0.05.
**Indicate statistically significant results: FDR-corrected P < 0.01.
C-COEF, clustering coefficient; DG-CENT, degree centrality; FDR, false discovery rate; HC, healthy controls; IQR, interquartile range; SZ,
schizophrenia patients.
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low-beta, high-beta, and gamma bands (Fig. 2a, right). Only small
differences were observed in the delta-and theta-band ranges. Figure 2b
(see also Fig. S3) shows the distribution of the z-scores masked by the
FDR-corrected P-value below 5%; the decrease in C-COEF of the SZ
group was apparent in the frontal and temporal regions.

Topological characteristics of macroscale indices
Next, we identified three graph theory metrics (GLOB-E, LOC-E, and
SWN) (Fig. 3) to investigate the function and nature of the entire net-
work. Each graph measure is shown in Fig. 3a and Table 3 at a 20%
threshold, and in Tables S2–S6 at all thresholds. These tables show
the consistency of our results across a range of thresholds. There were
significant differences in LOC-E and SWN between the SZ and HC

groups, particularly in the alpha, low-beta, and high-beta bands. The
LOC-E of the SZ group was significantly lower than that of the HC
group in the low-beta, high-beta, and gamma bands. The SWN in the
SZ group was significantly lower than that in the HC group in the
low-and high-beta bands. However, GLOB-E in the alpha band in the
SZ group was significantly higher than that in the HC group. The dis-
tribution of GLOB-E showed a specific pattern in which almost all
data were approximately 0.60 in both groups.

Relationship between graph index characteristics and
clinical symptoms
A multiple stepwise linear regression was calculated to predict
clinical measures (PANSS and GAF) based on LOC-E at the 20%

Table 3. Topological characteristics of the macroscale at the 20% threshold

HC median (IQR) SZ median (IQR)

GLOB-E Delta 0.5999 (0.59989–0.5999) 0.59989 (0.59987–0.5999)
Theta 0.5999 (0.59962–0.5999) 0.5999 (0.59989–0.5999)
Alpha 0.5996 (0.59832–0.59986) 0.59989 (0.59964–0.5999)

Low beta 0.59989 (0.59983–0.5999) 0.5999 (0.59987–0.5999)
High beta 0.59988 (0.59981–0.5999) 0.5999 (0.59989–0.5999)
Gamma 0.59964 (0.59906–0.59986) 0.59981 (0.59953–0.59988)

LOC-E Delta 0.646 (0.64–0.66) 0.65 (0.631–0.656)
Theta 0.641 (0.624–0.656) 0.64 (0.624–0.657)
Alpha 0.661 (0.644–0.669) 0.646 (0.632–0.661)

Low beta 0.66 (0.638–0.676) 0.635 (0.626–0.657)
High beta 0.67 (0.649–0.729) 0.633 (0.625–0.66)
Gamma 0.688 (0.672–0.734) 0.665 (0.65–0.695)

SWN Delta 1.062 (1.02–1.167) 1.086 (0.944–1.13)
Theta 1.028 (0.902–1.11) 1.015 (0.886–1.143)
Alpha 1.166 (0.986–1.228) 1.05 (0.913–1.183)

Low beta 1.161 (1.007–1.29) 0.989 (0.918–1.139)
High beta 1.234 (1.054–1.643) 0.968 (0.913–1.191)
Gamma 1.348 (1.213–1.68) 1.199 (1.079–1.417)

Mann–Whitney rank test

U value ranges of all vertices Z-score ranges of all vertices FDR-corrected P ranges of all vertices

GLOB-E Delta 454 �1.227 0.333
Theta 577.5 0.335 0.83
Alpha 785 2.961 0.046*

Low beta 711.5 2.031 0.094
High beta 715.5 2.082 0.09
Gamma 660.5 1.386 0.263

LOC-E Delta 499 �0.658 0.618
Theta 535 �0.202 0.921
Alpha 384 �2.113 0.062

Low beta 328 �2.822 0.016*
High beta 259 �3.695 0.001**
Gamma 357 �2.455 0.034*

SWN Delta 472 �1 0.444
Theta 538.5 �0.158 0.904
Alpha 450 �1.278 0.333

Low beta 330 �2.797 0.028*
High beta 293 �3.265 0.013*
Gamma 377 �2.202 0.072

*Indicate statistically significant results: FDR-corrected P < 0.05.
**Indicate statistically significant results: FDR-corrected P < 0.01.
FDR, false discovery rate; GLOB-E, global efficiency; HC, healthy controls; IQR, interquartile range; LOC-E, local efficiency; SWN, small-
worldness; SZ, schizophrenia patients.
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threshold, sex, age, antipsychotic drug dosage, sleepiness during
measurement, and JART. A significant regression equation including
LOC-E was found regarding the negative symptoms of PANSS (F
(1, 27)=4.541, P = 0.0424), with an R2 of 0.144 at the low beta
band (Table 4). There was no significant relationship with other clini-
cal measures at the low beta band and with all clinical measures at
the alpha, high beta, and gamma bands. Negative symptoms of
PANSS were equal to 18.966–2.9331 � LOC-E low beta, and LOC-E
at the low beta band was a significant predictor of negative symptoms
of PANSS. In contrast, age, antipsychotic drug dosage, sleepiness
during measurement, and JART were not significant predictors of
psychotic symptoms. There was no significant regression equation
including GLOB-E or SWN.

Discussion
In the present study, we investigated the topological characteristics of
RSNs from the viewpoint of local and global networks in patients
with SZ, and their relationship with psychotic symptoms using graph
theory. At the microscale level, the results confirmed our hypothesis
that patients with SZ presented a lower C-COEF in the beta band,
mostly in the frontal and temporal regions. At the macroscale, the
LOC-E and SWN values of the low-and high-beta bands were clearly
reduced in the SZ group. To our knowledge, this is the first study to
show that there are remarkable topological changes in the RSN of the
beta band in the SZ. Below, we consider these results in the context
of their associated pathophysiological mechanisms and how they may
be interpreted within the context of current neuroscientific findings.

Alternation of the topological characteristics in SZ
compared to HC
A significant difference in C-COEF, but not in DG-CENT, was
observed between the SZ and HC groups. The decrease in C-COEF
in the SZ group was consistent with those found in previous resting-
state fMRI studies.66,67 Although C-COEF showed significant differ-
ences between the SZ and HC groups, DG-CENT showed almost
identical results with no significant differences between these groups
(Fig. 2a, left), indicating that alterations in the neural network of
patients with SZ did not originate from changes in the number of con-
nections at each vertex but from the change in the relationship of con-
nections with other vertices.

C-COEF is a topological index that evaluates the local network
function. It is important to note that ‘local’ in this case does not refer
to co-localized brain regions but rather to vertices that are located
close to each other in the network. C-COEF implies that the edges
between vertices are connected to one vertex and represents local spe-
cial abilities as a set of partial connectivity in the RSN. Although the

concept of functional templates and structure of RSN has not been
well-mapped, functional templates are believed to be represented by a
set of connectivities across different brain regions, rather than a spe-
cific brain region, and clustered networks are a form of functional
template. Therefore, the C-COEF observed in the RSN can be reg-
arded as an indicator of a functional template. The functional template
is a standard architecture for the functional organization of the brain
and contributes to the realization of cognitive functions, as indicated
by the correlation between RSNs and perceptual and behavioral per-
formance.13,14 The C-COEF of the RSN is also considered an impor-
tant indicator of the organization of complex brain functions.

In addition, LOC-E is a topological index that assesses the local
network function at the macroscale level. LOC-E is calculated by the
average efficiency of the network consisting of the nearest neighbor-
ing vertices and provides an indication of how effectively information
is integrated among the nearest neighboring vertices of a given net-
work vertex. The concept of LOC-E is interpreted to be the same as
the mean clustering coefficient of the entire brain.63 In other words,
LOC-E evaluates the extent to which functionally segregated tem-
plates are formed throughout the brain. Combined with previous find-
ings, these results suggest the possibility of network reconstruction,
especially at the local level, in patients with SZ.66–73 This could indi-
cate the destruction of the functional templates that underlie cognitive
functions, thus implicating the extent of ‘dysconnection.’ We also
found that the SZ group had lower SWN in the beta band than the HC
group (Fig. 3a). The lower SWN at the low and high beta bands in the
SZ group indicates a less optimal organization of the RSN in
SZ. Because the SWN was calculated by dividing the averaged C-
COEF by the average shortest path length, the inefficiencies of the
local network are likely to affect the optimization of the entire RSN.

Topological alterations were mostly observed in the high beta
band. Although the neurophysiological implications of high-beta band
alterations in the SZ group are not sufficiently understood, some pre-
vious studies have associated them with NMDA receptor dysfunction.
Models using NMDA receptor antagonists have been used to mimic
many of the major symptoms of SZ,74 and there is evidence that dis-
ruption of glutamatergic function is related to SZ.75,76 As Roopun
et al. described, the gamma rhythm is not the only rhythm affected in
SZ, the high band (20–29 Hz) EEG rhythm deserves particular atten-
tion. They examined the relationship between NMDA receptors and
high-beta band activity by quantitatively comparing the effects of
ketamine on gamma and high-beta band activation. They found that
ketamine affected both gamma and high-band activation, but the
effects differed among brain regions.59 Akbarian et al. reported
changes in the mRNA levels of the NMDA receptor NR2 subunit in
the prefrontal cortex of the postmortem brain in SZ.77 Our findings
suggest that the decrease in C-COEF, largely observed in the frontal

Table 4. The results of a multiple stepwise linear regression analysis

Beta SE T P value

PANSS negative symptoms
LOC-E low beta �2.9331 1.376 �2.131 0.042*
Intercept 18.9655 1.376 13.779 0

VIF factors
Age JART Antipsychotic Sleepiness during task LOC-E low beta
1.247 1.094 1.066 1.14 5.712

*Indicate statistically significant results: P < 0.05.
The independent variables (sex, age, dosage of antipsychotics, sleepiness during measurement, and JART) were removed during analysis
processing.
JART, Japanese Adult Reading Test; LOC-E low beta, local efficiency at low beta band; PANSS, Positive and Negative Syndrome Scale; SE,
standard error; VIF factors, variance inflating factors.
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and temporal regions of the high beta band, could reflect deficits in
NMDA receptor-mediated excitatory synaptic activity in the SZ
group.

While we found a changed network of the SZ group at high-
frequency bands, we could not find a significant change at low-
frequency bands such as theta or delta. Khan et al. reported changes
in frequency band-specific maturation of RSNs from age 7 to 29 and
found changes in graph indices from childhood to adulthood in the
beta and gamma bands.58 They found increased LOC-E and SWN in
the beta band, increased GLOB-E, and decreased SWN in the gamma
band. In other words, they report opposite developmental trajectories
of segregation at the beta band and integration in the gamma band.
However, they found no age-related changes in low-band frequency
networks, such as delta and theta. We speculate that these results may
be due to the low-frequency network structures reaching completion
at a relatively young age compared to the high-frequency network
structures. It is well known that SZ develops from adolescence to
adulthood, which may mean that high-frequency network structures
are more susceptible to pathophysiological changes in SZ at the
developmental stage. In contrast, low-frequency networks that form
early in life may be less susceptible to pathophysiological changes in
patients with SZ. Although we only investigated patients with SZ in
this study, comparing patients with SZ and at-risk mental states of SZ
may shed light on the meaning of these frequency-specific graph
changes.

Alternation of topological characteristics related to
psychotic symptoms in the SZ group
In the SZ group, the LOC-E of the low beta band was negatively cor-
related with the negative symptoms (Fig. 3b). There is a wide range
of negative symptoms in patients with SZ, including emotional and
cognitive characteristics, such as blunted affect, lack of spontaneity,
and difficulty in abstract thinking. The fact that LOC-E is correlated
with negative symptoms indicates that failure to form a well-
integrated local network as a functional template actually represents
an SZ symptom.

Wang et al. compared the functional neural network in the SZ
group at baseline during the first episode and after 4 months of treat-
ment with antipsychotics.69 They found a lower average clustering
coefficient and LOC-E in the first episode in the SZ group than in the
HCs and that these changes were modulated by treatment with anti-
psychotic drugs. Longitudinally, negative symptoms improved as the
average clustering coefficient increased, suggesting that antipsy-
chotics could help remedy the disorganized local network seen in the
SZ group. Furthermore, the average clustering coefficient reflects the
local clustering of topological organization, similar to LOC-E,
suggesting that it may be a marker of therapeutic responsiveness to
second-generation antipsychotics in patients with SZ. Consistent with
these studies, LOC-E is a promising index for assessing the psychotic
symptoms of SZ.

Previous studies on MEG on RSNs in patients with SZ
Several studies have investigated the resting connectivity of the SZ
using MEG.32–37,78,79 Many of these studies have investigated the
strength of connectivity between brain regions but have not focused
on the characteristics of the network using graph analysis. Rutter
et al. investigated the differences in topological characteristics
between HC and SZ groups using MEG.37 However, group differ-
ences in the global graph metrics showed no statistical significance
after multiple comparisons. They described their findings as unex-
pected and questioned whether the graphs derived from MEG in their
study are meaningful in relation to brain processes, due to the small
number of subjects and the choice of coherence as a measure of func-
tional connectivity. They stated that source-level connectivity mea-
sures in MEG may yield artifacts strong enough to render the graphs
meaningless,80 or they may be consistent with whole-brain connectiv-
ity studies that have shown consistency between fMRI and MEG

results.23,81 Noise rejection methods used in MEG have grown
remarkably in recent years.82 We performed noise reduction using
oversampled temporal projection, Elekta Neuromag Maxfilter, notch
filter, and ICA as preprocessing for the connectivity analysis. These
methods, developed in recent years, are stronger than the methods of
Rutter et al., who rejected epochs with high eye artifacts and head
movement of over 0.5 cm, and used only a notch filter and a band-
pass filter. The difference in noise reduction methods may be one of
the factors causing the discrepancy in results.

Additionally, Rutter et al. calculated the connectivity matrix
using the coherence method, whereas we used an orthogonalized
envelope correlation. As stated in the Methods section, the orthogo-
nalized envelope correlation showed the most stable results in terms
of group-level repeatability, within-subject consistency, and between-
subject consistency in previous studies that examined the stability of
the connectivity assessment.57 On the other hand, the coherence used
by Rutter et al. is known to be affected by source leakage,83 and it
must be said that the connectivity matrix in their study used as the
basis for graph analysis is unreliable. Envelope correlation can be
thought of as fluctuations in acyclic (scale-free) activity with most of
the energy at frequencies below 0.1 Hz, reflecting the joint activity of
a population of neurons on a slow time scale of a few seconds to a
few minutes. Envelope correlation is more likely to represent coherent
excitatory fluctuations that alter the activation of brain regions in a
coordinated manner. Thus, envelope correlations may modulate the
availability of neuronal populations or regions to prepare for subse-
quent tasks. Functional connectivity provides a window of adjustment
for spatially separated neuronal populations to increase or decrease
their excitability.84 This suggests that local dynamics may be regu-
lated on either a slow or fast timescale, depending on whether the
envelope or phase connectivity is predominant. The envelope correla-
tion represents coherent excitatory fluctuations that lead to coordi-
nated changes in the activation of brain regions and represents a
limited setting of regional availability, with implications that may
form the basis of functional templates. In other words, the results of
the present study indicate that the network structure, which is nor-
mally constrained by a limited setting in the form of a functional tem-
plate in HCs, is disrupted in SZ, and this is likely linked to
psychiatric symptoms.

Conclusions
We investigated the ‘dysconnection’ symptomatology of the SZ brain
via graph theory analysis using MEG. We found that local network
efficiency was impaired at both the micro- and macroscale levels in
SZ brains, especially in the high beta band, indicating that the patho-
physiology of SZ is predominantly based on the disturbance of the
local network. These topological changes are associated with psy-
chotic symptoms. The ‘dysconnection in SZ’ observed in our study
was due to the disruption of the functional template expressed as the
disturbance of the local topological characteristics in the local
network.

Limitations
This study had several limitations. One limitation is that we chose to
focus on eyes open as our resting state paradigm, rather than eyes
closed, thus minimizing the alpha power. This was performed in
accordance with the guidelines of the Human Connectome Project. In
addition, eyes-open RSNs derived using MEG have greater test–retest
reliability than eyes-closed-derived networks.85 Although some
MEG/EEG studies have found differences between the two
conditions,85,86 the overall differences between the eyes closed and
eyes open conditions in these studies were small. Our findings pro-
vide compelling evidence of topological alternations underlying psy-
chotic symptoms in the SZ group; nonetheless, several experimental
designs and methodological issues should be considered. Most
patients with SZ receive antipsychotic drugs. We investigated the
relationship between topological characteristics and the dose of
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antipsychotic medication and found no significant effect on topologi-
cal characteristics in the current study. However, further comparisons
and considerations, including drug-naïve patients, are required to ver-
ify our findings. Moreover, there is a potential bias in that most SZ
patients who can complete MEG recording and provide adequate data
do not have severe or active symptoms.

In this study, we used binarized multi-threshold graph-theoretic
measures. Since there is no specific rationale for using cost thresh-
olds, we set the thresholds to range from 5% to 30% in 5% incre-
ments to compare the properties of the graph networks over a wide
range of costs. However, weighted equivalents have also recently
emerged. Weighted graphs are assumed to align more closely with
the ground-truth physiology. In the future, we would like to consider
weighted graph measures.

We used a 1000 parcellation scheme because cortical surface is
very convoluted and averaging across a large label can result in signal
cancellation. However previous study indicates functional connectiv-
ity estimation may suffer from the presence of spurious interactions87

and that it was shown that the optimal number of parcels was approxi-
mately 70.88 We cannot conclude whether high-resolution parcellation
is appropriate for the graph analysis of MEG, but we consider that
this should be verified in the future.

Disclosure statement
The authors declare no conflict of interest.

Author contributions
MT, MF, and YT designed the study. MT, YT, YK, TS, YT, NS,
KU, and YT corrected the data, and MT wrote the initial draft of the
manuscript. YT, YK, KF, MT, and NH contributed to the analysis
and interpretation of the data and assisted in the preparation of the
manuscript. All authors contributed to the manuscript and approved
the submitted version, which was supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Culture, Sports,
Science, and Technology, Grant-in-Aid for Young Scientists
(B) (No. 16K19748), Grant-in-Aid for Scientific Research
(C) (No. 19K08038), and Grant-in-Aid for Scientific Research on
Innovative Areas (No. 16H06397).

References
1. Friston KJ, Frith CD. Schizophrenia: A disconnection syndrome? Clin.

Neurosci. 1995; 3: 89–97.
2. Friston KJ. Theoretical neurobiology and schizophrenia. Br. Med. Bull.

1996; 52: 644–655.
3. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia:

From abnormal synaptic plasticity to failures of self-monitoring.
Schizophr. Bull. 2009; 35: 509–527.

4. Geschwind N. Disconnexion syndromes in animals and man. I. Brain
1965; 88: 237–294.

5. Andreasen NC, Paradiso S, O’Leary DS. "Cognitive dysmetria" as an
integrative theory of schizophrenia: A dysfunction in cortical-subcorti-
cal-cerebellar circuitry? Schizophr. Bull. 1998; 24: 203–218.

6. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassnik T,
Flaum M. Defining the phenotype of schizophrenia: Cognitive dysmetria
and its neural mechanisms. Biol. Psychiatry 1999; 46: 908–920.

7. Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dys-
connectivity in schizophrenia: Where are we now? Neurosci. Biobehav.
Rev. 2011; 35: 1110–1124.

8. Uhlhaas PJ. Dysconnectivity, large-scale networks and neuronal dynam-
ics in schizophrenia. Curr. Opin. Neurobiol. 2013; 23: 283–290.

9. Mackintosh AJ, de Bock R, Lim Z et al. Psychotic disorders, dopaminer-
gic agents and EEG/MEG resting-state functional connectivity: A sys-
tematic review. Neurosci. Biobehav. Rev. 2021; 120: 354–371.

10. Ohki T, Takei Y. Neural mechanisms of mental schema: A triplet of
delta, low beta/spindle and ripple oscillations. Eur. J. Neurosci. 2018; 48:
2416–2430.

11. Foster BL, Rangarajan V, Shirer WR, Parvizi J. Intrinsic and task-
dependent coupling of neuronal population activity in human parietal
cortex. Neuron 2015; 86: 578–590.

12. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and
task-evoked network architectures of the human brain. Neuron 2014; 83:
238–251.

13. Provost JS, Monchi O. Exploration of the dynamics between brain
regions associated with the default-mode network and frontostriatal path-
way with regards to task familiarity. Eur. J. Neurosci. 2015; 41:
835–844.

14. Fox MD, Snyder AZ, Vincent JL, Raichle ME. Intrinsic fluctuations
within cortical systems account for intertrial variability in human behav-
ior. Neuron 2007; 56: 171–184.

15. Fatouros-Bergman H, Cervenka S, Flyckt L, Edman G, Farde L. Meta-
analysis of cognitive performance in drug-naive patients with schizophre-
nia. Schizophr. Res. 2014; 158: 156–162.

16. Unschuld PG, Buchholz AS, Varvaris M et al. Prefrontal brain network
connectivity indicates degree of both schizophrenia risk and cognitive
dysfunction. Schizophr. Bull. 2014; 40: 653–664.

17. Wu G, Wang Y, Mwansisya TE et al. Effective connectivity of the poste-
rior cingulate and medial prefrontal cortices relates to working memory
impairment in schizophrenic and bipolar patients. Schizophr. Res. 2014;
158: 85–90.

18. Fingelkurts AA, Fingelkurts AA, Kähkönen S. Functional connectivity
in the brain--is it an elusive concept? Neurosci. Biobehav. Rev. 2005; 28:
827–836.

19. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The BrainWeb: Phase
synchronization and large-scale integration. Nat. Rev. Neurosci. 2001; 2:
229–239.

20. Rubinov M, Sporns O. Complex network measures of brain connectivity:
Uses and interpretations. Neuroimage 2010; 52: 1059–1069.

21. Achard S, Bullmore E. Efficiency and cost of economical brain func-
tional networks. PLoS Comput. Biol. 2007; 3: e17.

22. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks
in the brain. Nonlinear Biomed. Phys. 2007; 1: 3.

23. Brookes MJ, Woolrich M, Luckhoo H et al. Investigating the electro-
physiological basis of resting state networks using magnetoencephalogra-
phy. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 16783–16788.

24. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale
cortical correlation structure of spontaneous oscillatory activity. Nat.
Neurosci. 2012; 15: 884–890.

25. Sunaga M, Takei Y, Kato Y et al. Frequency-specific resting connectome
in bipolar disorder: An MEG study. Front. Psychiatry 2020; 11: 597.

26. Kato Y, Takei Y, Umeda S, Mimura M, Fukuda M. Alterations of heart-
beat evoked magnetic fields induced by sounds of disgust. Front. Psychi-
atry 2020; 11: 683.

27. Grent-’t-Jong T, Gross J, Goense J et al. Resting-state gamma-band
power alterations in schizophrenia reveal E/I-balance abnormalities
across illness-stages. Elife 2018; 7: e37799.

28. Chen CM, Stanford AD, Mao X et al. GABA level, gamma oscillation,
and working memory performance in schizophrenia. Neuroimage Clin.
2014; 4: 531–539.

29. Takei Y, Fujihara K, Tagawa M et al. The inhibition/excitation ratio
related to task-induced oscillatory modulations during a working memory
task: A multtimodal-imaging study using MEG and MRS. Neuroimage
2016; 128: 302–315.

30. Ohki T, Matsuda T, Gunji A et al. Timing of phase-amplitude coupling
is essential for neuronal and functional maturation of audiovisual integra-
tion in adolescents. Brain Behav. 2020; 10: e01635.

31. Ohki T, Gunji A, Takei Y et al. Neural oscillations in the temporal pole
for a temporally congruent audio-visual speech detection task. Sci. Rep.
2016; 6: 37973.

32. Hinkley LB, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM,
Nagarajan SS. Clinical symptoms and alpha band resting-state functional
connectivity imaging in patients with schizophrenia: Implications for
novel approaches to treatment. Biol. Psychiatry 2011; 70: 1134–1142.

33. Bowyer SM, Gjini K, Zhu X et al. Potential biomarkers of schizophrenia
from MEG resting-state functional connectivity networks: Preliminary
data. J. Behav. Brain Sci. 2015; 05: 1–11.

34. Robinson SE, Mandell AJ. Mutual information in a MEG complexity
measure suggests regional hyper-connectivity in schizophrenic probands.
Neuropsychopharmacology 2015; 40: 251–252.

35. Zhang X, Wang YT, Wang Y et al. Ultra-slow frequency bands reflecting
potential coherence between neocortical brain regions. Neuroscience
2015; 289: 71–84.

36. Houck JM, Çetin MS, Mayer AR et al. Magnetoencephalographic and
functional MRI connectomics in schizophrenia via intra- and inter-
network connectivity. Neuroimage 2017; 145: 96–106.

Psychiatry and Clinical Neurosciences10

Disrupted local network in schizophrenia PCNPsychiatry and
Clinical Neurosciences



37. Rutter L, Nadar SR, Holroyd T et al. Graph theoretical analysis of resting
magnetoencephalographic functional connectivity networks. Front. Com-
put. Neurosci. 2013; 7: 93.

38. Oldfield RC. The assessment and analysis of handedness: The Edinburgh
inventory. Neuropsychologia 1971; 9: 97–113.

39. First MB Sr, Gibbon M, Williams JBW. Structured Clinical Interview
for DSM-IVAxis I Disorders. Clinician 2.0 Version. New York State Psy-
chiatric Institute, New York, 1996.

40. First MBGM, Spitzer RL, Williams JBW, Benjamin LS. Structured Clin-
ical Interview for DSM-IVAxis II Personality Disorders (SCID-II) User’s
Guide and Interview. American Psychiatric Press, Washington,
DC, 1997.

41. Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome
Scale (PANSS) for schizophrenia. Schizophr. Bull. 1987; 13: 261–276.

42. Matsuoka K, Kim Y, Hiro H et al. Development of Japanese Adult
Reading Test (JART) for predicting premorbid IQ in mild dementia.
Seishin Igaku 2002; 44: 503–511.

43. Hall RC. Global assessment of functioning. A modified scale. Psychoso-
matics 1995; 36: 267–275.

44. Inada T, Inagaki A. Psychotropic dose equivalence in Japan. Psychiatry
Clin. Neurosci. 2015; 69: 440–447.

45. Hoddes E, Dement WC, Zarcone V. The history and use of the Stanford
sleepiness scale. Psychophysiology 1971; 9: 150.

46. Taulu S, Simola J. Spatiotemporal signal space separation method for
rejecting nearby interference in MEG measurements. Phys. Med. Biol.
2006; 51: 1759–1768.

47. Taulu S, Kajola M, Simola J. Suppression of interference and artifacts
by the signal space separation method. Brain Topogr. 2004; 16: 269–275.

48. Gramfort A, Luessi M, Larson E et al. MNE software for processing
MEG and EEG data. Neuroimage 2014; 86: 446–460.

49. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis.
I. Segmentation and Surface Reconstruction. Neuroimage 1999; 9:
179–194.

50. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Infla-
tion, flattening, and a surface-based coordinate system. Neuroimage
1999; 9: 195–207.

51. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template
estimation for unbiased longitudinal image analysis. Neuroimage 2012;
61: 1402–1418.

52. Hämäläinen MS, Sarvas J. Realistic conductivity geometry model of the
human head for interpretation of neuromagnetic data. IEEE Trans.
Biomed. Eng. 1989; 36: 165–171.

53. Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW,
Hämäläinen MS. Assessing and improving the spatial accuracy in MEG
source localization by depth-weighted minimum-norm estimates.
Neuroimage 2006; 31: 160–171.

54. O’Neill GC, Barratt EL, Hunt BA, Tewari PK, Brookes MJ. Measuring
electrophysiological connectivity by power envelope correlation: A tech-
nical review on MEG methods. Phys. Med. Biol. 2015; 60: R271–R295.

55. Mostame P, Sadaghiani S. Phase- and amplitude-coupling are tied by an
intrinsic spatial organization but show divergent stimulus-related
changes. Neuroimage 2020; 219: 117051.

56. Deco G, Corbetta M. The dynamical balance of the brain at rest. Neuro-
scientist 2011; 17: 107–123.

57. Colclough GL, Woolrich MW, Tewarie PK, Brookes MJ, Quinn AJ,
Smith SM. How reliable are MEG resting-state connectivity metrics?
Neuroimage 2016; 138: 284–293.

58. Khan S, Hashmi JA, Mamashli F et al. Maturation trajectories of cortical
resting-state networks depend on the mediating frequency band.
Neuroimage 2018; 174: 57–68.

59. Roopun AK, Cunningham MO, Racca C, Alter K, Traub RD,
Whittington MA. Region-specific changes in gamma and beta2 rhythms
in NMDA receptor dysfunction models of schizophrenia. Schizophr. Bull.
2008; 34: 962–973.

60. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist
2006; 12: 512–523.

61. Bullmore E, Sporns O. Complex brain networks: Graph theoretical anal-
ysis of structural and functional systems. Nat. Rev. Neurosci. 2009; 10:
186–198.

62. Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks.
Nature 1998; 393: 440–442.

63. Latora V, Marchiori M. Efficient behavior of small-world networks.
Phys. Rev. Lett. 2001; 87: 198701.

64. Jones E, Oliphant T & Peterson P. SciPy: Open source scientific tools
for python. 2001. Available from URL: http://www.scipy.org/, cited date,
September, 24, 2020.

65. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in
functional neuroimaging using the false discovery rate. Neuroimage
2002; 15: 870–878.

66. Liu Y, Liang M, Zhou Y et al. Disrupted small-world networks in
schizophrenia. Brain 2008; 131: 945–961.

67. Lynall ME, Bassett DS, Kerwin R et al. Functional connectivity and
brain networks in schizophrenia. J. Neurosci. 2010; 30: 9477–9487.

68. Anderson A, Cohen MS. Decreased small-world functional network con-
nectivity and clustering across resting state networks in schizophrenia:
An fMRI classification tutorial. Front. Hum. Neurosci. 2013; 7: 520.

69. Wang LX, Guo F, Zhu YQ et al. Effect of second-generation antipsy-
chotics on brain network topology in first-episode schizophrenia: A lon-
gitudinal rs-fMRI study. Schizophr. Res. 2019; 208: 160–166.

70. Alexander-Bloch A, Lambiotte R, Roberts B, Giedd J, Gogtay N,
Bullmore E. The discovery of population differences in network commu-
nity structure: New methods and applications to brain functional net-
works in schizophrenia. Neuroimage 2012; 59: 3889–3900.

71. Micheloyannis S, Pachou E, Stam CJ et al. Small-world networks and
disturbed functional connectivity in schizophrenia. Schizophr. Res. 2006;
87: 60–66.

72. Sakkalis V, Oikonomou T, Pachou E, Tollis I, Micheloyannis S,
Zervakis M. Time-significant wavelet coherence for the evaluation of
schizophrenic brain activity using a graph theory approach. Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society 2006. New York. 2006; 4265–4268.

73. Rubinov M, Knock SA, Stam CJ et al. Small-world properties of
nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 2009; 30:
403–416.

74. Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A. Effects of
ketamine on thought disorder, working memory, and semantic memory
in healthy volunteers. Biol. Psychiatry 1998; 43: 811–816.

75. Moghaddam B. Bringing order to the glutamate chaos in schizophrenia.
Neuron 2003; 40: 881–884.

76. Pilowsky LS, Bressan RA, Stone JM et al. First in vivo evidence of an
NMDA receptor deficit in medication-free schizophrenic patients. Mol.
Psychiatry 2006; 11: 118–119.

77. Akbarian S, Sucher NJ, Bradley D et al. Selective alterations in gene
expression for NMDA receptor subunits in prefrontal cortex of schizo-
phrenics. J. Neurosci. 1996; 16: 19–30.

78. Sanfratello L, Houck JM, Calhoun VD. Relationship between MEG
global dynamic functional network connectivity measures and symptoms
in schizophrenia. Schizophr. Res. 2019; 209: 129–134.

79. Zeev-Wolf M, Levy J, Jahshan C et al. MEG resting-state oscillations
and their relationship to clinical symptoms in schizophrenia. Neuroimage
Clin. 2018; 20: 753–761.

80. Schoffelen JM, Gross J. Source connectivity analysis with MEG and
EEG. Hum. Brain Mapp. 2009; 30: 1857–1865.

81. de Pasquale F, Della Penna S, Snyder AZ et al. Temporal dynamics of
spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci.
U. S. A. 2010; 107: 6040–6045.

82. Hironaga N, Takei Y, Mitsudo T, Kimura T, Hirano Y. Prospects for
future methodological development and application of magnetoencepha-
lography devices in psychiatry. Front. Psych. 2020; 11: 863.

83. Sekihara K, Owen JP, Trisno S, Nagarajan SS. Removal of spurious
coherence in MEG source-space coherence analysis. IEEE Trans.
Biomed. Eng. 2011; 58: 3121–3129.

84. Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A. Neuronal oscillations
and visual amplification of speech. Trends Cogn. Sci. 2008; 12: 106–113.

85. Jin SH, Seol J, Kim JS, Chung CK. How reliable are the functional connectivity
networks of MEG in resting states? J. Neurophysiol. 2011; 106: 2888–2895.

86. Miraglia F, Vecchio F, Bramanti P, Rossini PM. EEG characteristics in
"eyes-open" versus "eyes-closed" conditions: Small-world network archi-
tecture in healthy aging and age-related brain degeneration. Clin.
Neurophysiol. 2016; 127: 1261–1268.

87. Palva JM, Wang SH, Palva S et al. Ghost interactions in MEG/EEG
source space: A note of caution on inter-areal coupling measures.
Neuroimage 2018; 173: 632–643.

88. Farahibozorg SR, Henson RN, Hauk O. Adaptive cortical parcellations
for source reconstructed EEG/MEG connectomes. Neuroimage 2018;
169: 23–45.

Psychiatry and Clinical Neurosciences 11

PCNPsychiatry and
Clinical Neurosciences Disrupted local network in schizophrenia

http://www.scipy.org/


Supporting information
Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web-site:

Appendix S1 Supporting information

Fig. S1. The median correlation matrices of the HC and SZ groups.

Fig. S2. The histogram of correlation values of the HC and SZ groups.

Fig. S3. The distribution of z-scores of the C-COEF at each fre-
quency band at the threshold of 20%.

Table S1. Correlation values and total number of edges at each
threshold.

Table S2. DG-CENT at each threshold and frequency band.
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Table S5. LOC-E at each threshold and frequency band.

Table S6. SWN at each threshold and frequency band.
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