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Abstract 

The histogram approach for the ADC linearity test is the subject of this 

dissertation. Here, two methods of testing the histogram approach for low 

cost and high accuracy are proposed. This dissertation describes two 

improvement technologies in the histogram method for analog-to-digital 

converter (ADC) linearity test; the first one is the code selective histogram 

method and the second is selection of the optimal frequency ratio between 

the input signal and sampling frequencies. The focus of this work is acquiring 

short time histogram method for ADC linearity test at mass production 

shipping stage, because test cost is proportional to the test time. Their 

theoretical analysis and simulation verification are shown. 

The first proposal is the code selective histogram method for 

successive-approximation-register (SAR) ADC with a two-tone sine wave 

input. The differential non-linearity (DNL) of the codes corresponding to the 

output voltage of the most significant bits (MSBs) of the internal digital-to-

analog converter (DAC) in the SAR ADC under test can be large when the 

internal DAC employs a binary-weighted configuration. ADC linearity must 

often be assured around MSB bit (the center code in the histogram data). 

Histogram ADC testing with the sine wave input takes long time to measure 

the linearity accurately around the center of the ADC output range, because 

DNL measurement accuracy is proportional to the number of data samples 

in the bin. Therefore, to improve the accuracy of the nonlinearity evaluation, 

the amount of data in the corresponding histogram bin should be increased. 

The number of samples at the corresponding amplitude positions 

(codes) the obtained ADC output data increases with the gentler the slope of 

the input signal waveform. Therefore, we consider using a two-tone sine 

wave to make the slope softer at the corresponding amplitude locations. 

These two-tone sine wave have no inverse function, and hence it is difficult 

to calculate the probability density function (PDF). However, the histogram 

method requires the PDF to be known, and then we use PDF obtained by 

simulation.  As a result, the proposed method raises the frequency at which 

the codes appear in order to make the data amount of the bins relatively large 

with two-tone sine wave input. It can perform low-cost and high-quality 

linearity test. Also, we have written a program to test our algorithm, and the 
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outcomes of our simulations have demonstrated the efficiency and 

performance of the code selected histogram method. 

The second proposal uses classical number theory to decide the ratio of 

the input signal and sampling frequencies; it uses the metallic ratio or the 

theory of prime numbers to determine the ratio. The sinusoidal input signal 

frequency and sampling clock frequency for the histogram method are 

defined as  𝑓𝑠𝑖𝑔 , 𝑓𝐶𝐿𝐾 , respectively. We have found that with a limited 

number of histogram data (in other words, with short test time), accurate test 

results can be obtained if the sequence distributes pseudo-randomly, and 

accordingly, the ratio between 𝑓𝐶𝐿𝐾 and 𝑓𝑠𝑖𝑔 is important. On the contrary, 

if the selected ratio is not appropriated, the DNL measurement with the 

histogram is not accurate. We have investigated the histogram method of 

ADC linearity test with the metallic ratio sampling and prime numbers ratio 

sampling as well as other ratios, and found that for many cases of the total 

data number N, the DNL measurement accuracy is good in the metallic ratio 

and prime number ratios, though the best choice of the metallic ratio and 

prime numbers depends on N. In many cases of the ADC linearity testing, 

"𝑓𝐶𝐿𝐾  is constant and 𝑓𝑠𝑖𝑔  is varied” and  "𝑓𝑠𝑖𝑔  is constant and 𝑓𝐶𝐿𝐾  is 

varied” and if we change their ratio to satisfy the metallic ratio and prime 

number ratio conditions (which are many), the accurate test result can be 

obtained with the small number of N. 

We have investigated the histogram method for the ADC linearity test 

which is a mature technology, but still we could have shown their new 

algorithms and findings in this dissertation that are regarded as being 

favorable to industry. 
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Chapter 1 Introduction 

1.1 Research Background and Motivation 

With the development of digital signal processing and digital computing 

technology, modern society enjoys life in the "digital" world more and more 

[1, 2]. Compared with analog circuits, digital circuits have the advantages of 

being less affected by noise, high reliability, and easier to integrate into chips 

to realize complex functions. However, the signals touched in the real world 

are analog signals such as sounds and images. Therefore, as an interface 

between an analog signal and a digital signal in a circuit, it is necessary to 

realize the process of converting the analog signal into a digital signal 

conveniently. The circuit that realizes this function is an A/D Converter 

(Analog-to-Digital Converter, ADC) [3]. 

For IoT-related ADCs high quality and rapid linearity testing has 

become more important at mass production shipping stage for keeping IoT 

system’s quality and reliability, with the attention of the Internet of Things 

(IoT) in recent years.  

The histogram method for ADC linearity test is widely used in industry 

[4-11]. Unfortunately, the histogram test is often omitted at the mass 

production shipping stage due to the relatively long time it takes. However, 

ADC linearity test is required due to recent demands for higher reliability in 

IoT systems and automotive applications, but low-cost test is essential.  
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Various methods for test time reduction of ADC linearity test have been 

proposed [12, 13]. Chen et al. proposed the segmented non-parametric model, 

a model-based method [14, 15]. Laraba et al. proposed reduced-code 

linearity test for pipeline ADC [16]. This method reduces the static test time 

utilizing the fact that there exist different output transitions between 

consecutive codes that are due to the same comparator being exercised in 

one of the pipeline stages [17]. Regarding to SAR ADC linearity test, Feitoza 

et al. proposed reduced-code linearity tests for the different DAC 

architectures [18, 19]. These methods perform major code transition (MCT)-

based test methodology with extra behaviors for the test. Huang et al. also 

proposed an MCT test-based approach characterizing the static linearity of a 

capacitive SAR ADC [20]. These methods for SAR ADC require extra area 

for extra behavior for the on-chip BIST implementation. On the other hand, 

because our method is histogram test-based approach, extra hardware is not 

required  

The code selective histogram method and choosing selection of the 

optimal frequency ratio between the input signal and sampling frequencies 

are the two advancements in the histogram method for ADC linearity test 

that are covered in this dissertation. Because test cost is proportional to test 

time, the purpose of this work is to acquire a short time histogram method 

for ADC linearity test at mass production shipping stage. Their theoretical 

analysis and simulation verification are shown. 
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1.2 Organization 

The research background and motivation are introduced and 

dissertation organization in Chapter 1. In Chapter 2, the AD conversion 

principle, the evaluation criteria for ADCs, and the structure and application 

scenarios of different ADCs are introduced. Chapter 3 proposes that the two-

tone sine wave input for code selective histogram method, which is the first 

proposal. Chapter 4 presents decision of the ratio between input and 

sampling frequencies based on classical number theory, which is the 2nd 

proposal. Chapter 5 summarizes this part and future work. 
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Chapter 2 ADC&DAC and Performance Index 

A digital-to-analog converter's (DAC) or analog-to-digital converter's 

(ADC) fundamental operation can be divided into a series of simple 

elementary steps. An ADC is depicted as a cascade of four functions in Fig. 

2.1: continuous time anti-aliasing filtering, sampling, quantization and data 

coding. 

The DAC performs two basic functions: a transcoding stage, which 

converts the digital input into an equivalent analog signal, and a 

reconstruction stage. We shall see that a sampled-data analog signal’s high-

frequency component are taken out using the reconstruction method. 

Reconstruction is performed in two steps as shown in Fig. 2.2: a sample-and-

hold followed by a low-pass reconstruction filter. 

 

Fig. 2.1 Block diagram of the basic functions of an ADC. 

 

Fig. 2.2 Block diagram of the basic functions of a DAC. 
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2.1 Sampling 

To ensure that the ADC works properly, it is necessary to understand 

the frequency response characteristics of the ADC. Suppose a frequency 

response of the analog input signal, and the maximum frequency of the 

analog input signal is 𝑓𝐵. Then when the analog input signal is sampled at a 

frequency of 𝑓𝑆 , and the spectrum of the input signal is repeated at the 

sampling frequency as well as at each of its harmonics. If the signal 

bandwidth 𝑓𝐵 is larger than 0.5𝑓𝑆 , the spectrum will be mixed, and there it 

is impossible to recover the original signal. Therefore, it must be ensured that 

the input signal bandwidth is less than 0.5𝑓𝑠. 

As described above is the basic law of sampling, called sampling 

theorem [1], which describes that the sampling frequency must be more than 

twice the bandwidth of the input signal to guarantee the recovery of the 

original signal from the sampled signal, that is what the sampling frequency 

𝑓𝑆 must satisfy: 

2𝑓𝐵 < 𝑓𝑆 (2-1) 

Where 𝑓𝐵 is the high frequency component of the input signal. In order 

to maximize the spectrum of the input signal, it is necessary to make 𝑓𝐵 as 

close as possible to 0.5𝑓𝑆, so that a pre-filter with very steep variations is 

required to eliminate the signal outside the 0.5𝑓𝑆 frequency, and it is very 

difficult and complicated to implement such a filter. The sampling frequency 

is usually taken as: 
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𝑓𝑆 ≅ (2~3) 𝑓𝐵 (2-2) 

The Nyquist sampling theorem shows the correlation between sampling 

frequency and signal frequency, and ADCs that work in this way are called 

Nyquist ADCs. There is also another ADC with a sampling frequency much 

higher than two times the signal bandwidth, called an oversampling ADC. 

2.2 Quantization Noise 

Fig. 2.3 (a) shows the input-output curve of the quantizer, which 

converts the input sample signal 𝑥(𝑛)  into a discrete digital signal of 

amplitude 00 ⋯ 0 to 11 ⋯ 1, depending on the input size. Use up to N-bit 

digital signal. It means that the minimum input is − 𝐹. 𝑆. 2⁄  (00 ⋯ 0) and 

the maximum input is + 𝐹. 𝑆. 2⁄   (11 ⋯ 1) . Here, 𝐹. 𝑆.  is the full-scale 

input of the quantizer. The number of N-bit in the digital signal, represents 

the resolution of the quantizer. The number of N-bit of the digital signal 

represents the resolution of the quantizer. That is, the minimum step size that 

the quantizer can decompose is ∆= 𝐹. 𝑆. 2𝑁⁄ . The quantization error is the 

difference between the input and the output, and the relationship between the 

input signal and the quantization is shown in Fig. 2.3(b), where the 

quantization error is limited to the range [− 𝐹. 𝑆. 2⁄ ~ + 𝐹. 𝑆. 2⁄ ]] when the 

input signal size is limited to the range [− ∆ 2⁄ ~ + ∆ 2⁄  ]. Under certain 

conditions, such as random fluctuations of the input signal or limited input 

range, the quantization error can be regarded as uncorrelated random white 

noise, evenly distributed in [ − ∆ 2⁄ ~ + ∆ 2⁄  ]. The Probability Density 
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Function (PDF) is shown in Fig. 2.4(a). The total quantization noise energy 

can be calculated as follows: 

𝜎𝑞
2 = ∫ 𝑃𝐷𝐹(𝑞)𝑑𝑞

∞

−∞

=
1

∆
∫ 𝑞2𝑑𝑞

∆ 2⁄

−∆ 2⁄

=
∆2

12
 (2-3) 

Its Power Spectral Density (PSD) is white noise evenly distributed in 

frequency domain over [−𝑓𝑠 2⁄  , 𝑓𝑠 2⁄ ]  as shown in Fig. 2.4(b), its 

amplitude is ∆ √12𝑓𝑠⁄  , and the total noise energy is also obtained by 

integrating the PSD from [−𝑓𝑠 2⁄  , 𝑓𝑠 2⁄ ]. 

𝜎𝑞
2 = ∫ (

∆

√12𝑓𝑠

)

2

𝑑𝑓

𝑓𝑠 2⁄

−𝑓𝑠 2⁄

=
∆2

12
 (2-4) 

          

(a) Quantized input/output.                  (b) Quantized noise. 

Fig. 2.3 Quantization. 



23 

 

       

(a) Probability Density Function.         (b) Power Spectral Density. 

Fig. 2.4 Quantization noise. 

2.3 ADC&DAC Main Structure 

Nowadays, converters have been widely used in various types of 

System-on-Chips (SoCs), and the requirements of converter vary from 

application system to application system. In order to adopt to the application 

requirements of different SoCs, following structure types of ADCs have 

emerged during their continuous development. 

(1) Flash type 

For an n-bit flash ADC, (2𝑛 − 1)  comparators are prepared for 

conversion as shown in Fig. 2.5. For example, if A/D conversion is 

performed from 0V to 15V at 1V intervals to obtain a 4-bit output, 15 

comparators from 1V to 15V are prepared and compared with the input, 

encode their output to binary if necessary. 
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Fig. 2.5 Flash ADC structure. 

(2) SAR Type (Successive Approximation Register)  

The output of an accurate n-bit DAC is the reference for 2𝑛 voltages. 

In other words, n-bit A/D conversion can be realized by comparing the DAC 

output with the input voltage. One comparison can increase the precision by 

1 bit, so in the case of n bits, the result can be obtained with n comparisons 

as shown in Fig. 2.6. 

 

Fig. 2.6 SAR ADC structure block diagram. 
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(3) Pipeline Type 

The pipeline type is close to SAR type. The SAR type is a method of 

repeatedly using a comparator for n comparisons to approximate an accurate 

value. The pipeline type is processed in an n-stage circuit configuration like 

pipeline processing. Fig. 2.7 shows pipeline ADC structure block diagram 

 

Fig. 2.7 Pipeline ADC structure block diagram. 

(4) Integrating Type 

First, the input voltage is integrated for a certain period of time. After 

that, integrate with the reference voltage of opposite sign, and measure the 

time until integrated value becomes 0 as shown in Fig. 2.8. Thereby, the ratio 

of input voltage and reference voltage can be measured as a ratio of time. 
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Fig. 2.8 Enhanced run-up dual-slope integrating ADC 

(5) Delta-Sigma Modulator Type 

The input is AD-converted by 1 bit, and this result consists of columns 

of +1 and -1. However, since the quantization error is accumulated by the 

integrator, a string of values that differ from the values obtained by simply 

converting the input to 1-bit AD appears. If the input changes slowly, for 

example, if the input is 0V, +1 and -1 are alternately output almost the same 

number of times, and if the voltage is high, +1 will be output more often. 

Output proportional to voltage. In other words, a kind of dithering is 

performed. If the number of +1 and -1 is counted for m steps, AD conversion 

of the number of bits corresponding to it is performed.  
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Then there are various structure types of DACs used in industry. 

(1) Resistor String Type 

In the case of n bits, all 2𝑛 corresponding voltages can be obtained by 

dividing the reference voltage by connecting 2𝑛 resistors in series as shown 

in Fig. 2.. Among them, the voltage point corresponding to the digital input 

is connected by an analog switch and output. 

 

Fig. 2.9 3-bit Resistor string type structure  

(2) R-2R Ladder Type 

The target voltage is obtained from the ON/OFF of the resistance and 

the voltage application using the operation function of the operational 

amplifier. The one with the R-2R ladder type resistance circuit as shown in 

Fig. 2.10 is popular. 
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Fig. 2.10 R-2R ladder structure  

(3) Current Switching Type 

Resistors weighted according to bits are connected to parallel via 

switches as shown in Fig. 2.11. If a constant voltage is applied here, the total 

amount of current will be the sum of the currents flowing through the 

resistors turned on by the switches, resulting in a current proportional to the 

binary value. 

 

Fig. 2.11 3-bit Current switching type structure 
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(4) Capacity Switching Type 

As a type that also uses binary weighting, charge capacitors weighted 

according to bits and measure the overall voltage as shown in Fig. 2.12. 

 

Fig. 2.12 3-bit Capacity switching type structure 

(5) Delta-Sigma Modulator Type 

Complementing the digital input in the time direction to increase the 

sampling frequency several tens of times (oversampling). This output is 

passed through a delta-sigma modulator to generate low-bit oversampled 

data. The purpose of the delta-sigma modulator is the same as for analog-to-

digital conversion, but the high-bit digital input is digitally processed into a 

low-bit " dithered " digital output. A 1-bit output would result in an output 

similar to pulse width modulation, but a delta-sigma modulator would result 

in a better pulse shape. This low bit output is DA converted (in the case of 1 

bit, it can be left as it is if the output power is sufficient), Similar to the pulse 
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width modulation type, the signal is passed through a low-pass filter to 

eliminate alias noise components and quantization error components, 

resulting in an analog output. 

2.4 Performance Indicators 

2.4.1 Dynamic Characteristics of ADC 

The dynamic characteristics of an ADC are generally obtained by Fast 

Fourier Transform (FFT) analysis, which is related to the input frequency, 

input signal amplitude, and sampling frequency, and they are measured by 

Signal-to-Noise Ratio (SNR), Signal-to-Noise and Distortion Ratio (SNDR), 

Effective Number of Bits (ENOB), Spurious-Free Dynamic Range (SFDR), 

and Total Harmonic Distortion (THD), etc. 

(1) SNR: Signal-to-Noise 

The noise effect is quantified by the signal-to-noise ratio (SNR). It 

refers to the ratio of the signal power to the noise power in the signal band. 

The signal-to-noise is given by the following formula: 

SNR|dB = 10𝑙𝑜𝑔10

𝑃signal

𝑃noise
 (2-5) 

where 𝑃signal and 𝑃noise are the signal power and the noise power in 

the band of interest, respectively. 
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In sine wave or triangular input case, it is calculated for an 𝑛-bit ADC 

as follows: 

SNR𝑠𝑖𝑛𝑒|dB = (6.02𝑛 + 1.76)[dB] (2-6) 

SNR𝑡𝑟𝑖𝑎𝑛|dB = (6.02𝑛)[dB] (2-7) 

Every bit (𝑛) of resolution improves the SNR by 6.02 dB. Also, the 

power of the quantization noise diminishes by a factor of 4 for every 

additional bit. The above SNR calculation only accounts for the quantization 

noise. In real circuits the electronic noise of passive and active components 

brings about additional noise. 

(2) SNDR: Signal-to-Noise and Distortion Ration 

The signal distortion ratio refers to the ratio of the output signal power 

to the sum of all noise and harmonic power in the band, which is simply the 

ratio of the output signal power to the output non-signal power. It can be 

expressed as follows: 

SNDR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
 (2-8) 

Where, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙   is the signal power, 𝑃𝑛𝑜𝑖𝑠𝑒  is the noise power and 

𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 is the total harmonic power. 
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(3) ENOB: Effective Number of Bits 

The number of valid bits refers to the effective number of bits 

corresponding to the SNDR obtained by the ADC output at full scale input 

signal, with the following conversion relationship: 

ENOB =
𝑆𝑁𝐷𝑅[𝑑𝐵] − 1.76

6.02
 (2-9) 

(4) SFDR: Spurious-Free Dynamic Range 

The Spurious-Free Dynamic Range (SFDR) is defined as the ratio of 

the energy of the fundamental component to the maximum spurious 

component in the output signal of the ADC, which reflects the maximum 

interference to the output signal of the ADC in a certain frequency band. For 

a certain input frequency, the input amplitude and the sampling frequency, 

the SFDR can be expressed as: 

SFDR = 20 log10

As

Aspr(max)
[dB] (2-10) 

Where, As  denotes the effective value of the fundamental wave 

component of the ADC output signal under a certain sinusoidal input 

condition, Aspr(max) denotes the effective value of the maximum spurious 

signal output of the ADC. 
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(5) THD: Total Harmonic Distortion 

Total Harmonic Distortion (THD) is defined as the ratio of the harmonic 

component of the ADC output signal to the energy of the fundamental signal 

and it can be expressed as: 

THD = 20 log10(
√𝐴𝐻𝐷2

2 + 𝐴𝐻𝐷3
2 + ⋯ + 𝐴𝐻𝐷𝑘

2

𝐴𝑠
) (2-11) 

Where, 𝐴𝑠 denotes the effective value of the fundamental component 

of the ADC output signal, and 𝐴𝐻𝐷𝑘 denotes the effective value of the 𝑘th 

harmonic in the output signal, 𝑘 = 2, 3, ⋯, m. Since the energy of the higher 

harmonic components is usually smaller, 𝑚 = 6 is generally taken. 

2.4.2 Static Characteristics of ADC 

The static performance index of the ADC is the performance index that 

can be measured at low frequency input or even fixed voltage input, which 

includes Differential Non-linearity (DNL), Integral Non-linearity (INL), 

Missing Code, Monotonicity, Offset Error, Gain Error, and so on. These 

parameters reflect the deviation of the actual quantization curve of the ADC 

from the ideal curve.  

One very important parameter for the ADC is the Least-Significant Bit 

(LSB). LSB is the lowest weighted bit of the ADC digital output code, which 

usually corresponds to the analog value it represents. Any ADC is limited in 

its ability to recognize an analog input, and the metric that characterizes this 
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ability is the resolution (also called precision), which can be expressed as a 

percentage of the ADC's full scale, or as the number of N bits, when the ADC 

has 2𝑁 possible digital output codes. The LSB, resolution and ADC Full 

Scale Input Range (FSR) are related by the following equation: 

1LSB =
𝐹𝑆𝑅

2𝑁 − 1
≅

𝐹𝑆𝑅

2𝑁
 (2-12) 

Where the 1 in the denominator is not required for differential ADCs. 

Corresponding to the LSB, the Most Significant Bit (MSB) refers to the 

highest bit of the ADC digital output code, which is generally half of the FSR. 

(1) DNL: Differential Non-linearity 

The ideal quantization curve digital code conversion width (the 

difference between two adjacent conversion levels) of the ADC is 1 LSB. 

DNL reflects the deviation of the actual quantization curve digital code 

conversion width of the ADC from the ideal value of 1 LSB as shown in Fig. 

2.13. 
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Fig. 2.13 DNL and ideal code width 

 (2) INL: Integral Non-linearity 

All the conversion levels of the ideal quantization curve of the ADC are 

located at a straight line, while the actual quantization curve is not. INL 

reflects the deviation between the actual conversion level of the ADC and 

the ideal conversion level as shown in Fig. 2.14. For a certain digital output 

code M, its corresponding INL and DNL have the following relationship: 

INL(𝑀) = ∑ DNL(𝑀)

𝑀

𝑖=0

 (2-13) 
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Fig. 2.14 INL and ideal conversion line 

(3) Missing code 

If the ADC always has a certain (or some) digital code that cannot be 

generated regardless of the input voltage, it is said that the ADC has missing 

codes as shown in Fig. 2.15. If there is a missing code, it means that the ADC 

appears DNL = −1. 
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Fig. 2.15 Missing code 

(4) Monotonicity 

Normally, each vertical step of the ADC quantization curve is positive 

(one digital code pitch), which means that the magnitude of the digital output 

code varies in the same direction as the amplitude of the input signal. If the 

quantization curve of the ADC has a negative jump in the vertical direction, 

the ADC has non-monotonic characteristics. Non-monotonicity worsens 

quantization noise and, if present in a closed-loop system, affects system 

stability [2-4]. 

 (5) Offset error 

The first conversion level of the ideal quantization curve of the ADC 

(the input analog voltage when the digital output code jumps from 00 ⋯ 0 

to 00 ⋯ 1) is 0.5 LSB, and the offset error of the ADC is defined as the 

deviation of the first conversion level of the actual quantization curve from 
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0.5 LSB. 

 (6) Gain error 

The gain error reflects the deviation of the slope of the actual 

quantization curve of the ADC from the slope of the ideal curve, and it is 

often expressed in terms of the full-scale gain error, namely shifting the 

actual quantization curve so that its lowest conversion level is aligned with 

the lowest conversion level of the ideal curve, and then comparing the 

deviation of the actual quantization curve with the highest conversion level 

of the ideal curve.  

2.5 Testing of ADC and DAC 

2.5.1 Best-fit-line 

The best-fit-line of the ADC input-output characteristics uses a 

sequence of 𝑛  digital data 𝑌𝑖 , ⅈ = 1, ⋯ , 𝑛  generated by linear input 

signals covering the entire dynamic range. The analog output of a DAC is 

converted to digital data using linear inputs that, like in the case of an ADC, 

cover the entire dynamic range. 

The fitting line is 

𝑌̂(ⅈ) = 𝐺 ⋅ ⅈ + 𝑌𝑜𝑠 (2-14) 

where 𝐺 is the gain and 𝑌𝑜𝑠 is the offset of the data converter.  



39 

 

The least squares method minimizes the summed square of residuals 

that for the ⅈ-th data point is the difference between the measured response 

value 𝑌𝑖 and the fitted response value 𝑌̂𝑖 

𝑟𝑖 = 𝑌𝑖 − 𝑌̂𝑖 (2-15) 

The summed square of residuals is 

𝑆 = ∑ 𝑟𝑖
2

𝑛

1

= ∑[𝑌𝑖 − (𝐺 ⋅ ⅈ + 𝑌𝑜𝑠)]2

𝑛

1

 (2-16) 

The minimum of S in the coefficients space requires that the partial 

derivatives of S equal to zero 

𝜕𝑆

𝜕𝐺
= −2 ∑ ⅈ ∙ [𝑌𝑖 − (𝐺 ⋅ ⅈ + 𝑌𝑜𝑠)]

𝑛

1

= 0 (2-17) 

𝜕𝑆

𝜕𝑌𝑜𝑠
= −2 ∑[𝑌𝑖 − (𝐺 ⋅ ⅈ + 𝑌𝑜𝑠)]

𝑛

1

= 0 (2-18) 

that, using the values 

𝑆1 = 2 ∑ ⅈ

𝑛

1

; 𝑆2 = 2 ∑ 𝑌𝑖

𝑛

1

; 𝑆3 = 2 ∑ ⅈ2

𝑛

1

; 𝑆4 = 2 ∑ ⅈ𝑌𝑖

𝑛

1

; (2-19) 

as intermediate variables, yields 
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𝐺 =
𝑛𝑆4 − 𝑆1𝑆2

𝑛𝑆3 − 𝑆1
2 ; 𝑌𝑜𝑠 =

𝑆2

𝑛
− 𝐺

𝑆1

𝑛
 (2-20) 

which are the gain and offset that fit the best straight line response. 

2.5.2 Sine Curve Fitting 

Some ADC test methods generate a digital sine wave at the output using 

a precise analog sine wave generator. In most cases, the ADC's possible 

restrictions in results that are not exactly sine waves, necessitating the 

extraction of the best possible sine wave approximation (often with offset) 

from a large measured set. The three-parameter least-squares fit is used for 

processing (if the frequency is known) or the four-parameter least-squares fit 

(if the frequency needs to be found). When the data set does not precisely 

represent an integer number of cycles, the three-parameter fit is utilized since 

the DFT may be more straightforward in this situation.  

The fit method determines the values of 𝐴0 , 𝐵0 , 𝑌𝑜𝑠  (and 𝜔0 ) that 

minimize the sum of squared differences 

∑[𝑦𝑖 − 𝐴0 cos(𝜔0ⅈ𝑇) − 𝐵0sin(𝜔0ⅈ𝑇) − 𝑌𝑜𝑠]2

𝑀

𝑖=1

 (2-21) 

Where 𝑦1, 𝑦2, ⋯ , 𝑦𝑀 ,  is a sequence of M input samples taken at 

successive sample times. 

If the frequency is known we can define the matrixes 
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𝐷0 = [

cos(𝜔0ⅈ𝑇) sin(𝜔0ⅈ𝑇) 1

cos(2𝜔0ⅈ𝑇) sin(2𝜔0ⅈ𝑇) 1
… … …

cos(𝑀𝜔0ⅈ𝑇) sin(𝑀𝜔0ⅈ𝑇) 1

]  

𝑦 = [

𝑦1

𝑦2

…
𝑦𝑀

] 𝑥0 = [

𝐴0

𝐵0

𝑌𝑜𝑠

]  

that give rise to the matrix notation of Eq. 2-21 

(𝑦 − 𝐷0𝑥0)𝑇(𝑦 − 𝐷0𝑥0) (2-22) 

where T designates the transpose. 

The testing procedure is divided into the following steps because the 

minimum of the aforementioned equations decides the outcome: apply a sine 

wave with specified parameters to the input of the ADC, take a record of the 

output data, fit a sine wave to the sequence of samples by estimating phase, 

amplitude, dc value, and (if needed) frequency by minimizing the sum of the 

squared difference expressed by Eq. 2-22. 

2.5.3 Histogram Method 

Using an ADC input with known magnitude distribution (or probability 

density function 𝑝ⅈ𝑛(𝑥) is known), a series of output samples are created. 

The histogram method is a statistical analysis of these data. The occurrence 

probability 𝑃𝑖 of a certain output code 𝑉𝑖 is, for an ideal ADC, the integral 

of the probability of having the input in the range of 𝑉𝑖. Therefore, an ideal 
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ADC with N equal quantization intervals and dynamic range 𝑉𝐹𝑆 gives rise 

to 

𝑃𝑖 = ∫ 𝑝ⅈ𝑛
𝑖∆

(𝑖−1)∆

(𝑥)𝑑𝑥; ⅈ = 1 … … 𝑁; ∆=  𝑉𝐹𝑆/(𝑁 − 1) (2-23) 

∆ is the ideal step size or the average step size. If the converter is not 

ideal the integral that defines the occurrence probability of the output code 

𝑉𝑖 must extend between the actual code transitions limits 

𝑃𝑖,𝑟 = ∫ 𝑝ⅈ𝑛
𝑉𝑈,𝑖

𝑉𝐿,𝑖

(𝑥)𝑑𝑥 (2-24) 

where lower code (𝑗 ∆ sums) and upper code (add ⅈ-th ∆) transitions 

are 

𝑉𝐿,𝑖 = ∑ ∆𝑗; 𝑉𝑈,𝑖 = 𝑉𝐿,𝑖 + ∆𝑖

𝑖−1

𝑗=1

 (2-25) 

Assuming the number of samples 𝑀  is large, the ideal and real 

occurrence probability 𝑃𝑖  and 𝑃𝑖,𝑟  are approximately the ideal and real 

number of samples 𝑀𝑖 and 𝑀𝑖,𝑟 divided by 𝑀 that give rise to the ideal 

code 𝑉𝑖.  

𝑃𝑖 =
𝑀𝑖

𝑀
; 𝑃𝑖,𝑟 =

𝑀𝑖,𝑟

𝑀
 (2-26) 
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The number of quantization intervals and/or the probability density 

function are typically such that 𝑝ⅈ𝑛(𝑥) can be assumed constant within the 

ⅈ-th quantization interval and equal to 𝑝ⅈ𝑛(𝑉𝐿.𝑖). Therefore, using Eq. 2-24 

we obtain 

𝑃𝑖 = 𝑝ⅈ𝑛(𝑉𝐿.𝑖)∆; 𝑃𝑖,𝑟 = 𝑝ⅈ𝑛(𝑉𝐿.𝑖)∆𝑖 (2-27) 

which combined with Eq. 2-26 yields 

∆𝑖=
𝑀𝑖

𝑀 ∙ 𝑝ⅈ𝑛(𝑉𝐿.𝑖)
 (2-28) 

Moreover, if the inputs have constant probability over the entire 

dynamic range (like a linear ramp or a saw tooth extended over the entire 

analog range) then 𝑝ⅈ𝑛(𝑥) =
1

𝑉𝐹𝑆
 , where the integral of 𝑝ⅈ𝑛(𝑥)  over the 

0~𝑉𝐹𝑆 range is 1. Therefore, 

∆𝑖

𝑉𝐹𝑆
=

𝑀𝑖

𝑀
=

1

𝑁
;

∆𝑖

𝑉𝐹𝑆
=

𝑀𝑖,𝑟

𝑀
 (2-29) 

which determines the 𝐷𝑁𝐿 of the ⅈ-th channel 

𝐷𝑁𝐿(ⅈ) =
∆𝑖 − ∆

∆
=

𝑀𝑖,𝑟 − 𝑀𝑖

𝑀𝑖
 (2-30) 

also expressed by 

𝐷𝑁𝐿(ⅈ) =
𝑁 ∙ 𝑀𝑖,𝑟

𝑀
− 1 (2-31) 
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The histogram method determines both DNL and INL with an accuracy 

that is inversely proportional to the number of samples kept in each channel 

since the accumulation of the DNL yields the INL. 

To find the minimum number of samples needed for estimating the 

differential nonlinearity, a 100(1 − 𝛼) percent confidence interval of the 

form (𝜇 − 𝑍𝛼 2⁄ 𝜎, 𝜇 + 𝑍𝛼 2⁄ 𝜎) is set up. 𝛼  is s chosen for the desired 

confidence level. 𝑍𝛼 2⁄ 𝜎  is the precision to which the measured value 

differs from the true value 𝜇 . The derivation of 𝜎  and the subsequent 

minimum number of samples needed is carried out in [5]. 

In the 𝑛-bit case, the minimum number of samples 𝑁𝑡, needed for 𝛽 

bit precision and 100(1 − 𝛼)  percent confidence is given by Eq. 2-32 

where 𝑍𝛼 2⁄   can be found in a table of the standard normal distribution 

function: 

𝑁𝑡 =
𝑍2

𝛼 2⁄ 𝜋2𝑛−1

𝛽2
 (2-32) 

To know the differential nonlinearity for an 8-bit converter to within 

0.10 LSB with 99 percent confidence, about 268000 samples are needed.  

2.6 Gain and Offset Calibration 

The most commonly used in the calculation is endpoint fit. The starting 

point and the ending point of ADC are selected as fitting parameters, and the 

fitting curve is: 
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𝑦 = 𝑚𝑚 ⋅ 𝑥 + 𝑏 (2-33) 

The slope can be determined by the coordinates of any two points as 

shown in Fig. 2.16. 

 

Fig. 2.16 Offset & Gain Error 

𝑚𝑚 =
𝑦2𝑚 − 𝑦1𝑚

𝑥2𝑚 − 𝑥1𝑚
 (2-34) 

The offset error is the intercept of vertical axis when 𝑥 = 0. 

Gain error is the percentage of difference between the ideal slope and 

the real slope. 𝑚𝑖 is the slope of ideal transfer function.  

𝐸𝐺 = (
𝑚𝑚 − 𝑚𝑖

𝑚𝑖
) ⋅ 100% (2-35) 
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2.7 Summary 

This chapter first introduces sampling, quantization noise and common 

types of ADC・DAC, and briefly describes their operating principles, then 

introduces the static and dynamic characteristics of ADCs, and briefly 

explains the definitions of these characteristics. And the last thing to 

introduce is data processing. 
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Chapter 3 Code Selective Histogram Method  

3.1 ADC Output Code Prone to Nonlinearities 

The linearity of the entire ADC is determined by the linearity of the 

DAC inside the ADC in many cases. Taking SAR ADC as an example, it 

uses binary search and comparison of the sampled analog voltage to the DAC 

output voltage to convert analog input to digital output. Fig. 3.1 provides a 

basic overview of SAR ADC. There the largest nonlinearity is likely to occur 

close to 
1

2
  of digital code range (all switches change). The second large 

nonlinearities may occur around 
1

4
,

3

4
 . The actual ADC structure will 

determine the code that is prone to nonlinearities.  

In Fig. 3.2 case, the largest nonlinearity in the 5-bit R-2R trapezoidal 

binary weighted DAC is likely to occur close to the digital codes 15 to 16. 

(all switches will change). Next, large nonlinearities may occur around 8, 24, 

and then around 4, 12, 20, and 28. The DAC codes prone to nonlinearity 

depend on the DAC architecture as shown in [1,2]. 
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Fig. 3.1 Block diagram of typical SAR ADC 

 

Fig. 3.2 R-2R ladder network DAC 

3.2 Conventional Sine Histogram Method and Problem 

Since accurate knowledge of the probability density function is key for 

the histogram method, a convenient test signal is a sine wave. Let us think 

about the sine wave histogram method. The input sine wave is sampled, as 

shown in Fig. 3.3, and the value of the histogram for the corresponding 

digital output code bin is increased by one. After that, the histogram or 

frequency of occurrence of each code can be displayed as shown in Fig. 3.4. 

S & H
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Input
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An accurate estimation of the probability density function that, 

including a possible offset (𝑉 = 𝐴 sin(𝑥) − 𝑉𝑜𝑠) is 

𝑝(𝑉) =
1

𝜋√𝐴2 − 𝑥2
: 𝑥 = 𝑉 − 𝑉𝑜𝑠 (3-1) 

The integration of the density function from 𝑃(𝑉𝑖, 𝑉𝑖+1) that voltage 

exists between 𝑉𝑖 and 𝑉𝑖+1 is given by 

𝑃(𝑉𝑖 , 𝑉𝑖+1) =
1

𝐴𝜋
{arcsin [

𝑉𝑖+1 − 𝑉𝑜𝑠

𝐴
] − arcsin [

𝑉𝑖 − 𝑉𝑜𝑠

𝐴
]} (3-2) 

The input signal's amplitude (vertical axis) in Fig. 3.3 is represented by 

the horizontal axis of Fig. 3.4. For example, in the case of a 12-bit ADC, the 

amplitude of the input signal is divided by 4096. Notice that while a highly 

linear saw signal is hard to produce, low distortion sine waves are relatively 

simple to achieve using analog filters [3-7]. 

 

Fig. 3.3 Histogram generation for sine wave input 
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Fig. 3.4 Ideal 12-bit ADC output histogram for the sine wave input 

The histogram is concentrated on both ends of the code, as shown in 

Fig. 3.4, which is a problem because the test time is longer near the center of 

the code.  

In many cases, ADC linearity must often be assured around the center 

code. Histogram ADC testing with the sine wave input takes long time to 

measure the linearity accurately around the center of the ADC output range, 

because DNL measurement accuracy is proportional to the number of data 

samples in the bin. However, as shown in our previous study [8], focusing 

on specific codes can avoid this shortcoming. 

3.3 DNL/INL Calculation Algorithm for Multi Tone Wave 

Fig. 3.5 shows a waveform input to the ADC which is a periodic 

function 𝑉 = 𝑓(𝑡) with two points (as shown in Fig. 3.5, the first point and 

the middle point) where 𝑓′(𝑡) = 0 (slope is 0) in one cycle (𝑇). Solving Eq. 

3-3 over time t yields Eq. 3-4. 
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𝑉 = 𝑓(𝑡) (3-3) 

𝑡 = 𝑓−1(𝑉) (3-4) 

 

The probability density 𝑝[ⅈ] that voltage exists between ⅈ-th voltage 

𝑉𝑖 and (ⅈ + 1)-th voltage 𝑉𝑖+1 is given by 

𝑝[ⅈ] =
2(𝑡𝑖+1 − 𝑡𝑖)

𝑇
=

2(𝑓−1(𝑉𝑖+1) − 𝑓−1(𝑉𝑖))

𝑇
 (3-5) 

 

Cumulative probability density is given as follows: 

𝑃𝐼[ⅈ] = ∑ 𝑝[𝑘]

𝑖

𝑘=0

=
2𝑓−1(𝑉𝑖+1)

𝑇
 (3-6) 

 

Then we obtain the following: 

𝑉𝑖+1 = 𝑓 (
𝑇

2
𝑃𝐼[i]) (3-7) 

 

𝛥 is the ideal step size or the average step size. About real output 𝑉𝑟, 

we use 
𝑉𝑟,2𝑛−1−𝑉𝑟,1

2𝑛−2
 to approximate 𝛥. 𝐷𝑁𝐿 can be calculated as follows: 
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𝐷𝑁𝐿[ⅈ] =
𝑉𝑟,𝑖+1 − 𝑉𝑟,𝑖

𝛥
− 1 =

𝑉𝑟,𝑖+1 − 𝑉𝑟,𝑖

𝑉𝑟,2𝑛−1 − 𝑉𝑟,1

2𝑛 − 2

− 1  

= (2𝑛 − 2) ⋅
𝑓 (

𝑇
2

𝑃𝐼𝑟[ⅈ]) − 𝑓 (
𝑇
2

𝑃𝐼𝑟[ⅈ − 1])

𝑓(
𝑇
2

𝑃𝐼𝑟[2𝑛 − 2]) − 𝑓 (
𝑇
2

𝑃𝐼𝑟[0])
− 1 (3-8) 

ⅈ = 1,2, … , 2𝑛 − 1  

𝐼𝑁𝐿 is also obtained as follows: 

𝐼𝑁𝐿[ⅈ] = ∑ 𝐷𝑁𝐿[𝑘]

𝑖

𝑘=1

  

= (2𝑛 − 2) ⋅
𝑓 (

𝑇
2

𝑃𝐼𝑟[ⅈ]) − 𝑓 (
𝑇
2

𝑃𝐼𝑟[0])

𝑓(
𝑇
2

𝑃𝐼𝑟[2𝑛 − 2]) − 𝑓 (
𝑇
2

𝑃𝐼𝑟[0])
− ⅈ (3-9) 

ⅈ = 1,2, … , 2𝑛 − 1  

Here we set 𝐷𝑁𝐿 [0] and 𝐼𝑁𝐿 [0] to 0. It is difficult to use inverse 

function of multi-tone wave for calculating probability density function 

𝑃𝐼(𝑉). But with this algorithm, we can obtain actual ADC DNLs and INLs 

using the histogram method with multi-tone signal, by using probability 

distribution 𝑃𝐼𝑟[ⅈ]  obtained by measurement of the ADC under test 

substituting into 𝑃𝐼[ⅈ] in Eq. 3-8 and Eq. 3-9. 
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Comparing the algorithm with the approach using the ideal histogram, 

simulation using sine wave input has validated the algorithm's validity. In 

simulation, 10-bit SAR ADC is assumed and thus the ADC output ranges 

from 0 to 1023. The total number of samples is 216 (65 536). To know the 

differential nonlinearity for a 10-bit converter to within 1LSB with 99.998 

percent confidence, about 27 000 samples are needed from Eq. 2-32. And in 

a 10-bit converter to within 0.10LSB with 99 percent confidence case, about 

1 070 700 samples are needed 

Except for the results near the codes 0 and 1023, Fig. 3.6 shows that 

most always, the absolute difference between DNLs determined using the 

method in this section and the ideal histogram is 0.0002 LSB or less. 

 

Fig. 3.5 Example of a periodic function 𝑉 = 𝑓(𝑡). 



55 

 

 

Fig. 3.6 Absolute value of the difference between DNLs calculated from the 

method in Section 3.3 and the ideal histogram. 

3.4 Two-Tone Sine Wave Input 

The amount of data in each histogram bin determines the accuracy of 

the nonlinearity evaluation for each code. Therefore, to improve the accuracy 

of the nonlinearity evaluation, the amount of data in the corresponding 

histogram bin should be increased. 

The number of samples at the corresponding amplitude positions (codes) 

the obtained ADC output data increases with the gentler the slope of the input 

signal waveform. Therefore, we consider using a two-tone sine wave to make 

the slope softer at the corresponding amplitude locations [9]. And there are 

two reasons, the first is that the complexity of calculation and focus on code 

prone to nonlinearity are relatively simpler. And the second is that applicable 

input waveforms about proposed method that is a periodic function 𝑉 =

𝑓(𝑡) with two points where 𝑓′(t) = 0 (slope is 0) in one cycle (𝑇). Multi-

tone will more difficult to control. 
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The two-tone sine wave is generated by the arbitrary waveform 

generator (AWG) as shown in Fig. 3.7 [10, 11]. The arbitrary digital two-

tone sine wave is generated from DSP. After the digital signal is converted 

to analog signal by DAC, it is applied to DUT through analog filter.  

 

Fig. 3.7 Hardware components for generating proposed two-tone sine wave 

 

Fig. 3.8 Waveforms 𝑓(𝑡) =  sin(𝑡) in blue and 𝑓(𝑡) = −
sin(3𝑡)

3
 in red 

First, we consider increasing the number of samples around the center 

512. Fig. 3.8 plots the first term and second term of Eq. 3-11, respectively. 

Because the slope between half-cycles of sine wave are opposite, it needs to 

be staggered to match the slope by using odd number. The value of 𝜔2 is 

odd number 3. The slope of 𝑓3(𝑡)  at the center is reduced to zero (t =
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arcsin 0 = 𝜋) as shown in Fig. 3.9.  

𝑓𝜔2
(𝑡) = sin(𝜔1𝑡) −

sin (𝜔2𝑡)

𝑘
 (3-10) 

𝑓3(𝑡) = sin(𝑡) −
sin(3𝑡)

3
 (3-11) 

Fig. 3.10 shows the histogram when the test stimulus of Eq. 3-11 is 

applied to the ideal 10-bit ADC. In all simulation in chapter 3, 10-bit SAR 

ADC is assumed and thus the ADC output ranges from 0 to 1023. The total 

number of samples is 216 (65 536). 

As a result, we see that the number of samples near the center (near the 

digital output 512) is increased, as shown in Fig. 3.10.  

Fig. 3.11 and Fig. 3.12 show the obtained ideal 10-bit ADC DNL and 

INL measurements of the two-tone sine wave 𝑓3(𝑡)  and sin(𝑡) , 

respectively. Around the code 512, where the length of the bin of the 

histogram is greater, the distributions of the ideal 10-bit ADC DNL and INL 

of the two-tone sine wave become narrower. 
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Fig. 3.9 Input wave 𝑓3(𝑡) = sin(𝑡) −
sin(3𝑡)

3
 

 

Fig. 3.10 Ideal 10-bit ADC output histogram for the input signal of 𝑓3(𝑡) =

sin(𝑡) −
sin(3𝑡)

3
 in red and 𝑓(𝑡) = sin (𝑡) in blue 



59 

 

 

Fig. 3.11 Ideal 10-bit ADC DNL for the input signal of 𝑓3(𝑡) = sin(𝑡) −
sin(3𝑡)

3
 

in red and 𝑓(𝑡) = sin (𝑡) in blue 

 

Fig. 3.12 Ideal 10-bit ADC INL for the input signal of 𝑓3(𝑡) = sin(𝑡) −
sin(3𝑡)

3
 

in red and 𝑓(𝑡) = sin (𝑡) in blue 

Next, we consider increasing the number of samples around 256 and 

768. We change the amplitude positions to produce more occurrences of the 

gentle waveform slope, in other words, for example, 𝑡 = arcsin
1

2
=

𝜋

6
, … 

Notice that 
𝜋

6
  is 1/12 of the period 2𝜋 , because the slope between half-



60 

 

cycles of sine wave are opposite, it needs to be staggered to match the slope 

by using odd number. The value of 𝜔2 is adjacent odd number 11 is shown 

in Fig. 3.13. And each term of the two-tone sine wave of Eq. 3-12 is shown 

in Fig. 3.14.  

 

Fig. 3.13 Flowchart of 𝜔2 in 𝑓11(𝑡) 

The value of k is 25 to make the waveform with two points where (slope 

is 0) in one cycle. The waveform of the two-tone sine wave is shown in Fig. 

3.15.  

𝑓11(𝑡) = sin(𝑡) −
sin(11𝑡)

25
 (3-12) 
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Fig. 3.14 f(𝑡) =  sin(𝑡) in blue and f(t) = −
sin(11𝑡)

25
 in red 

 

Fig. 3.15 Input wave 𝑓11(𝑡) = sin(𝑡) −
sin(11𝑡)

25
 

Fig. 3.16 shows the histogram when the test stimulus of Eq. 3-12 is 

applied to the ideal 10-bit ADC. The total number of samples is 216 (=65 

536). 

The number of samples near the targets (256, 768 as well as 512) has 

increased. The two extra sharp peaks surrounding the codes are visible in the 

histogram. Because the slope of the basic sine wave in some of these places 

is equal to or occasionally gentler than that of the second tone of the input 

two-tone sine wave, these extra peaks appear around the fundamental sine 
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wave's maximum and minimum values. It sometimes has a negative impact 

on DNL and INL calculations [12].  

Fig. 3.17 and Fig. 3.18 show the obtained ideal 10-bit ADC DNL and 

INL measurements of the two-tone sine wave 𝑓11(𝑡) and sin (𝑡) , 

respectively. The length of the bin in the histogram is larger, such as around 

the codes 256, 768, and 512, the distributions of both DNL and INL of the 

two-tone sine wave become narrower. 

 

Fig. 3.16 Ideal 10-bit ADC output histogram for the input signal of 𝑓11(𝑡) =

sin(𝑡) −
sin(11𝑡)

25
 in red and 𝑓(𝑡) = sin (𝑡) in blue 
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Fig. 3.17 Ideal 10-bit ADC DNL for the input signal of 𝑓11(𝑡) = sin(𝑡) −

sin(11𝑡)

25
 in red and 𝑓(𝑡) = sin (𝑡) in blue 

 

Fig. 3.18 Ideal 10-bit ADC INL for the input signal of 𝑓11(𝑡) = sin(𝑡) −
sin(11𝑡)

25
 

in red and 𝑓(𝑡) = sin (𝑡) in blue 

In the same way, we can use arcsin
1

4
≈

𝜋

12
  (

1

24
  of period 2𝜋 ) to 

consider increasing 384, 640 and arcsin
1

8
≈

𝜋

25
 (

1

50
  of period 2𝜋 ) to 

consider increasing 448, 576. The following Eq. 3-13 and Eq. 3-14 are 

corresponding two-tone sine waves. The values of k are 50, 100, respectively.  
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𝑓23(𝑡) = sin(𝑡) −
sin(23𝑡)

50
 (3-13) 

𝑓51(𝑡) = sin(𝑡) −
sin(51𝑡)

100
 (3-14) 

However, extra peaks of the histogram of 𝑓23(𝑡) and 𝑓51(𝑡)  make it 

difficult to calculate DNL and INL. The two-tone sine wave is amplified, and 

the amplitude positions are changed to avoid the extra peaks. (𝜔2 is tuned). 

As a result, the following two equations Eq. 3-15 and Eq. 3-16 are used 

instead of Eq. 3-13 and Eq. 3-14, respectively.  

𝑓31(𝑡) = 1.2 (sin(𝑡) −
sin(31𝑡)

50
) (3-15) 

𝑓59(𝑡) = 1.2 (sin(𝑡) −
sin(59𝑡)

100
) (3-16) 

Fig. 3.19 and Fig. 3.20 show each histogram. The total number of 

samples is 216 (=65 536). The number of samples near target codes 128, 

256, 384, 512, 640, 768, 896 of histogram of Fig. 3.19 should be increased. 

They are codes corresponding to the DAC output voltages. However, the 

peaks are not found on the codes 128, 256, 768, 896 in Fig. 3.19.  

The number of samples near target codes 64, 128, 192, 256, 320, 384, 

448, 512, 576, 640, 704, 768, 832, 896 of histogram of Fig. 3.20 should be 

increased. However, the peaks are not found on the codes 64, 128, 192, 832, 

896 and 960 in Fig. 3.21. The heights of the peaks of the histograms of 𝑓31 
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and 𝑓59  are around 100. The widths of the peaks get narrower as 𝜔2 

increases.  

 

Fig. 3.19 Ideal 10-bit ADC output histogram for the input signal of 𝑓31(𝑡) =

1.2 (sin(𝑡) −
sin(31𝑡)

50
) in red and 𝑓(𝑡) = sin (𝑡) in blue 

 

Fig. 3.20 Ideal 10-bit ADC output histogram for the input signal of 𝑓59(𝑡) =

1.2 (sin(𝑡) −
sin(59𝑡)

100
) in red and 𝑓(𝑡) = sin (𝑡) in blue 
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Fig. 3.21, Fig. 3.22, Fig. 3.23 and Fig. 3.24 show the obtained ideal 10-

bit ADC DNL and INL measurements of the two-tone sine waves 𝑓31(𝑡) 

and 𝑓59(𝑡), comparing with those of sin (𝑡), respectively. Compared to the 

distributions of DNL and INL 𝑓3(𝑡) of 𝑓11(𝑡), those of 𝑓31(𝑡) and 𝑓59(𝑡)  

spread relatively widely in the vertical direction.  

 

Fig. 3.21 Ideal 10-bit ADC DNL for the input signal of 𝑓31(𝑡) = 1.2 (sin(𝑡) −

sin(31𝑡)

50
) in red and 𝑓(𝑡) = sin (𝑡) in blue 
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Fig. 3.22 Ideal 10-bit ADC INL for the input signal of 𝑓31(𝑡) = 1.2 (sin(𝑡) −

sin(31𝑡)

50
) in red and 𝑓(𝑡) = sin (𝑡) in blue 

 

Fig. 3.23 Ideal 10-bit ADC DNL for the input signal of 𝑓59(𝑡) = 1.2 (sin(𝑡) −

sin(59𝑡)

100
) in red and 𝑓(𝑡) = sin (𝑡) in blue 
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Fig. 3.24 Ideal 10-bit ADC INL for the input signal of 𝑓59(𝑡) = 1.2 (sin(𝑡) −

sin(59𝑡)

100
) in red and 𝑓(𝑡) = sin (𝑡) in blue 

The INL and DNL around the codes with high peak seems to be larger 

as the number of peaks increases. Because we set DNL[0] and INL[0] to 0 

and use it as a benchmark, so INL has a slope. 

3.5 Evaluation Result of Undistorted ADC and Distorted ADC 

Simulation results show the effectiveness of the code-selective 

histogram algorithm. 𝜔1  is 1.0, while 𝜔2  is 11.0. The code-selective 

histogram method is applied to a non-linear 10-bit ADC to calculate its DNL. 

In this evaluation, the two-tone sine wave Eq. 3-12 (𝑓11(𝑡) = sin(𝑡) −

sin(11𝑡)

25
.) input is used to obtain more data at the bins of codes 511, 255, 767. 

The total number of samples is 216 (=65 536). 

The code-selective histogram method is applied to an ideal linear 10-bit 

ADC. Fig. 3.25 shows the result for two-tone 𝑓11(𝑡) and sine wave sin(𝑡) 

cases. Numbers of samples at codes of 511, 255, 767 have increased. 
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Measurement errors for two-tone at codes of 511, 255, 767 are smaller than 

those of the conventional sine wave method. 

 

Fig. 3.25 Comparison of ideal ADC using sine wave and two-tone input (𝑓11(𝑡)) 

histograms. 

The code-selective histogram algorithm is applied to a distorted ADC 

to calculate its DNL. Here, relatively larger DNLs are added to the 

vulnerable codes of 511, 255, 767, 127, 383, 639, 895 for comparison and 

calculate their DNLs with the code-selective histogram method and the 

conventional sine wave method. In this evaluation, 0.5, -0.3, -0.3 LSB are 

added to codes of 511, 255, 767 as DNL, and 0.1 LSB are added to codes 

127, 383, 639, 895 as DNL as shown in Table 3.1, respectively. 
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Table 3.1 DNL added of distorted ADC 

 

Fig. 3.26 Comparison of obtained DNL errors of non-ideal ADC using sine wave 

and two-tone input (𝑓11(𝑡)) histograms. 

Fig. 3.26 shows the result for two-tone 𝑓11(𝑡) and sine wave sin(𝑡) 

cases. Numbers of samples at codes of 255, 767, 511 have increased, whereas 

those at codes of 127, 383, 639, 895 have decreased. We see that errors for 

two-tone at codes of 255, 767, 511 are smaller than those of the conventional 

sine wave method. As shown in Table 3.2, Error compared to added DNL, 

the result of two-tone waveform is more accurate than sin waveform on 

specific codes. DNL accuracy of specific code is improved by about 2%~7%. 

At codes of 255, 767, 511, Numbers of samples for two-tone have almost 

twice as many samples as sine wave, and the total number of samples is 216 

Code DNL(LSB) 

127 0.1 

255 -0.3 

383 0.1 

511 0.5 

639 0.1 

767 -0.3 

895 0.1 
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(=65 536). Therefore, by reducing the total number of samples, it is possible 

to shorten the time while maintaining the same accuracy. 

Table 3.2 DNL Accuracy of Distorted ADC 

Output code 255 511 767 

Added DNL -0.3 0.5 -0.3 

Number of Samples for Two-tone 62 114 62 

Error for Two-tone (LSB) 0.000475 0.006441 0.012022 

Number of Samples for Sine wave 32 62 34 

Error for Sine wave (LSB) 0.020511 0.021264 0.022598 

𝐸𝑆𝑖𝑛 − 𝐸𝑇𝑤𝑜

|𝐷𝑁𝐿𝐴𝑑𝑑|
 6.67% 2.96% 3.52% 

3.6 Sensitivity of DNL, INL to Inaccuracy of Input Tones 

Here, we assess the impact of amplitude and phase error on the DNL 

and INL of the proposed method.  

Following equation is used for the evaluation to consider the case that 

𝜔2 = 3𝜔1, 𝑘 = 3  in Eq. 3-10. The total number of samples is 216  (=65 

536). 

𝑓(𝑡) = sin(𝑡) −
𝐴 sin(3𝑡 + 𝜃)

3
 (3-17) 

Where 𝐴 - 1 is amplitude error, 𝜃 is phase error. When no error exists, 

𝐴 = 1 , 𝜃 = 0 . Here we consider the case that 𝐴 ≠ 1, 𝜃 = 0 , where 

amplitude error exists. We calculate DNL and INL with the equation when 
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𝐴 = 1, 𝜃 = 0. The determined DNL and INL are used to calculate the root 

mean square (RMS) of the DNL and INL. In case that 𝐴 =0.95, 0.96, 0.97, 

0.98, 0.99, 1.0, 1.01, 1.02, 1.03, 1.04, 1.05, the RMS is calculated.  

Similarly, we consider the case that 𝐴 = 1, 𝜃 ≠ 0, where phase error 

exists. We calculate DNL and INL with the equation when 𝐴 = 1, 𝜃 = 0. 

From the calculated DNL and INL, the RMS of the DNL and INL is obtained. 

The RMS is calculated in case that 𝜃  = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 

5(degree).  

Fig. 3.27 shows amplitude error characteristics of the RMS of the DNL 

and INL. The horizontal axis is 𝐴, the vertical axis is the RMS of the DNL 

and INL. The curve of DNL is almost constant compared with the curve of 

INL. It is unsensitive to the amplitude error. On the other hand, the curve of 

INL is downward convex. It takes the maximum INL value near 5.2 with A 

= 1.05.  

Fig. 3.28 shows phase error characteristics of the RMS of the DNL and 

INL. The horizontal axis is 𝜃, the vertical axis is the RMS of the DNL and 

INL. The curve of DNL is almost constant compared with the curve of INL, 

although both of shapes of the curves are downward convex with origin 

symmetry.  

The amplitude error of INL is more sensitive than the others in view of 

these results. 



73 

 

 

Fig. 3.27 Amplitude error characteristics of RMS of DNL, INL  

 

 

Fig. 3.28 Phase error characteristics of RMS of DNL, INL  

Because the 3rd-order nonlinearity component of the DAC inside the 

AWG and that of the ADC under test would affect the 3𝜔1 component at 

the ADC output, the condition 𝜔2 = 3𝜔1 would not be appropriate in 

practical applications; sometimes, 3rd-order nonlinearity cannot be 

neglected.  
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However, the input waveforms yielded by equations Eq. 3-12, Eq. 3-15 

and Eq. 3-16 are useful because the 11th, 31th, and 59th order nonlinearities 

are usually very small. 

3.6 Summary 

The two-tone sine wave input for the code selective histogram method 

for SAR ADC is the first introduced in this chapter. The proposed method 

increases frequency of appearance of the codes, then makes the length of the 

bins longer with two-tone sine wave input than method with sine wave. DNL 

accuracy of specific code is improved by about 2%~7%. And by reducing 

the total number of samples, it is possible to shorten the time while 

maintaining the same accuracy. Additionally, we created a program to test 

our algorithm in Section 3.3, and the outcomes of our simulations 

demonstrate the efficiency and performance of the code selected histogram 

method. 

  



75 

 

References 

[1] M. Hirai, H. Tanimoto, Y. Gendai, S. Yamamoto, A. Kuwana, H. Kobayashi, “Digital-

to-Analog Converter Configuration Based on Non-uniform Current Division 

Resistive-Ladder”, The 36th International Technical Conference on Circuits/Systems, 

Computers and Communications, Korea, June 2021. 

[2] M. Hirai, H. Tanimoto, Y. Gendai, S. Yamamoto, A. Kuwana, H. Kobayashi, 

“Nonlinearity Analysis of Resistive Ladder-Based Current-Steering Digital-to-

Analog Converter”, 17th International SoC Design Conference, Yeosu, Korea, Oct. 

2020. 

[3] F. Abe, Y. Kobayashi, K. Sawada, K. Kato, O. Kobayashi and H. Kobayashi, “Low-

Distortion Signal Generation for ADC Testing,” IEEE International Test Conference, 

Seattle, WA, Oct. 2014. 

[4] T. Komuro, S. Sobukawa, H. Sakayori, M. Kono and H. Kobayashi, “Total Harmonic 

Distortion Measurement System for Electronic Devices up to 100MHz with 

Remarkable Sensitivity,” IEEE Trans. Instrumentation and Measurement, Vol. 56, No. 

6, pp. 2360-2368. Dec. 2007. 

[5] B. E. Peetz, A. S. Muto, and J. M. Nei, “Measuring Waveform Recorder 

Performance”, Hewlett-Packard Journal, Vol. 33, No. 11, pp. 21-29. Nov. 1982. 

[6] J. Doernberg, H. Lee, D. A. Hodges, “Full-Speed Testing of A/D Converters”, IEEE 

Journal of Solid-State Circuits, Vol. sc-19, No. 6, pp. 820-827. Nov. 1984. 

[7] IEEE Standard for Terminology and Test Methods of Digital-to-Analog Converter 

Devices, IEEE Instrumentation and Measurement Society, 2012. 

[8] S. Uemori, T. Yamaguchi, S. Ito, Y. Tan, H. Kobayashi, N. Takai, K. Niitsu, N. 

Ishikawa “ADC Linearity Test Signal Generation Algorithm,” IEEE Asia Pacific 

Conference on Circuits and Systems, Kuala Lumpur, Malaysia, Dec. 2010. 

 

 



76 

 

[9] Y. Zhao, et. al., “Revisit to Histogram Method for ADC Linearity Test: Examination 

of Input Signal and Ratio of Input and Sampling Frequencies”, Journal of Electronic 

Testing: Theory and Applications, Springer, March 2022. 

[10] F. Abe, Y. Kobayashi, K. Sawada, K. Kato, O. Kobayashi and H. Kobayashi, “Low-

Distortion Signal Generation for ADC Testing,” IEEE International Test Conference, 

Seattle, WA, Oct. 2014. 

[11] S. Uemori, T. Yamaguchi, S. Ito, Y. Tan, H. Kobayashi, N. Takai, K. Niitsu, N. 

Ishikawa “ADC Linearity Test Signal Generation Algorithm,” IEEE Asia Pacific 

Conference on Circuits and Systems, Kuala Lumpur, Malaysia, Dec. 2010. 

[12] Y. Ozawa, A. Kuwana, K. Asami, H. Kobayashi, "ADC Linearity Testing Using 

Multi-tone Input Histogram Method," ETG-19-24, ETT-19-24, 9-th IEEJ Workshop 

in Tochigi and Gunma, Mar. 2019. 

  



77 

 

Chapter 4 Decision of Optimal Sampling 

Frequencies Based on Classical Mathematics 

4.1 Introduction 

Chapter 3 mainly discusses the relationship between input signal 

waveform and histogram method, this section focuses on the relationship 

between input signal frequency and sampling frequency. In other words, this 

section outlines the decision-making process for the histogram method's the 

optimal sample frequency using classical mathematics [1].  

The input signal frequency and sampling frequency for histogram 

method are defined as𝑓𝑠𝑖𝑔 , 𝑓𝐶𝐿𝐾 , respectively. With these parameters, the 

periods are also defined as 𝑇𝑠𝑖𝑔 = 1/𝑓𝑠𝑖𝑔 , 𝑇𝐶𝐿𝐾 = 1/𝑓𝐶𝐿𝐾  , respectively. 

Then the 𝑛-th sampling point of the sampling point’s sequence 𝑝𝑛 can be 

expressed as follows, by ignoring noise effect and initial phase difference 

between the frequencies.  

𝑝𝑛 = 𝑛𝑇𝐶𝐿𝐾𝑚𝑜𝑑 𝑇𝑠𝑖𝑔 (4-1) 

With a limited number of histogram data (in other words, with short test 

time), accurate test results can be obtained if the sequence distributes pseudo-

randomly. If it cannot be pseudo-randomly distributed and concentrated in a 

certain place, the histogram will also be concentrated in the corresponding 

code, which is inconsistent with the actual. Accordingly, for accurate test, 
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the ratio between 𝑓𝐶𝐿𝐾 and 𝑓𝑠𝑖𝑔 is important. 

With the following two data sampling methods, we aim to find the 

optimal ratio between 𝑓𝐶𝐿𝐾  and 𝑓𝑠𝑖𝑔 . These sample techniques are 

described in subsections 4.2 and 4.3, respectively. The characteristics of each 

sampling method with their comparison are provided in Subsection 4.4. 

Finally, the real number sampling method is then contrasted with some of 

the better samplings.  

4.2 Metallic Ratio Sampling 

In the first attempt, metallic ratio is introduced to the ratio between 

𝑓𝐶𝐿𝐾  and 𝑓𝑠𝑖𝑔 . Table 4.1 shows the definition of metallic ratio as 𝑀𝑛 =

(𝑛 + √𝑛2 + 4)/2. The sampling frequency of the metallic ratio sampling is 

decided as 𝑓𝐶𝐿𝐾 = 𝑀𝑛 ∙ 𝑓𝑠𝑖𝑔. With a small ratio of maximum to minimum 

distances between adjacent sampling points, metallic sampling can be 

performed. Also, the pseudo-randomness of the sampling points is improved 

approximately in proportional to the number of the data [2]. The authors 

investigated the relationship between 𝑓𝐶𝐿𝐾  and 𝑓𝑠𝑖𝑔  and found that the 

"golden ratio" can effectively acquire the waveform in the time domain, and 

the proposed sampling condition (𝑓𝐶𝐿𝐾 = ∅ 𝑓𝑠𝑖𝑔, ∅ ∶golden ratio) offers 

efficient waveform sampling, which we call golden ratio sampling [3, 4]. 

 



79 

 

This paper uses the histogram method of ADC linearity test with the 

metallic ratio sampling and investigate the characteristics.  

4.3 Prime Number Ratio Sampling 

To apply the prime number ratio sampling is the second attempt. As 

ratios 𝑓𝐶𝐿𝐾 /𝑓𝑠𝑖𝑔 , two prime numbers are applied. (such as 23/13, 101/61, 

199/127, 503/507).  

4.4 Simulation Results 

To investigate the optimal sampling method for code selective 

histogram method, Simulation is performed. RMS of DNL is the evaluation 

criterion. The resolution 𝑁 is changed from 4-bit to 14-bit while the code 

selective histogram method is being used. In each resolution, RMS of DNL 

is calculated. The two-tone sine wave from Eq. 3-12 is used in this evaluation. 

The total number of samples 𝑀  is 220 (1 048 576). Then, the resolution 

characteristics of the root mean square (RMS) of the DNL are obtained with 

different resolution 𝑁 . With each sample method, the characteristics are 

obtained. To know the differential nonlinearity for a 14-bit (16 384) 

converter to within 1-bit precision with 99.998 percent confidence, about 431 

000 samples are needed from Eq. 2-32. And in a 14-bit converter to within 

0.10LSB with 99 percent confidence case, about 17 130 862 samples are 

needed. At the same time needed samples in 9-bit, 10-bit, 11-bit, 12-bit, 13-

bit are less than 14-bit case. 
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The metallic ration sampling is evaluated in Subsection 4.4.1, while the 

prime number ratio sampling is evaluated in Subsection 4.4.2. 

4.4.1 Evaluation Results of Metallic Ratio 

Table 4.1 Metallic ratios 

𝑁𝑛 
The 𝑛-th 

metallic number 

Decimal 

expansion 

Nickname 

0 1   

1 
1 + √5

2
 1.6180339887… Golden ratio ∅ 

2 1 + √2 2.4142135623… Silver ratio 

3 
3 + √13

2
 3.3027756377… Bronze ratio 

4 2 + √5 4.2360679774…  

… … 

𝑁𝑛 
𝑛 + √𝑛2 + 4

2
 

In some cases of ADC testing, it is necessary to investigate several 

frequencies of 𝑓𝑠𝑖𝑔 for a fixed 𝑓𝐶𝐿𝐾, or several frequencies of 𝑓𝐶𝐿𝐾 for a 

fixed 𝑓𝑠𝑖𝑔. In such cases, golden ratio sampling is inadequate, therefore we 

used metallic ratios to investigate more relationships between 𝑓𝐶𝐿𝐾  and 

𝑓𝑠𝑖𝑔, using metallic ratios (Table 4.1). Notice that the golden ratio is one of 
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the metallic ratios [5]. 

We obtain the resolution characteristics of the root mean square (RMS) 

of the DNL of the metallic ratio sampling with different resolution 𝑁. In this 

evaluation, 𝑓𝐶𝐿𝐾/𝑓𝑠𝑖𝑔 = 𝑀𝑛. The resolution 𝑁 characteristics are evaluated 

in the 8 cases while the value of n is changed from 1 to 8. Both the noise-

free and noise-filled conditions are used to obtain the characteristics. In the 

case of the noisy condition, the sampling period and the fundamental sine 

wave of the two-tone test stimulus are both increased by the amount of 

Gaussian noise. In all the characteristics, RMS of DNL will increase as 𝑁 

increases. It is because 𝑀/𝑁(the number of samples per bit divided equally) 

decreases as 𝑁 increases.  

The characteristics without noise, with 0.001% Gaussian noise, with 

0.01% Gaussian noise, and with 0.1% Gaussian noise are shown in Figs. 4.1, 

4.2, 4.3, and 4.4, respectively. The horizontal axis of each figure is division 

number 𝑁. The resolution of ADC is 𝑙𝑜𝑔2 𝑁(bits). The vertical axis is RMS 

of DNL.  

The characteristics of 𝑀2, namely Silver ratio, are shown in Fig. 4.1, 

are the worst. And all the characteristics, with the exception of 𝑀2 , are 

almost similar. The larger noise is, the worse characteristics are. As the added 

noise increases, the similarity of the characteristics becomes higher.  
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Fig. 4.1 Resolution characteristics of RMS of DNL of metallic ratio samplings 

(no noise) 

 

Fig. 4.2 Resolution characteristics of RMS of DNL of metallic ratio samplings 

(noise 0.001%) 
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Fig. 4.3 Resolution characteristics of RMS of DNL of metallic ratio samplings 

(noise 0.01%) 

 

Fig. 4.4 Resolution characteristics of RMS of DNL of metallic ratio samplings 

(noise 0.1%) 

4.4.2 Evaluation Results of Prime Number Ratio 

We obtain the resolution characteristics of the RMS of the DNL of the 

prime number ratio sampling. In this way, we can know the performance of 

the prime number ratio and the comparison with the metallic ratio. 
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Prime number ratio sample by a pair of relatively small prime numbers 

and prime number ratio sampling by a pair of relatively large prime numbers 

are the two cases that are investigated in this evaluation. 

In the evaluation of prime number ratio samplings by a pair of relatively 

small prime numbers, the characteristics of the prime number samplings 

when 𝑓𝐶𝐿𝐾 /𝑓𝑠𝑖𝑔 = 23/13, 101/61, 199/127, 503/307 are evaluated. On the 

other hand, in the evaluation of prime number ratio samplings by a pair of 

relatively large prime numbers, the characteristics of the prime number 

samplings when 𝑓𝐶𝐿𝐾/𝑓𝑠𝑖𝑔= 997/991, 997/953, 997/907, 997/853, 997/751, 

997/599, 997/389 are evaluated. Figs. 31, 32, 33, 34 show the characteristics 

of the prime number ratio samplings by a pair of relatively small prime 

numbers without noise, with 0.001% Gaussian noise, with 0.01% Gaussian 

noise, with 0.1% Gaussian noise, respectively.  

Overall, in comparison to those of Fig. 4.1 of the metallic ratio 

samplings, the results of Fig. 4.5 of the prime number samplings by a pair of 

relatively small prime numbers have poor characteristics. Especially, the 

RMS of DNL of 101/61 is more than 1.  

The pair of prime number values has a significant impact on the 

property. In the direction of the vertical axis, the curves spread out relatively 

widely. 
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In order to compare the prime number ratio samplings with the case in 

which the ratio is 10,000 where 𝑓𝐶𝐿𝐾  ≫  𝑓𝑠𝑖𝑔 . Compared to the other 

characteristics, the rate of rise for characteristics is higher. The minimum 

value taken at 𝑁 = 256 is close to the value of 199/127. The maximum value 

taken at 𝑁 = 16384 is closes to the value of 101/61. 

 

Fig. 4.5 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively smaller prime numbers (no noise) 

 

Fig. 4.6 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively smaller prime numbers (noise 0.001%) 
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Fig. 4.7 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively smaller prime numbers (noise 0.01%) 

 

Fig. 4.8 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively smaller prime numbers (noise 0.1%) 

The characteristics of prime number ratio samplings decrease as the 

noise level rises, and the vertical axis curves' vertical spread gradually 

narrows. On the other hand, as noise levels rise, the characteristics of 10000 

progressively get better.  
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Figs. 4.9, 4.10, 4.11, 4.12 show the characteristics of the prime number 

ratio samplings by a pair of relatively large prime numbers without noise, 

with 0.001% Gaussian noise, with 0.01% Gaussian noise, with 0.1% 

Gaussian noise, respectively. 

As shown in Fig. 4.9, the curves of the prime number ratio samplings 

by a pair of relatively larger prime numbers, as well as the curves on the 

lower domain when 𝑁  is less than 4096, spread relatively widely in the 

vertical axis direction. However, The curves narrow on the higher domain, 

where 𝑁 is more than 4096. The characteristics often decrease as the noise 

level rises, and the vertical axis curves' spread gradually narrows. 

 

Fig. 4.9 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively larger prime numbers (no noise) 
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Fig. 4.10 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively larger prime numbers (noise 0.001%) 

 

Fig. 4.11 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively larger prime numbers (noise 0.01%) 
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Fig. 4.12 Resolution characteristics of RMS of DNL of prime number ratio 

samplings by a pair of relatively larger prime numbers (noise 0.1%) 

In the evaluation of the prime number ratio samplings, two metallic 

ratio samplings 𝑀1 (golden ratio sampling) and 𝑀8 with relatively good 

characteristics are compared with the prime number ratio sampling 

𝑓𝐶𝐿𝐾/𝑓𝑠𝑖𝑔= 997/991 with the best characteristics. Figs. 4.13, 4.14, 4.15, 4.16 

show the characteristics of these samplings, with 0.001% Gaussian noise, 

with 0.01% Gaussian noise, with 0.1% Gaussian noise, respectively. 

These three samplings have nearly identical characteristics, as shown in 

Fig. 4.13. The worse the characteristics, the greater the noise. As more noise 

is added, the similarity of the characteristics grows. 
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Fig. 4.13 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of prime number ratio sampling (no noise) 

 

Fig. 4.14 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of prime number ratio sampling (noise 0.001%)  
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Fig. 4.15 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of prime number ratio sampling (noise 0.01%)  

 

Fig. 4.16 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of prime number ratio sampling (noise 0.1%)  

Here, let us call the sampling using the real number as the ratio 

𝑓𝐶𝐿𝐾/𝑓𝑠𝑖𝑔 the real number ratio sampling.  

Finally, the real number ratio samplings are compared with two metallic 

ratio samplings 𝑀1 (golden ratio sampling) and 𝑀8, which have relatively 
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good characteristics. As the ratios for the real number ratio samplings in this 

evaluation, 8 real numbers in the range 1 to 10 where 𝑀𝑛𝑠(1 ≤ 𝑛 ≤ 8) 

exist are generated randomly. Figs. 4.17, 4.18, 4.19, 4.20 show the 

characteristics of these samplings, with 0.001% Gaussian noise, with 0.01% 

Gaussian noise, with 0.1% Gaussian noise, respectively. The characteristics 

of the case when  𝑓𝐶𝐿𝐾/𝑓𝑠𝑖𝑔 = 10000 are plotted on the same planes as the 

case where 𝑓𝐶𝐿𝐾  ≫  𝑓𝑠𝑖𝑔.  

As shown in Fig. 4.17, the curves spread more widely in the direction 

of the vertical axis in the lower domain where 𝑁 is less than 4096 compared 

to the higher domain where 𝑁  is more than 4096. From all of the 

characteristics in Fig. 4.18, the characteristics of the two metallic ratio 

sampling are relatively better. It can be said that the characteristics of the real 

number ratio sampling are similar to the characteristics of the metallic ratio 

sampling. Compared to the characteristics of the case when  𝑓𝐶𝐿𝐾 /𝑓𝑠𝑖𝑔 =

10000, all the other characteristics are better. As more noise is increased, 

like the characteristics of the other sampling methods, the similarity of the 

characteristics becomes higher. 
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Fig. 4.17 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of real number ratio sampling (no noise)  

 

Fig. 4.18 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of real number ratio sampling (noise 0.001%)  
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Fig. 4.19 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of real number ratio sampling (noise 0.01%)  

 

Fig. 4.20 Comparison of resolution characteristics of RMS of DNL of metallic 

ratio samplings with those of real number ratio sampling (noise 0.1%)  
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4.5 Summary 

In this chapter, through the use of simulations, we have investigated 

numerous ratios between the input signal frequency and the sampling 

frequency, including metallic ratios and prime number ratios, and compared 

with the case of 𝑓𝐶𝐿𝐾  ≫  𝑓𝑠𝑖𝑔 (𝑓𝐶𝐿𝐾/𝑓𝑠𝑖𝑔 = 10000). In evaluation, with the 

same total number of samples (test time), each ratio has different sampling 

accuracy. Metallic ratio has better performance with better accuracy (RMS 

of DNL is small). This means that with the same accuracy, no more total 

number of samples is required, and no higher frequency is required to sample 

uniformly. So, it is possible to shorten the time by reducing the total number 

of samples while maintaining the same accuracy. And it has come across a 

number of intriguing results. In the event of small 𝑁 , the metallic ratios 

perform similar in specific positions (32, 64, 128, 256, …). 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

This dissertation has introduced relatively simple methods of focusing 

histogram sampling on specific codes.  

Chapter 3 proposes that the two-tone sine wave input for code selective 

histogram method, which is the first proposal. In order to perform a quick 

ADC linearity test, our proposal synthesizes a two-tone wave. Simulations 

confirmed the efficacy and performance of the proposed code selective 

histogram method. Additionally, we created a program to test our algorithm, 

and the outcomes of our simulations demonstrated the efficiency and 

performance of the code selective histogram approach. In the case of the 

same total number of samples, compared with the conventional sine wave 

method, the proposed method increases the sample number of the target code, 

while at the same time reducing the number of other samples, and also 

reducing its measurement accuracy. Taking 𝑓11 in Eq. 3-12 as an example, 

this method only corresponds to 255, 767 and 511 in 10-bit (1024). In this 

case, it may cause a test escape. So, well-balanced consideration would be 

needed as a future work. 

Chapter 4 presents decision of the ratio between input and sampling 

frequencies based on classical number theory, which is the second proposal. 

Simulations with our developed programs were used to examine a variety of 

ratios, including metallic and prime number ratios, between the input signal 
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frequency and the sampling frequency. These simulations can be applied to 

increase test accuracy with fewer samples., Previous research has shown that 

golden ratio sampling has a high DNL measurement accuracy. In these 

simulations, metallic ratio sampling also has high DNL measurement 

accuracy, but prime number ratio sampling accuracy is lower. In many cases 

of analog device testing, sampling and/or input sine wave frequencies have 

to be changed. Set their ratio to one of metallic ratios (n=1, 2, 3, 4….). Then 

good measurement accuracy is obtained. 

Code selective histogram method performs better at output code prone 

to nonlinearities in evaluation with the same total number of samples (test 

time), higher accuracy, and more samples. The metallic ratio performs better 

and is more accurate when compared to the other ratios' sampling accuracy 

(the RMS of DNL is small). This means that the proposed method does not 

need more total samples or a higher sampling frequency to obtain sample 

uniformly. Additionally, it is possible to decrease the total number of samples 

while keeping the accuracy same. 

5.2 Future work 

Even though we have obtained positive simulation results, there is still 

much work to be done before it can be effectively applied to actual ADC 

testing. There are still many obstacles to be overcome as well as numerous 

areas that need to be enhanced and considered. The next step we want to take 

is validation in more examples and application in actual circuits.  
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If the testing at the specific codes of ADC under test is very important, 

an alternative method is to use their corresponding DC signals as the input 

signal. The investigation of its testing system and comparison with the 

proposed code selective method would be left as future works. 

We conclude this paper by noting that although the histogram method 

for the ADC linearity test is a mature technology and is widely used in 

industry, there can still be new algorithms and findings that are regarded as 

being favorable to industry. 
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