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Abstract
Many mathematical problems, such as those on the subject of mathematical
puzzles, often are problems whose rule describing the problem is primitive
and simple. Nevertheless, mathematical structures of solutions for such
a problem can often be extremely challenging to solve. In this thesis,
we investigated the sparsest packing and the Topswops problem by using
computer-assisted and theoretical analysis.

The first is a card game called “Topswops.” Given a deck of n cards
numbered 1 to n, continue the following operation until the top card is 1:
If the top card of the deck is k, then turn over a block of k cards at the top
of the deck. Let f(n) be the maximum number of steps of Topswops on n
cards. Despite 50 years of research, the exact value of f(n) has yet to be
determined. In this thesis, by applying an algorithm developed by Knuth in
a parallel fashion, we conclude that f(18) = 191 and f(19) = 221.

The second is a puzzle called “anti-slide.” The anti-slide packing is a
packing of identical pieces of some specified shape for a three-dimensional
box in such a way that none of the pieces in the box can slide. Given a
box of some specified size and identical pieces of some specified shape, we
find a sparsest anti-slide packing. In this thesis, we analyzed the sparsest
anti-slide packings for the three cases of T-tetrominoes, L-tricubes, and
2×2×1 pieces. We consider the problem for the case of a two-dimensional
square box using T-tetromino pieces. We show that, for a square box of side
length n, the number of pieces in a sparsest packing is exactly ⌊2n/3⌋when
n ̸≡ 0 (mod 3), and is between 2n/3− 1 and n− 1 when n ≡ 0 (mod 3).
Next, we consider the problem for the case of a three-dimensional cubic
box of side length n using L-tricubes. We find a new construction of an
anti-slide packing of n2/2 L-tricubes. Finally, we give the construction of
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an anti-slide packing of 2× 2× 1 pieces with volume density 0.48.
keyword — discrete mathematics, Topswops, enumeration, sparsest

packing, anti-slide packing, integer programming
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Chapter 1

Introduction
Many discrete mathematical problems are long-standing open, even though
the rule describing the problem is primitive and simple. In this thesis, we
focus on investigating the mathematical structure of a solution for two open
problems.

Many problems described based on a mathematical rule can be for-
mulated as an integer linear programming (IP) and a SAT naturally. The
approach for the problem often is that we analyze the mathematical structure
of the solutions for a model for the problem using solvers. Since recently
mixed IP solvers and SAT solvers are implemented by the theory of algo-
rithm and heuristic optimization, the power of the solvers has dramatically
improved. The older solver could not output the solutions of instances for
a problem that we would like to analyze, but the current solvers can output
the solutions to the instances. The approach using the solver is effective
and used in the research for discrete mathematics [1] and computational
geometry [2].

Mathematical puzzles provided us with interesting problems in various
fields in mathematics. In terms of complexity, many puzzles described
in the literature have been shown to be NP-complete, which seems to be
a common essence of puzzles [3, 4, 5, 6]. Major complexity results for
puzzles are surveyed by Hearn and Demaine [7]. Also, the essence of a
solution to the puzzle such as Hitori [8] is investigated.

However, there are some problems for which the approach using solvers
cannot compete with the problems. For example, the problem of finding
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the minimum number of wires of a depth-2 threshold circuit emulating the
parity function can be formulated as an IP but the solver will be stuck.
It is known that there exists a depth-2 threshold circuit computing parity
with wires that is quadratic for the number of variables [9]. This is nearly
close to the lower bound [10] but does not yet match it. Threshold circuits
and threshold function are well-studied, such as threshold circuits for parity
[11], the energy of threshold circuits for parity [12], and a hypercube cut by
hyperplanes [13].

In this thesis, we investigated the sparsest packing which is similar to
the (densest) packing problems and the problem of the card game which is
similar to the operation like the sort.

1.1 Topswops
Consider a deck of face-up n cards numbered 1 to n arranged in random
order, which can be viewed as a permutation on { 1, 2, . . . , n }. Given the
deck of n cards, one player continues the following operation on the deck
until the top card is 1: If the top card is k, then turn over a block of k cards at
the top of the deck. This card game is called Topswops, originally invented
by J.H. Conway in 1973. We call a deck before starting the game initial.
For a natural number n, let f(n) be the maximum number of steps until
termination for Topswops on n cards.

For example, let n = 5 and (3, 1, 4, 5, 2) be an initial deck. The game
goes as

(3, 1, 4, 5, 2)→ (4, 1, 3, 5, 2)→ (5, 3, 1, 4, 2)→ (2, 4, 1, 3, 5)

→ (4, 2, 1, 3, 5)→ (3, 1, 2, 4, 5)→ (2, 1, 3, 4, 5)→ (1, 2, 3, 4, 5), (1.1)

and terminates after seven steps.
The initial deck (3, 1, 4, 5, 2) is finally transformed at the sorted position

(1, 2, 3, 4, 5). Note that the initial deck is not always transformed to the
sorted position (1, 2, . . . , n) at the termination of the game. For instance, let
n = 6 and (4, 1, 6, 5, 2, 3) be an initial deck. The game progresses according
to the rule of Topswops and terminates with the deck (1, 4, 3, 2, 5, 6) after
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ten steps. In this example, the deck (1, 4, 3, 2, 5, 6) is not at the sorted
position (1, 2, 3, 4, 5, 6).

H.S. Wilf [14, pp. 81 – 82] proved that Topswops halts within a finite
number of steps for any decks of n cards, which will be described in
Section 2.1. We call an initial deck that needs f(n) steps largest. For
example, the initial deck (3, 1, 4, 5, 2) is largest for n = 5, and the initial
deck (4, 1, 6, 5, 2, 3) is largest for n = 6.

As of 2021, the exact values of f(n) for n ≤ 17 in [15, A000375] were
obtained by an exhaustive search with some pruning techniques. The exact
values of the number of the largest decks for n ≤ 17 in [15, A123398] also
was known. In Al Zimmermann’s Programming Contests on February 2011
[16], the players found several better decks for n ≥ 19 by using local search.

The other version of the problem is to find the maximum number of
steps until termination whenever the deck is finally transformed in ascend-
ing order. The problem has been solved for n ≤ 20 [15, A000376 and
A174498].

In related works, the problem of sorting by reversals is investigated
well. Let (a1, a2, . . . , an) be a sequence of length n such that an element is
a different number. For some sequence a1, a2, . . . , an of length n and some
two indices i, j with 1 ≤ i < j ≤ n, we transform the sequence

a1, a2, . . . , ai−1, ai, ai+1, . . . , aj−1, aj, aj+1, . . . , an

to
a1, a2, . . . , ai−1, aj, aj−1 . . . , ai+1, ai, aj+1, . . . , an.

The problem is to find the minimum number of steps of the transformation
for sorting on sequences of length n. G.A. Watterson et al. [17] and V.
Bafna et al. [18] showed that the value of the minimum number of steps of
the transformation is exactly n− 1. The version of the problem that is only
allowed to do prefix reversals is also well-studied, called Pancake Problem.

In 1977, H. Dweighter et al. [19] commented that the steps of the
transformation is at most 2n − 6 and at least n + 1 for a sequence with
length n. In 1979, W. H. Gates et al. [20] showed that the steps of the
transformation is at most (5n + 5)/3. In 2009, B. Chitturi et al. [21]
showed that the steps of the transformation is at most 18n/11. Moreover,
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M.H. Heydari et al. [22] showed that the steps of the transformation is
at least 15n/14 for some number n. L. Bulteau et al. [23] discussed the
NP-completeness of the Pancake Problem. See the introduction of [24] for
more background on the pancake problem.

In Chapter 2, we show the values of f(18) and f(19) via our com-
putational experiments by applying an algorithm developed by Knuth in a
parallel fashion.

1.2 Anti-slide
“Anti-slide” [25] is a puzzle that given a 4 × 4 × 4 box and a number of
2×2×1 pieces, consider how to pack 2×2×1 pieces into a 4×4×4 box in
such a way that none of the pieces can move. This puzzle assumes that there
is no friction between pieces or between pieces and the inner wall of a box,
and each piece can fit inside the box. The objective is to find such a packing
with the smallest number of pieces. The puzzle was originally invented by
William Strijbos in 1994. For example, an anti-slide packing is shown in
Fig. 1.1. Including Fig. 1.1 (b), there exist three anti-slide packings of 12
pieces. Since there exist no anti-slide packings with 11 or less pieces [25],
optimal packings use 12 pieces.

Let us consider the generalized problem of this puzzle. Given a box
of some specified size and identical pieces of some specified shape, the
problem is to find a sparsest anti-slide packing for the box.

In previous our work [26], we investigated the asymptotic behavior of
the minimum number of pieces in a stable packing for an n × n × n box
for various shapes of polycubes illustrated in Fig. 1.2 and observed that
these could be categorized into three groups, which is described later in
Section 4.1.

In Chapter 3, we will discuss the minimum number of pieces with anti-
slide packings for a two-dimensional square box using T-tetrominoes. In
Chapter 4, we focus on sparsest anti-slide packings for 2× 2× 1 pieces and
L-tricube pieces for a three-dimensional cubic box.

It is quite natural to consider that the dual of the sparsest packing is
the densest packing. Indeed, packing problems have been well-studied in
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(a) (b)

Fig. 1.1: An anti-slide packing for a 4× 4× 4 box : (a) with 15 pieces, (b)
with 12 pieces.

mathematics, discrete geometry, and computer science [27]. The problems
ask for finding a densest packing of identical objects for a space where an
object is not allowed to overlap other. Kepler conjecture is a version of
the packing problem where an object is a sphere of the same radius, and a
space is a three-dimensional Euclidean space. In 2014, Hales et al. [28]
proved the Kepler conjecture using generic proof assistants. See, e.g., the
introduction of [28] for a long history of the research.

1.3 Related papers
The result in this thesis is based on the following one published paper.

• Kento Kimura, Kazuyuki Amano, and Tetsuya Araki,
On the Minimum Number of Pieces for Two-Dimensional Anti-Slide
Using T-Tetrominoes,
IEICE Transactions on Information and Systems, Volume E104.D,
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Fig. 1.2: Several shapes of polycubes analyzed in [26].

Issue 3, Pages 355 – 361 (March 2021).
DOI:10.1587/transinf.2020FCP0007

The rest results in this thesis is based on the following one preprint and
one conference abstract.

• Kento Kimura, Atsuki Takahashi, Tetsuya Araki and Kazuyuki Amano,
Maximum Number of Steps of Topswops on 18 and 19 Cards,
arXiv:2103.08346 (Mar. 2021)

• Kento Kimura and Kazuyuki Amano,
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Upper Bounds on the Minimum Number of Pieces for Anti-slide
Packing,
The 24th Japan Conference on Discrete and Computational Geometry,
Graphs, and Games, (Virtual, 2022.9.9 - 11).

The published paper is related to Chapter 3. The preprint is related to
Chapter 2. The conference abstract is related to a part of Chapter 4.

1.4 Other papers by the author
We list the author’s published paper that are not include in the list of the
previous section.

• Kento Kimura, Kazuyuki Amano and Shin-ichi Nakano,
Escape from the Room,
Proceedings of the 28th International Computing and Combinatorics
Conference (COCOON 2022), Lecture Notes in Computer Science
(LNCS), Volume. 13595, Pages 232 – 241 (January 2023).
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Chapter 2

Topswops

2.1 Introduction
In this chapter, we study the Topswops problem. Recall the card game called
Topswops. A deck of n cards numbered 1 to n arranged in random order.
Given the deck of n cards, one player continues the following operation on
the deck until the top card is 1: If the top card is k, then turn over a block
of k cards at the top of the deck. For a natural number n, let f(n) be the
maximum number of steps until termination for Topswops on n cards.

H.S. Wilf [14, pp. 81 – 82] showed the finiteness of Topswops. A card
in a deck is said to be in natural position if the value of the card is the
same as its position in the deck. For a deck of n cards, the Wilf number
for the deck denotes

∑n
i=1 1[i-th card is in natural position] · 2i−1 where 1[·]

denotes 1 if the condition in the bracket is satisfied, and 0 otherwise. For
example, let (3, 2, 7, 8, 5, 1, 4, 6, 9) be a deck. If we read the deck down
from top, then there are three cards 2, 5, and 9 in natural position; hence,
the Wilf number of the deck is 22−1+25−1+29−1 = 530. H.S. Wilf showed
the Wilf number for a deck increases until termination, as follows.
Claim 1. H.S. Wilf [14, pp. 81 – 82] Let n be a natural number and A be a
deck of n cards such that the top card is not 1. Then the Wilf number for a
deck applying A the operation once is greater than the Wilf number for A.

Since the Wilf number is upper bounded by 2n−1, Claim 1 implies that
the game terminates within 2n − 1 steps. The above discussion shows that
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f(n) ≤ 2n − 1. The best-known upper bound on f(n) is F (n + 1) − 1 =
O(1.618n) [29, 30], where F (k) is the k-th Fibonacci number. See D.
Berman [29] or Problems 108 of [30]. The best-known lower bound is
Ω(n2) [31]. There is an exponential gap between the upper and lower
bounds on f(n). This problem is long-standing open for 50 years.

Recall that we call an initial deck that needs f(n) steps largest. For a
natural number n, let g(n) be the number of largest decks on n cards. As of
2021, exact values of f(n) in OEIS [15, A000375] and g(n) in OEIS [15,
A123398] for n ≤ 17 were obtained by using several brute-force searches,
which is as follows:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
f(n) = 0 1 2 4 7 10 16 22 30 38 51 65 80 101 113 139 159
g(n) = 1 1 2 2 1 5 2 1 1 1 1 1 1 4 6 1 2

In a related work, Komano et al. [32] discussed zero-knowledge proof
protocol for Topswops.

In this chapter, we describe our effort for extending this list for n = 18
and 19. Namely, by applying an algorithm developed by Knuth [33] in a
parallel fashion, we conclude that f(18) = 191 and f(19) = 221. We
simultaneously find that g(18) = 4 and g(19) = 1.

The rest of this chapter is as follows. In Section 2.2, we give an
explanation of Knuth’s algorithm [30]. Then, in Section 2.3, we de-
scribe our computational experiments for determining f(18) and f(19).
The code used in our experiments can be viewed on GitLab at https:
//gitlab.com/kkimura/tswops.

2.2 Knuth’s algorithm
In this section, we explain an algorithm for finding a largest deck for
Topswops used in our experiment, which was developed by Knuth [30,
Solution of Problem 107] (see also [33] for the code itself). Three algo-
rithms were described there, and we use the most efficient one, which is
referred to as a “better” algorithm.

https://gitlab.com/kkimura/tswops
https://gitlab.com/kkimura/tswops
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A card is in a card sleeve that is numbered the minus value −i, which
means the i-th card in an initial deck from the top. The value written on the
card sleeve should be visible on the back of the card. We consider that the
game starts with an initial deck of all the face down cards in a card sleeve.
We call a deck of all the face down cards face-down. If the top card is face
down, then we turn it up and apply the prefix reversal on its value into the
deck. The game can progress as the Topswops.

Let A be a face-down initial deck of n cards that can be viewed as an
array with (−1,−2, . . . ,−n). For example, let (3, 1, 4, 5, 2) be an initial
deck of face up cards. The game goes as

(−1,−2,−3,−4,−5) = (3,−2,−3,−4,−5) (∵ 1st card is 3.)
→ (−3,−2, 3,−4,−5) = (4,−2, 3,−4,−5) (∵ 3rd card is 4.)
→ (−4, 3,−2, 4,−5) = (5, 3,−2, 4,−5) (∵ 4th card is 5.)
→ (−5, 4,−2, 3, 5) = (2, 4,−2, 3, 5) (∵ 5th card is 2.)
→ (4, 2,−2, 3, 5)→ (3,−2, 2, 4, 5)→ (2,−2, 3, 4, 5)
→ (−2, 2, 3, 4, 5) = (1, 2, 3, 4, 5) (∵ 2nd card is 1.)

and terminates. The prefix reversals in this progress correspond to Eq. (1.1).
Let A′ be a deck with the face down top card and at least two face down

cards. Knuth introduced an algorithm that performs the prefix reversal for a
deck A′, the value k in the top of A′, and steps c from the start of the game
to A′.

Algorithm 1 The game progresses until the other face down card appears.
1: procedure TrySwops(A′, k, c)
2: c := c+ 1
3: A′1 := k
4: loop
5: Turn over a block of A′1 cards of A′.
6: if A′1 ≤ −1 then
7: Go to line 9.
8: c′ := c′ + 1

9: return c′.
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See Algorithm 1. Line 6 in Algorithm 1 shows that if the face down
top of the deck appears, then the loop exits. The loop in Algorithm 1 will
eventually halt to appear in the face down top of the deck. We repeatedly
apply the algorithm into A′ until the top of A′ is face down and there is
exactly one face down card in A′.

Next, we explain how to restore an initial deck. For a natural number n,
let [n] denote the set { 1, 2, . . . , n }. For an initial deck A, let S(A) be a list
(d1, d2, . . . , dk) (k ≤ n) where di is the i-th card that is turned up at the top
of the deck in the game starting from A. For example, S((3, 1, 4, 5, 2)) =
(3, 4, 5, 2, 1) (see Eq. (1.1)) and S((3, 5, 4, 1, 2)) = (3, 4, 1). Notice that
the length of S(A) depends on A, but the last element of S(A) is always 1.

An important property is that ifA is largest, then the length ofS(A)must
ben. This can be verified by seeing that ifS(A) = (d1, . . . , dk−1, 1) for some
k < n, then we can always create another deck A′ such that the first k ele-
ments of S(A′) is (d1, . . . , dk−1, d′) for d′ ∈ { 2, . . . , n } \ { d1, . . . , dk−1 }
and that the game for A′ is strictly longer than the one for A.

Let P be the set of all lists p = (p1, p2, . . . , pn) such that p is a permu-
tation on [n] and pn = 1. Given a list p ∈ P , we can get an initial deck
S−1(p) by the following algorithm. In Algorithm 1, the minus value −i in
A means that the i-th card in a deck is not specified yet.

Algorithm 2 Generate an initial deck with length n
1: procedure GenInitDeck(p)
2: Let A be an array with (−1,−2, . . . ,−n).
3: for i = 1, 2, . . . , n do
4: a−A1

:= pi
5: A1 := pi
6: while A1 > 1 do
7: Turn over a block of A1 cards of A.
8: return (ai)i∈[n]

The above arguments suggest that we can determine f(n) by examining
all (n − 1)! lists in P together with Algorithm 2. Essentially, Knuth’s
algorithm enumerates these lists as well as corresponding decks in a depth-
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first fashion. Moreover, the algorithm applies two pruning criteria to reduce
the size of the search tree.

The behavior of the algorithm without the pruning is visualized as a tree
structure, which is illustrated in Fig. 2.1 for n = 4. An initial deck denotes

3, -3, -2, 4
-2, -3, 3, 4

-1, -2, -3, -4

2, -2, -3, -4
-2, 2, -3, -4

3, -2, -3, -4
-3, -2, 3, -4

4, -2, -3, -4
-4, -3, -2, 4

3, 2, -3, -4
-3, 2, 3, -4

4, 2, -3, -4
-4, -3, 2, 4

4, 2, 3, -4
-4, 3, 2, 4

3, -3, 2, 4
2, -3, 3, 4
-3, 2, 3, 4
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2,3,4,1 2,4,1,3 3,4,2,1 3,1,4,2 4,1,3,2 4,2,1,3

Fig. 2.1: Traverse the initial decks for n = 4 by the backtrack.

−1,−2,−3,−4, illustrated in Fig. 2.1. Each text labeled with a down arrow
means that the card with the number is inserted into the i-th card sleeve.
See the path from (−1,−2,−3,−4) to (4, 2, 1, 3). A list p = (4, 3, 2, 1)
that the path generates corresponds to S((4, 2, 1, 3)).

Let us see the two pruning criteria to reduce the size of the search
tree. The first pruning is based on the fact that a largest deck must be a
derangement, i.e., the k-th card from the top is not k for every k ∈ [n].
In order to explain the second pruning, we need some definitions. Let Ac

be the deck obtained from A by executing c steps of the game. Let T (Ac)
denote the largest integer k such that the cards numbered 1, 2, . . . , k are
located at positions at 1, 2, . . . , k (in an arbitrary order) in the deck Ac. It is
obvious that if f(T (Ac)) + c < f(n), then A is not largest. Although f(n)
is not known beforehand, we can use any lower bound ℓ(n) on f(n) in the
right hand side of inequalities for pruning. Note that the depth of the search
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tree without pruning is (n − 1) and each node at depth k has n − 1 − k
children.

Let N be a set with N = ϕ in a power set of { 2, 3, 4, . . . , n }. Let A
be an array of length n with integers. Let p be a partial permutation for a
set in P . Note that p is viewed as a list in an algorithm. Let c be a positive
integer. We implement the backtracking procedure of Knuth’s algorithm
into the recursive procedure.

Algorithm 3 The algorithm enumerates all possible initial decks.
1: procedure NextNode(N , A, p, c)
2: for all k ∈ N do
3: if A1 = −k then
4: Continue;
5: if k = T (A) then
6: Let A′ be an array copied with A.
7: Turn over a block of k cards of A′.
8: if ℓ(T (A′)) + c+ 1 < ℓ(n) then
9: Continue;

10: else if ℓ(T (A)) + c+ 1 < ℓ(n) then
11: Continue;
12: Let A′ be an array copied with A.
13: Add k at the end of p.
14: c′ ← TrySwops(A′, k, c)
15: if |p| = n− 1 then
16: if c′ ≥ ℓ(n) then
17: ℓ(n) := c′

18: Add 1 at the end of p.
19: Output the value of GenInitDeck(p).
20: Remove the last element of p.
21: else
22: NextNode(N \ { k }, A′, p, c′)
23: Remove the last element of p.

Later, we will describe the behavior of the above procedure with the
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behavior of the entrypoint. The entrypoint for the enumeration is as follows.

Algorithm 4 The procedure initializes and calls NextNode.
1: Let p be an empty list in which the element type is a natural number.
2: Let A be an array with (−1,−2, . . . ,−n).
3: NextNode({ 2, 3, 4, . . . , n }, A, p, 0)

Line 3 in Algorithm 4 gives four parameters to NextNode. N means
a set of cards such that a card in A is face-down except for a card with 1.
A means the deck with n card sleeves. p means a list p that records a card
such that a card is turned up at the top of the deck. c means the current steps
starting from the game.

We describe the behaviors of Knuth’s algorithm using the case n = 4
illustrated in Fig. 2.1. Line 3 in Algorithm 4 shows NextNode({ 2, 3, 4 },
(−1,−2,−3,−4), (), 0) where () denotes an empty list. Next, we see the
NextNode in Algorithm 3. for all k ∈ N do corresponds to the texts of
the arrow going down from text box (−1,−2,−3,−4) in Fig. 2.1. In this
example, we assign 2, 3, and 4 to k in order. We consider the case k = 2.

if A1 = −k then checks whether an initial deck of A is derangement. In
order to check whether an initial deck for A is derangement, it is sufficient
to verify whether a card with k is not in natural position. If a card with k is
in natural position, then we go to Line 3 in Algorithm 3 and take the next
element from N . In this case of k = 2, Lines 3 and 4 are ignored. Line 5 to
11 corresponds to the procedure expressing the second pruning. Note that
Line 6 to 9 looks ahead to one step of A.

In Line 13, we add k(= 2) at the end of p. Note that |p| denotes the
length of p. Since p = (2), we have |p| = 1. This line corresponds to the
transition from the above text box to the below text box via the down arrow
labeled with k. Line 15 to 22 shows that if |p| = n − 1, then we output
the larger initial deck, otherwise we call NextNode. The current situation
is that N = { 2, 3, 4 }, A′ = (−2, 2,−3,−4), p = (2), and c = 1. In this
situation, since |p| ̸= 3, we call NextNode(N \ { 2 }, A′, (2), 1). Line 23
removes the last element of p. After it goes through for all k ∈ N do, it
backtracks.
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2.3 Experiments and Results
Since the search tree of Knuth’s “better” algorithm is well-balanced, it is
easy to be parallelized. First, we generate the search tree for the first few
levels, which corresponds to the first few elements of the list p explained
in the last section. Then, distribute the leaves of the tree to many threads
and resume the generation in parallel by letting a given leaf as a root of a
subtree.

For n = 18, we truncate the tree at level two and divide it into 240
subtrees. For n = 19, we truncate the tree at level three and divide it into
3, 952 subtrees. Each of these numbers is slightly smaller than the one in
the original search tree, i.e., 272(= 17 × 16) or 4, 896(= 18 × 17 × 16),
because of the pruning.

In our experiments, we use up to 172 threads in parallel spreading out
over nine standard PCs. The computation takes about 7 hours for n = 18
(using 132 threads), and about 6 days for n = 19 (using 172 threads). This
means that, if we run the code on a single thread, then the computation would
take approximately 103 days for n = 19. The total numbers of traversed
nodes are 43, 235, 268, 208, 065 for n = 18 and 933, 351, 108, 741, 643 for
n = 19, respectively. The ratios to the number of nodes in the search tree
without pruning, i.e.,

∑n−1
i=0

∏i
j=1(n−j), are 4.47% and 5.36%, respectively.

The breakdown of the number of traversed nodes for n = 19 with respect
to the levels of the tree is shown in Table 2.1.

By examining the result, we conclude that f(18) = 191 and f(19) =
221. The largest deck for n = 18 is unique. It is

(6 14 9 2 15 8 1 3 4 12 18 5 10 13 16 17 11 7),

which terminates at the sorted position (1 2 3 . . . 18). There are four largest
decks for n = 19. These are

(9 4 19 17 10 1 11 15 12 8 5 2 18 13 16 7 3 14 6),
(12 15 11 1 10 17 19 2 5 8 9 4 18 13 16 7 3 14 6),
(12 1 18 11 3 14 2 6 8 16 5 4 15 10 13 17 19 7 9),
(12 1 18 11 2 3 14 6 8 16 5 4 15 10 13 17 19 7 9).
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Interestingly, all these decks terminate at a same non-sorted position (1 10
9 8 7 6 5 4 3 2 11 12 13 14 15 16 17 18 19). The largest deck that terminates
at the sorted position is known to take 207 steps (see A000376 of OEIS
[15]), which is fourteen less than the value of f(19).

Tab. 2.1: The number of traversed nodes for n = 19.

Level # of traversed nodes | Level # of traversed nodes
0 1 10 46335514956
1 17 11 304773283939
2 272 12 1716889839183
3 3952 13 8059154346527
4 52861 14 30428256670076
5 653126 15 89242470628183
6 7419100 16 200111553921243
7 77075852 17 326581145735086
8 726678384 18 276853558861087
9 6158057798 -----------------------------
10 46335514956 Total 933351108741643

2.4 Concluding Remarks
In this chapter, we investigated Topswops problem and concluded that
f(18) = 191 and f(19) = 221, g(18) = 1 and g(19) = 4 by applying
an algorithm developed by Knuth [33] in a parallel fashion.

Using our method, we tried to obtain the exact value of f(n) for n ≥ 20.
For n = 20, we truncate the tree at level four and divide it into exactly
68, 310 subtrees. The traversal for all nodes in the first subtree takes about
23, 000 seconds. Thus, by using one thread, the computation for n = 20
may take about 18, 000 days. If we can prepare many threads, we have the
exact value of f(20) by using our method, e.g., the computation takes about
three months with 200 threads. Even if we use our method, it seems to be
hard to obtain the values for n ≥ 21.
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There is an exponential gap between the upper and lower bounds on
f(n). As mentioned in Morales [31], we wonder whether there exists an
initial deck withΩ(n3) steps. To improve the upper and lower bounds would
be an interesting future work.
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Chapter 3

Anti-slide Packing for a
Two-dimensional Box

3.1 Introduction
In this chapter, we study sparsest anti-slide packings for a two-dimensional
square box. Recall that given a box of some specified size and identical
pieces of some specified shape, the problem is to find a sparsest anti-slide
packing for the box. We consider the integral and orthogonal version of
the problem where a box is a two-dimensional square. We call an anti-slide
packing stable. See the meaning of these words such as integral, orthogonal,
and stable in Section 3.2.

Amano, Nakano, and Yamazaki [34] gave an integer linear programming
(IP) formulation of the problem for finding a sparsest stable packing and
obtained upper and lower bounds on the density of such a packing of 2×2×1
pieces for a three-dimensional box. It is also natural to consider such
packings for various shapes of the pieces. In our previous work [26], we
analyzed stable packings for several shapes of polycubes. See the groups
for several shapes of polycubes in Chapter 4.

In a related work, Takenaga, Xi, and Inada [35] considered a two-
dimensional case using pentomino pieces. Namely, they enumerated anti-
slide packings of pentomino pieces for a two-dimensional box of small size
using ordered binary decision diagrams.
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In this chapter, we focus on the problem of packing T-tetrominoes
(Fig. 3.1) into a two-dimensional square box.

Fig. 3.1: A sparsest stable packing of T-tetrominoes: (left) for a 6× 6 box.
(right) for a 9× 9 box.

The L-toromino is the simplest piece among the pieces. However, it
seems that a sparsest packing for an n×n box is obtained by stacking n− 1
L-torominoes diagonally, which is not so interesting. The T -tetromino is
the second simplest. We will see in the following that the problem turns out
to be highly non-trivial even for this simple shape.

First, we conducted computer searches based on the IP formulation
developed in [34] to find sparsest stable packings of T-tetromino pieces for
an n× n box for n ≤ 15. Interestingly, the results suggest that the structure
of a sparsest packing would be quite different depending on whether the
side length of a box is divisible by three or not (see Section 3.2).

Let us see this more precisely. Let F (n) be the minimum number of
T-tetromino pieces of a stable packing for an n× n box. Our experimental
results suggest that F (n) ∼ 2n/3 for n ̸≡ 0 (mod 3), and F (n) ∼ n for
n ≡ 0 (mod 3).

In this chapter, we determine the value of F (n) exactly for the case of
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n ̸≡ 0 (mod 3) by proving matching upper and lower bounds of F (n) =
⌊2n/3⌋. For the case of n ≡ 0 (mod 3), we have succeeded only in proving
the bound of 2n/3− 1 ≤ F (n) ≤ n− 1, although we believe that the upper
bound is tight for n ≥ 9. Note that when n is 6, the smallest number of
pieces in a stable packing is 4 (Fig. 3.1).

The organization of this chapter is as follows. In Section 3.2, we define
the terms and show our experimental results. In Section 3.3, we show the
upper bounds on F (n) by giving an explicit construction of stable packings
of T-tetromino pieces for an n× n box. In Section 3.4, we show the lower
bounds on F (n). Finally, in Section 3.5, we discuss the reasons why F (n)
behaves differently depending on whether n is divisible by three or not.

3.2 Definitions and Experimental Results
For a positive integer α, [α] denotes a set { 1, 2, . . . , α }.

We describe integral and orthogonal. Integral means that we assume all
the coordinates of corner points of pieces are integers. By using the integral,
we view the n×n box as a two-dimensional array of cells of unit size. Each
cell is identified by (i, j) ∈ [n]× [n]. Orthogonal means that we assume that
each piece is axis-aligned and each piece slides to the orthogonal direction,
i.e., parallel to x- or y-axes.

For an n × n box and a number of T-tetromino pieces, we say that a
situation is a packing if each piece goes in the box and is restricted by the
integral and the orthogonal conditions. We say that a packing is a stable
packing if none of pieces in a packing can slide in any direction.

A T-tetromino is a polyomino shaped like the letter T consisting of four
unit squares. We say that a piece is placed at (i, j) if the central square of the
piece is adjusted to (i, j). Also, we say that a piece is placed with direction
d ∈ R, where R = { U,R,D,L }, each of which is shown in Fig. 3.2. For
example, if a T-tetromino piece is placed at (2, 2) with direction U , then the
cells (2, 2), (3, 2), (1, 2), and (2, 3) are occupied by this piece.

By using the IP formulation in Amano et al. [34], the problem can
be represented as an IP problem. We solved this problem by using an IP
solver [36] for n ≤ 15. The results are shown in Tab. 3.1, and examples of
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Fig. 3.2: The placement of a piece with direction U , R, D, and L.

packings that attain F (n) for n = 10, 11, . . . , 15 are shown in Fig. 3.3.

Tab. 3.1: Values of F (n) for n ≤ 15.

n 4 5 6 7 8 9 10 11 12 13 14 15
F (n) 2 3 4 4 5 8 6 7 11 8 9 14

3.3 Upper Bound
From Fig. 3.3, we can observe that a sparsest packing for an n×n box looks
like a diagonal line for n ̸≡ 0 (mod 3) and a V-shape for n ≡ 0 (mod 3).
We believe that this holds also for higher values of n.

An easy calculation shows that the number of pieces used in these
packings is ∼ 2

3n for the former, and ∼ n for the latter. In this section,
we show the upper bounds on F (n) matching this by giving an explicit
construction of stable packings.

Theorem 2. For every n ≥ 4 such that n ≡ 1 (mod 3), we have

F (n) ≤ 2(n− 1)

3
,
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Fig. 3.3: The sparsest stable packings for the n× n box for 10 ≤ n ≤ 15.

and for every n ≥ 5 such that n ≡ 2 (mod 3), we have

F (n) ≤ 2n− 1

3
.

Proof. First we consider the case n ≡ 1 (mod 3).
The proof is by induction. The base case, F (4) = 2, is obvious. Place

two T-tetromino pieces as in the center part of Fig. 3.3(a). The induction
step is also obvious by comparing Fig. 3.3(a) and (d). Precisely, we can
obtain a specified stable packing for the (n+3)× (n+3) box by adding two
pieces to a stable packing for the n×n box; add one piece with R-direction
to the top right corner and the other piece with U -direction to the bottom
left corner. This completes the proof for the case n ≡ 1 (mod 3).

The proof for the case n ≡ 2 (mod 3) is analogous, referring to
Fig. 3.3(b) and (e).
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Theorem 3. For every n ≥ 6 such that n ≡ 0 (mod 3), we have F (n) ≤
n− 1.

Proof. The proof is similar to the proof of Theorem 2.
We use the packing of Fig. 3.3(c) as the base for the casen ≡ 0 (mod 6),

and the packing of Fig. 3.3(f) as the base for the case n ≡ 3 (mod 6).
Then, we can obtain a stable packing for the (n + 6) × (n + 6) box

from a packing for the n × n box by adding six pieces: insert three pieces
with L-direction in the middle of the left slope and insert three pieces with
R-direction in the middle of the right slope. Similarly, we can obtain a
stable packing for the 6× 6 box consisting of five pieces from a packing for
the 12 × 12 (Fig. 3.3(c)) box by removing six pieces: remove three pieces
with L-direction on the left slope and three pieces with R-direction on the
right slope. A packing for the 9 × 9 box consisting of eight pieces can be
obtained from the packing for the 15× 15 box (Fig. 3.3(f)) in a similar way.
This suffices to prove the theorem.

3.4 Lower Bound
In this section, we give the lower bound on F (n), proving that the upper
bound shown in Theorem 2 is exactly tight.

Theorem 4. For every n ≥ 4, we have F (n) ≥ 2
3n− 1.

Since F (n) takes only an integer, the upper bounds in Theorem 2 and
the lower bound in Theorem 4 are shown to be identical.

Corollary 5. For every n ≥ 4 such that n ̸≡ 0 (mod 3), we have F (n) =⌊
2n
3

⌋
.

The rest of this section is devoted to the proof of Theorem 4. Roughly
speaking, we will show that, given any stable packing, we can always pick a
set of pieces of size≥ 2n/3−1 from the packing by applying an appropriate
procedure.
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3.4.1 Preparation
Consider a stable packing Pn for an n × n box. Let Wl denote the left
vertical boundary of the box. Similarly, let Wr, Wd, and Wu denote the
right vertical, the bottom horizontal, and the top horizontal boundary of
the box. We introduce an algorithm that defines a “backbone” set P of
pieces for a given packing Pn. See Algorithm 5. In what follows, we

Algorithm 5 Select a set of pieces from any stable packing
1: procedure Select(Pn)
2: Pick an arbitrary piece in Pn that touches Wl.
3: Designate the picked piece as p1.
4: m := 1
5: while pm does not touch Wr do
6: Pick an arbitrary piece that touches pm from the right.
7: m := m+ 1
8: Designate the picked piece as pm.
9: Pl→r := { p1, . . . , pm }.

10: Pick an arbitrary piece that touches Wd.
11: Designate this picked piece as p′.
12: if p′ /∈ Pl→r then
13: m := m+ 1
14: pm := p′

15: p′′ := p′

16: while p′′ does not touch Wu do
17: Pick an arbitrary piece that touches p′′ from above.
18: Designate this picked piece as p′.
19: if p′ /∈ Pl→r then
20: m := m+ 1
21: pm := p′

22: p′′ := p′

23: P := { p1, . . . , pm }
24: output P and Pl→r.

verify that Algorithm 5 surely halts and outputs a set P for any stable
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packing. Note that every piece in a stable packing must touch another piece
or a boundary of the box in order to avoid sliding. For m′ = 1, 2, . . ., let
x(m′) denote the maximum value of the x-coordinate of a cell occupied
by pm′ designated in line 8 (or in line 3 for m′ = 1). Because every piece
with the shape of T-tetromino is touched from right, x(m′) has the following
properties: first, x(m′) is a monotonically non-decreasing function; second,
if x(m′ + 1) − x(m′) = 0, then x(m′ + 2) − x(m′ + 1) ≥ 1. These two
properties imply that x(m) = n for some m with m ≤ 2n. This guarantees
that the first while loop in Algorithm 5 will eventually be terminated. Pl→r

(in line 10) is a sequence of picked pieces in line between Wl and Wr. A
similar argument also shows the termination of the second while loop in
the algorithm. This suffices to show that Algorithm 5 halts for any stable
packing. We should note that Algorithm 5 surely outputs a setP since every
piece in a stable packing must touch another piece or a boundary of the box
in order to avoid sliding.

An example of a stable packing and the corresponding output of Algo-
rithm 5 is illustrated in Fig. 3.4. In this example, the algorithm outputs the
set P of nine pieces labeled 1 to 9 and the set Pl→r is consisting of five
pieces labeled 1 to 5 in Fig. 3.4.

The following definition is the key to our analysis.

Definition 6. For a set of pieces P placed in an n× n box and for i ∈ [n],
we say that the i-th column (i-th row, respectively) is marked if a cell with
the x-coordinate i (y-coordinate i, respectively) is occupied by some piece
in P .

It is obvious that Pn with a stable packing marks all columns and rows.
Suppose that P = {p1, . . . , pm} is an output of Algorithm 5. It is clear that
P marks all columns and rows. For each k ≤ m, let M(k) denote the total
number of rows and columns that are marked by { p1, . . . , pk }.

For example, the piece labeled 1 in Fig. 3.4(b) marks the fifth, sixth, and
seventh rows and the first and second columns, and thus M(1) = 5.
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Fig. 3.4: (a): A stable packing for an 11 × 11 box. (b): The output of
Algorithm 5 for the packing in (a) is the pieces labeled 1 to 9.

We define Q4, Q3, and Q≤2 as follows:

Q4 :={pk |k ∈ [|P|] \ {1} ,M(k)−M(k − 1) = 4 } ,
Q3 :={pk |k ∈ [|P|] \ {1} ,M(k)−M(k − 1) = 3 } ,

Q≤2 :={pk |k ∈ [|P|] \ {1} ,M(k)−M(k − 1) ≤ 2 } .

By the definition, it is obvious that M(m) = 2n and that

P = Q4 ∪Q3 ∪Q≤2 ∪ { p1 } .

3.4.2 Analysis of Pl→r of P
Given a set Pl→r of pieces and k ∈ [|Pl→r|], let Gmax,y(k) and Gmin,y(k) be
the maximum and minimum values of the y-coordinate marked by the first
k-th pieces of Pl→r. Similarly, let Gmax,x(k) be the maximum value of the
x-coordinate marked by the first k-th pieces of Pl→r.

For k ∈ [|Pl→r|], let Hmax,y(k) and Hmin,y(k) be the maximum and
minimum values of the y-coordinate of a cell occupied by the k-th piece in
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Pl→r. Similarly, let Hmin,x(k) be the minimum value of the x-coordinate of
a cell occupied by the k-th piece in Pl→r.

In addition, we define X(k), Ymax(k) and Ymin(k) as follows:

X(k) = Gmax,x(k)−Gmax,x(k − 1),

Ymax(k) = Gmax,y(k)−Gmax,y(k − 1),

Ymin(k) = Gmin,y(k − 1)−Gmin,y(k),

where X(k), Ymax(k), and Ymin(k) are undefined when k = 1. According
to the definitions of these functions and Algorithm 5, we have the following:

0 ≤ X(k) ≤ 3,

0 ≤ Ymax(k) ≤ 2,

0 ≤ Ymin(k) ≤ 2,

Ymax(k) · Ymin(k) = 0.

(3.1)

We call the cell (Gmax,x(k), Gmax,y(k)) the k-th top corner. Also, we
call the cell (Gmax,x(k), Gmin,y(k)) the k-th bottom corner. We refer to a
top corner or a bottom corner as a corner. We say that the k-th top corner
(or similarly, k-th bottom corner) is filled if it is occupied by the k-th piece
in Pl→r.

We introduce two types of 0/1 variables:

{ smax[k] | k ∈ [|Pl→r|] } ,

and
{ smin[k] | k ∈ [|Pl→r|] } .

The variable smax[k] takes the value 1 if and only if the k-th top corner is
filled. Similarly, the variable smin[k] takes the value 1 if and only if the k-th
bottom corner is filled.

The following lemma says that every piece in Q4 must be picked in the
first while loop in Algorithm 5.

Lemma 7. Q4 ⊂ Pl→r.
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Proof. The proof is immediate by seeing that every piece picked in the
second while loop (in lines 18–26) in Algorithm 5 can mark only rows since
all columns have been marked during the first while loop (in lines 5–9).

The following lemma says that pk ∈ Q4 fills neither the k-th top nor
bottom corner. In addition, pk ∈ Q4 touches pk−1 that fills the (k − 1)-th
top or bottom corner.

Lemma 8. For every integer k such that 2 ≤ k ≤ |Pl→r|, if pk ∈ Q4, then
smax[k] = 0, smin[k] = 0, and either smax[k − 1] = 1 or smin[k − 1] = 1.

Proof. Suppose that pk ∈ Q4. This means that

X(k) + Ymax(k) + Ymin(k) = 4.

By Eq. (3.1), there are four possibilities for the values of X(k), Ymax(k),
and Ymin(k).

Case I:


X(k) = 3

Ymax(k) = 1

Ymin(k) = 0

Case II:


X(k) = 3

Ymax(k) = 0

Ymin(k) = 1

Case III:


X(k) = 2

Ymax(k) = 2

Ymin(k) = 0

Case IV:


X(k) = 2

Ymax(k) = 0

Ymin(k) = 2

Case I. The situation of this case is illustrated in Fig. 3.5. Since X(k) = 3
and Ymax(k) = 1, the piece pk is with U -direction and the piece pk−1 fills
the (k−1)-th top corner. This implies that smax[k] = 0 and smax[k−1] = 1.

It remains to show that smin[k] = 0. To this purpose, it is sufficient to
show that Hmin,y(k)−Gmin,y(k) ≥ 1. In this case, we have

Hmin,y(k) = Gmax,y(k − 1).

This can be verified as follows.

Hmin,y(k)−Gmin,y(k)

≥ Gmax,y(k − 1)−Gmin,y(k)

= Gmax,y(k − 1)−Gmin,y(k − 1) ≥ 1.
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x

y

k − 1

k

X(k) = 3

Ymax(k) = 1

Fig. 3.5: A piece with pk ∈ Q4, X(k) = 3, and Ymax(k) = 1 does not fill
the k-th corner shown in the striped pattern and touches pk−1 that fills the
(k − 1)-th top corner. This corresponds to Case I in the proof of Lemma 8.

Case II. This case is “upside down” to Case I, and can be verified analo-
gously.
Cases III and IV. In these cases, we can easily verify that the piece pk is
with R-direction. The rest of the proof is similar to the proof for Case I.

The next lemma says that if pk ∈ Q3 and the (k − 1)-th top and bottom
corners are not filled, then the k-th top and bottom corners are not filled as
well.

Lemma 9. For every integer k such that 2 ≤ k ≤ |Pl→r|, if pk ∈ Q3,
smax[k − 1] = 0, and smin[k − 1] = 0, then smax[k] = 0 and smin[k] = 0.

Proof. Suppose that pk ∈ Q3, which means that

X(k) + Ymax(k) + Ymin(k) = 3.

Suppose also that smax[k − 1] = 0 and smin[k − 1] = 0. Then, by Eq. (3.1),
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the values ofX(k), Ymax(k), and Ymin(k) are one of the following five cases.

Case I:


X(k) = 3

Ymax(k) = 0

Ymin(k) = 0

Case II:


X(k) = 2

Ymax(k) = 1

Ymin(k) = 0

Case III:


X(k) = 2

Ymax(k) = 0

Ymin(k) = 1

Case IV:


X(k) = 1

Ymax(k) = 2

Ymin(k) = 0

Case V:


X(k) = 1

Ymax(k) = 0

Ymin(k) = 2

Case I. Since X(k) = 3, the direction of the piece pk is U or D. If pk is
U -direction, then smax[k] = 0 is obviously true. Then, we have

Hmin,y(k)−Gmin,y(k) ≥ 1.

This implies that smin[k] = 0.
If pk is D-direction, then this is “upside down” to the situation where pk

is U -direction, and hence can be shown analogously. These two cases imply
that pk fills neither the k-th top corner nor bottom corner, i.e., smax[k] = 0
and smin[k] = 0 as desired.
Case II. The situation of Case II is illustrated in Fig. 3.6. According to
the assignment of Case II, the direction of the piece pk is U or R. If pk is
R-direction, then smax[k] = 0 and smin[k] = 0 are obviously true.

We now suppose that pk is U -direction. This case guarantees that
smax[k] = 0. It remains to show that smin[k] = 0. This is the same proof
that Hmin,y(k)−Gmin,y(k) ≥ 1 of Case I of Lemma 8, which completes the
proof.
Case III. This case is “upside down” to Case II, and hence can be shown
analogously.
Case IV. According to the assignment of Case IV, the direction of the piece
pk is R. Then smax[k] = 0 and smin[k] = 0 are obviously true.



32 Chapter 3. Anti-slide Packing for a Two-dimensional Box

x

y

k − 1

k

X(k) = 2
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Fig. 3.6: A piece pk ∈ Q3 such that X(k) = 2 and Ymax(k) = 1 does not
fill the k-th corners shown in the striped pattern and touches pk−1 that does
not fill the (k − 1)-th top corner. This corresponds to Case II in the proof
of Lemma 9.

Case V. This case is “upside down” to Case IV, and hence can be shown
analogously.

This completes the proof of the lemma.

Here, we write the indices of elements inQ4 as ℓ1, . . . , ℓ|Q4| in ascending
order. The key lemma states that if pℓi and pℓi+1

exist, there is at least one
piece pk ∈ Q≤2 for filling a (ℓi+1 − 1)-th corner.

Lemma 10. For every integer i such that 1 ≤ i ≤ |Q4| − 1, there is an
integer k such that ℓi < k < ℓi+1 and pk ∈ Q≤2.

Proof. The proof is by contradiction. Suppose that there exists an integer
i such that 1 ≤ i ≤ |Q4| − 1, and pk ∈ Q3 holds for every k such that
ℓi < k < ℓi+1.

Lemma 8 immediately yields smax[ℓi] = 0 and smin[ℓi] = 0. By applying
Lemma 9 successively for k = ki+1, ki+2, . . . , ℓi+1−1, we conclude that
smax[ki+1 − 1] = 0 and smin[ki+1 − 1] = 0. However, Lemma 8 also yields
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smax[ℓi+1 − 1] = 1 or smin[ℓi+1 − 1] = 1 since pℓi+1
∈ Q4, which gives the

desired contradiction.

3.4.3 Proof of the Main Theorem
Lemma 10 immediately yields the following:

Lemma 11. |Q4| − |Q≤2| ≤ 1.

Intuitively, Lemma 11 says that each piece in an outputP of Algorithm 5
marks at most (about) three rows or columns on average. By combining
this with the fact that the total number of marked rows or columns is 2n, we
obtain a desired lower bound of (roughly) 2n/3.

Let us see the formal proof of the main theorem.

Proof of Theorem 4. Fix an integer n ≥ 4 and a stable packing Pn for an
n × n box. We obtain P by applying Algorithm 5 for Pn, and then define
Q4, Q3, and Q≤2.

By the definition, we have |P| = |Q4|+ |Q3|+ |Q≤2|+1. We can bound
M(|P|) from above by

M(|P|) ≤ 4|Q4|+ 3|Q3|+ 2|Q≤2|+ 5 · 1
= 3(|Q4|+ |Q3|+ |Q≤2|+ 1)

+ (|Q4| − |Q≤2|) + 2

= 3|P|+ (2 + |Q4| − |Q≤2|).

By recalling that M(|P|) = 2n, this is equivalent to

2

3
n− 2 + |Q4| − |Q≤2|

3
≤ |P|.

By applying Lemma 11, we have

2

3
n− 1 ≤ |P| ≤ F (n),

which completes the proof of the theorem.
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3.5 Concluding Remarks
In this chapter, we investigated the anti-slide packings for a square box of
side length n using T-tetrominoes and proved that the number of pieces
in a sparsest packing solution F (n) = ⌊2n/3⌋ when n ̸≡ 0 (mod 3) and
2n/3−1 ≤ F (n) ≤ n−1 when n ≡ 0 (mod 3). There is still a substantial
gap between the upper and lower bounds for the case that the side length is
divisible by 3. We believe that the upper bound is in fact tight, although we
have not succeeded in proving this.

One may wonder whether a diagonal packing would be possible even for
the case n ≡ 0 (mod 3). However, a simple observation of the packings
shown in Fig. 3.3 reveals that this is not the case. We can observe that,
for every k = 1, 2, . . ., the sum of the largest x-coordinate and the largest
y-coordinate of a cell occupied by the k-th piece, counting from the bottom
left corner, in a diagonal packing is not divisible by 3. We conjecture that
an extra n/3 pieces are needed to prevent all of these pieces from sliding.
To show this formally would be an interesting future work.
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Chapter 4

Anti-slide Packing for a
Three-dimensional Box

4.1 Introduction
In this chapter, we study sparsest anti-slide packings for a three-dimensional
cubic box.

There are several possible definitions [35, 37] of the anti-slide problem.
We consider the integral, orthogonal, and snagged version of the problem:
First, integral means that each piece is aligned so that every corner of the
piece matches the coordinate of integers. Second, orthogonal means that
each piece slides toward an orthogonal direction, i.e., parallel to x, y, or z-
axes. Third, snagged means that each piece will not slide toward a direction
if the piece touches the other piece or the inner wall of a finite box on the
straight line of the direction.

We say that a piece is fixed if the piece will not slide toward any orthog-
onal directions. We say that a packing of pieces is stable if every piece in
the packing is fixed. In our model, an anti-slide packing is called a stable
packing. The density of a packing is defined to be the ratio of the volume
occupied by pieces.

In 1994 and 1996, Knuth [38] made a program to find all stable packings
for a small box implementing the data structure dancing links [39]. In 2007,
Knuth [40] also gave a construction of a stable packing of 2× 2× 1 pieces
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whose volume density is 11/16 = 0.6875 when the size of a box goes to
infinity. Amano et al. [34] used an IP approach to show that the minimum
density is between 0.288 and 2/3 ∼ 0.666̇.

In our previous work [26], we investigated the asymptotic behavior of
the minimum number of pieces in a stable packing for an n× n× n box for
various shapes of polycubes illustrated in Fig. 4.1 and observed that these
could be categorized into three groups. Namely, each polycube in Group A

Group A: Θ(n)
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z

x

y

z
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x

Group B: O(n2)
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z
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z

x

Group C: Θ(n3)

y

z

x

y

z

x

Fig. 4.1: Several shapes of pieces analyzed.

and B has a packing with Θ(n) and O(n2) pieces, respectively. Note that
a non-zero density lower bound shown for a piece in Group C implies that
it needs Θ(n3) pieces to pack without sliding. We believe that a piece in
Group B needs Ω(n2) pieces to pack.

In this chapter, we focus on the sparsest anti-slide packing for 2× 2× 1
pieces and L-tricube pieces. Firstly, we give a new construction of a stable
packing of L-tricubes. We will discuss this in Section 4.2. Secondly, we
show that there is a stable packing of 2× 2× 1 pieces when a box is torus.
We will describe our construction in Section 4.3. Finally, we show that
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there is a stable packing of 2× 2× 1 pieces without the assumption of the
torus. We will describe our construction in Section 4.4.

In related works, an anti-slide packing is well-studied in the enumeration
and computational complexity. Takenaga et al. [35] enumerated anti-slide
packings of pentomino pieces for a small two-dimensional box using the
ordered binary decision diagram. Minamisawa et al. [37] discussed the NP-
completeness of the anti-slide puzzle. Note that the model in Minamisawa
et al. assumes real-world physical phenomena.

Notations. For positive integers n and m with n < m, [n] denotes the
set { 1, 2, . . . , n } and [n,m] denotes { n, n+ 1, . . . ,m }. By using the
integral, we view the l×m× n box as a three-dimensional array of cells of
unit size. Each cell is identified by (i, j, k) ∈ [l]× [m]× [n]. In this chapter,
we assume without loss of generality that l ≥ m ≥ n.

We say that a 2 × 2 × 1 piece is placed at (i, j, k) if the cell in the
piece closest to the origin in the array is aligned to (i, j, k). Also, we say a
2× 2× 1 piece is placed with direction d ∈ [3], each of which is is shown
in Fig. 4.2. For example, if we place a 2 × 2 × 1 in a 4 × 4 × 4 box at

y

z

x

d = 1

y

z

x

d = 2

y

z

x

d = 3

Fig. 4.2: Placements of a piece with direction d = 1, 2, and 3.

(1, 2, 1) with the direction d = 1 then the cells (1, 2, 1), (2, 2, 1), (1, 3, 1),
and (2, 3, 1) are occupied by the piece. The placement and occupancy of an
L-tricube is defined in the same way. Note that the number of directions of
an L-tricube is 12.
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Let us see the IP formulation for the anti-slide packing problem devel-
oped by Amano et al. [34]. We can give the IP model for the polycubes in
Fig. 4.1. Here, we will describe the IP model for the case of 2×2×1 piece.

We introduce two types of 0-1 variables

{ p[i, j, k, d] | (i, j, k) ∈ [l]× [m]× [n] }

and
{ o[i, j, k] | (i, j, k) ∈ [l]× [m]× [n] } .

The variable p[i, j, k, d] takes value 1 if there is a piece placed at (i, j, k)
with direction d, and 0 if there is no such piece. The variable o[i, j, k] takes
value 1 if the cell (i, j, k) is occupied by some placed piece, and 0 otherwise.

We will give a set of linear constraints so that the solution of the model
corresponds to a stable packing. There exists at least one piece placed in
the box, which is expressed as∑

(i,j,k),d

p[i, j, k, d] ≥ 1. (4.1)

where the summation ranges over all (i, j, k) ∈ [l] × [m] × [n] and all
directions d ∈ { 1, 2, 3 }.

An occupancy of a cell is expressed as

o[i, j, k] =
∑

(i′,j′,k′),d

p[i′, j ′, k′, d] (4.2)

where the summation ranges over all (i′, j ′, k′) and d such that the cell
(i, j, k) is occupied if a piece is placed at (i′, j ′, k′) with direction d.

A piece occupies the cells along the shape of the piece. Thus, a place-
ment of a piece is written as

p[i, j, k, d] ≤ o[i′, j ′, k′] (4.3)

for each cell (i′, j ′, k′) occupied by the piece.
Finally, we will express the constraint that every piece of a stable packing

is fixed. Consider that a piece is placed at (i, j, k) with direction d. If the
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y
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x

Fig. 4.3: Either one of the cells, colored gray cubes, is occupied if a placed
piece will not slide toward the positive x-axis.

piece will not slide toward the positive x-axis, then either one of the cells is
occupied. This situation is illustrated in Fig. 4.3. This situation is expressed
as

p[i, j, k, d] ≤
∑

(i′,j′,k′)

o[i′, j ′, k′]. (4.4)

where (i′, j ′, k′) is a cell needed for the piece to be fixed. Similarly, we add
the constraint for the situation for positive y, z, negative x, y, and z -axes.

We easily understand that a feasible solution satisfying all the conditions
described in Eqs. (4.1) to (4.4) is corresponding to a stable packing. The
objective function is to minimize the number of pieces in the box. This is
expressed by ∑

(i,j,k),d

p[i, j, k, d] (4.5)

where the summation ranges over all (i, j, k) ∈ [l] × [m] × [n] and all
directions d ∈ { 1, 2, 3 }.
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4.2 Minimum Number of a Stable Packing for
L-tricubes

In this section, we focus on the L-tricube, which would be the easiest shape
to get a quadratic lower bound. We analyze stable packings of L-tricubes in
terms of projection. We also obtain a new construction of a stable packing
of L-tricubes.

LetL(n) be the minimum number of L-tricube pieces of a stable packing
for an n × n × n box. We conducted computer searches based on the IP
formulation in Section 4.1 to find a better upper bound on L(n). We add
some heuristically found constraints to the IP model, and obtain the values
for n ≤ 11. The results are shown in Tab. 4.1, and the example of the
packing for n = 8 is shown in Fig. 4.4. Our experimental results suggest

Tab. 4.1: Values of the upper bound on L(n) for n ≤ 11.
n 4 5 6 7 8 9 10 11

L(n) ≤ 9 15 23 31 40 50 61 72

that L(n) tends to n2/2 when n goes to infinity.
Next, we consider the lower bound on L(n). For a stable packing of L-

tricubes, we say that a pixel on the xy-plane (resp., xz-plane and yz-plane)
is marked if the orthogonal projection of the set of pieces in the packing
onto the plane includes this pixel. Given a stable packing, the shadow size
of the packing is defined as the maximum number of marked pixels in a
plane among xy, xz and yz -planes. Let T (n) denote the minimum of a
shadow size over all anti-slide packings of L-tricubes for an n× n× n box.
If one can show a quadratic lower bound on T (n), then it would immediately
imply L(n) = Ω(n2).

For example, given a stable packing illustrated in Fig. 4.5 (a) for a
7× 7× 7 box, the shadow size of the packing is 49 in Fig. 4.5 (b) because
each of the number of marked pixels colored by gray in a plane among xy,
xz and yz -planes is 18, 49, and 49.

We performed a computer experiment using an IP solver to find a stable
packing having a small value of T (n). The results are shown in Tab. 4.2.
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Fig. 4.4: A packing of L-tricube pieces for an 8× 8× 8 box.
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Fig. 4.5: A shadow size for the stable packing for a 7×7×7 box. A marked
pixel is colored gray.
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The example of the packing for n = 6 is shown in Fig. 4.6 (a). Fig. 4.6 (b)

Tab. 4.2: Values of the upper bound on T (n) for n ≤ 8.
n 4 5 6 7 8

T (n) ≤ 13 19 26 35 45

shows the projection on the xz-plane given by this packing. The projections
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(b)
Fig. 4.6: A packing of L-tricube pieces for a 6× 6× 6 box.

on the xy-plane and the yz-plane are similar. The result suggests that T (n)
would be quadratic in n. We believe that the asymptotic behavior of L(n)
is quadratic in n:

Conjecture 12. L(n) = Ω(n2). More ambitiously, L(n) ∼ n2/2.

4.3 Density for 2× 2× 1 Pieces for Torus
In this section, we show that there is a stable packing of density 12/25 = 0.48
when a box is torus. We say that a three-dimensional array is a torus with
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size l ×m× n if (i, j, k) ∈ N3 is equivalent to

((i− 1) mod l + 1, (j − 1) mod m+ 1, (k − 1) mod n+ 1)

for every (i, j, k) ∈ N3. We say that a packing for a torus is quasi-stable if
none of the pieces in the box can slide and all pieces of the packing move
together as one block.

Let R(n) denote the minimum ratio of the volume occupied by pieces
in a quasi-stable packing of 2× 2× 1 pieces for the three-dimensional torus
of side length n. We conducted a computer search for a sparse packing of a
torus of a size with l ≤ 8. We use an IP solver based on the IP formulation
developed in Amano et al.[34].

The sparsest packing obtained so far is for the 5×5×5 torus and it uses
15 pieces in Fig. 4.7. The volume density is 4·15/53 = 12/25. Since we can
obtain a quasi-stable packing for a larger torus by repeating its placement
in the direction of x, y, and z-axes, we have the following bound on R(n).

Theorem 13. R(5k) ≤ 12/25 for every k ≥ 1.

4.4 Minimum Density for 2× 2× 1 Pieces
In the previous section, we gave a packing of density 0.48 that uses 2×2×1
pieces for a torus. In this section, we extend this result to show that the
same density can be achieved for a finite box.

Let F3(n) denote the minimum number of 2 × 2 × 1 pieces of a stable
packing for an n× n× n box. The density of a packing is defined to be the
ratio of the volume occupied by pieces. Let V denote the upper limit of the
minimum density of a stable packing consisting of 2× 2× 1 pieces where
the size of a box approaches infinity, i.e.,

V := lim sup
n→∞

4 · F3(n)

n3
. (4.6)

As mentioned in [34], we believe that the limit limn→∞
4·F3(n)

n3 also exists.
The aim of this section is to show the following upper bound on V :
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Fig. 4.7: A sparsest quasi-stable packing of 2× 2× 1 pieces for a 5× 5× 5
torus. Each number represents a piece.

Theorem 14. V ≤ 0.48.

Since we have a placement of density 0.48 for a 5× 5× 5 torus, we can
obtain an arbitrary large pattern having the same density by repeating the
5 × 5 × 5 pattern along the x-, y- and z-axis. A problem is that the total
pattern does not fit a box since the boundary of the pattern is not flat. In
order to resolve this, we should give the way of padding a small number of
pieces so that a packing becomes flat and stable. Actually, this is exactly
what we will discuss in the following.

In what follows, we show the upper bound onF3(n) by giving an explicit
construction of stable packings.
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Lemma 15. For every positive integer n ≥ 36, F3(n) ≤ S(⌊(n− 6)/5⌋) +
(n3 − (n− 8)3)/4 where S(k) = 15k3 + (5k+6)3−(5k)3

4 .

Once we have the lemma, Theorem 14 is obvious since it will imply

4 · F3(n)

n3
=

4 · (15(n/5)3 +O(n2))

n3
=

12

25
+ o(1) = 0.48 + o(1).

The rest of this section is devoted to the proof of Lemma 15.
A cell in a finite box is called outer if it touches the boundary of the box.

For two cells c = (i, j, k) and c′ = (i, j, k) in a finite box, we say that c and
c′ are neighbors if |i− i′|+ |j − j′|+ |k − k′| = 1 holds.

Definition 16. A stable packing for a box is called stretchable, if, for every
two neighboring outer cells in the box, at least one of two cells is occupied
by some piece in the packing.

This property is useful for expanding a stable packing. Later on, we will
show that every stretchable packing for an l ×m× n box can be expanded
to a packing for an (l+2)× (m+2)× (n+2) box with the same property
by padding an appropriate number of pieces.

Here, we introduce the notion of building block that represents a pattern
of the placement of pieces.

Definition 17. Given a placement of pieces in an l × m × n box and a
sub-array A = [i, i′] × [j, j ′] × [k, k′] ⊂ [l] × [m] × [n], an (i′ − i + 1) ×
(j′− j+1)× (k′− k+1) box with the placement of pieces inA is called a
building block. Note that a building block may contain a “part" of a piece,
e.g., 1× 1× 1 or 2× 1× 1 part of a 2× 2× 1 piece.

Given a building block, a positive integer k and some axis, we can form
a combined building block by arranging k building blocks along with the
designated axis. For two building blocks B and B′, we say that B is equal
to B′, denoted by B = B′, if the placement of B is same as the placement
of B′.

When A = [l] × [m] × [k, k′] such that [k, k′] ⊂ [n], a building block
on A is called xy-board. Similarly, when A = [l] × [j, j ′] × [n] (A =
[i, i′] × [m] × [n], respectively) a building block on A is called xz-board
(yz-board, respectively).
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Definition 18. Let P be a stable packing for an l×m× n box. We say that
P is self-expanded for the z-axis if P satisfies the following: There exists
an interval [k1, k2] such that three xy-boards B1, B2 and B3 given by the
interval [k1, k2], [k2 + 1, 2k2 − k1 + 2] and [2k2 − k1 + 3, 3k2 − 2k1 + 4]
are all equal. Given such a packing, we can obtain a stable packing for an
l ×m× (n + k2 − k1 + 1) box by inserting the placement of B2 (of width
k2 − k1 + 1) into z = k2 + 1 in the box. Self-expanded packing for the x-
and y-axis is defined in the same way.

We insert the placement of B2 into z = k2 + 1 for an l × m × n box
and the obtained stable packing for an l × m × (n + k2 − k1 + 1) box is
illustrated in Fig. 4.8.

y
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k2

B1

k2 + 1

2k2 − k1 + 2

B2

2k2 − k1 + 3

3k2 − 2k1 + 4

B2

3k2 − 2k1 + 5

4k2 − 3k1 + 6

B3

m

l

(n + k2 − k1 + 1)

Fig. 4.8: The stable packing for an l ×m× (n+ k2 − k1 + 1) box.

When a stable packing is self-expanded for all three axes, the packing is
simply called expandable.
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In what follows, a stretchable and expandable stable packing is called a
adjustable stable packing. In order to show Lemma 15, we first show the
following theorem that resolves the cases n ≡ 1 (mod 5).

Theorem 19. For every positive integer k ≥ 5, there exists an adjustable
stable packing for a (5k + 6) × (5k + 6) × (5k + 6) box with at most
15k3 + ((5k + 6)3 − (5k)3)/4 pieces.

The proof is by construction. We briefly explain our idea for obtaining
the construction of a packing. First, we find an adjustable stable packing
for a small-size box. Next, we insert boards into the middle layer of the
packing to enlarge its size.

Proof of Theorem 19. We prove the theorem by induction on k. For the sake
of the proof, we further impose a condition to a packing that the packing is
self-expanded for x-, y- and z-axis with respect to the interval [9, 13]. We
refer to this condition as Condition (*). The meaning of the numbers 9 and
13 will be clarified later.

The base case, that is k = 5, is established by giving an explicit ad-
justable packing for a 31×31×31 box. We found this packing by computer
search. The packing is consisting of 5, 027 pieces, which is smaller than
S(5) = 5416.5. Due to the space constraint, we omit the description of the
packing itself. Instead, we will explain how we found this packing after the
proof of the theorem.

We now proceed to the induction step. We assume for the induction
hypothesis that we have an adjustable stable packing for a (5k+6)× (5k+
6) × (5k + 6) box that uses at most 15k3 + ((5k + 6)3 − (5k)3)/4 pieces
and satisfies Condition (*). We will expand this packing to an adjustable
packing for the box of side length 5(k + 1) + 6.

LetQ be an adjustable stable packing for a (5k+6)×(5k+6)×(5k+6)
box. By the induction hypothesis, Q is self-expanded for the z-axis with
respect to the interval [9, 13]. Thus, by inserting the placement of the xy-
board B given by the interval [14, 18] into z = 14 in the box, we can obtain
a stable packing for a (5k+6)×(5k+6)×(5(k+1)+6) box. We designate
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the packing as Q1. The number of inserted pieces is shown to be at most

15k2 +
5 · (5k + 6)2 − 5 · (5k)2

4
. (4.7)

Note that Q1 is self-expanded for the z-axis. Since the placement of B is a
board in Q, Q1 is stretchable. In addition, it is easy to verify that Q1 is also
self-expanded for x- and y-axis with respect to the interval [9, 13]. Thus,
Q1 is expandable, hence is adjustable.

We repeat this procedure two more times, i.e., for the x- and y-axis. We
insert yz-board B′ given by the interval [14, 18] into Q1 to obtain a stable
packing for a (5(k+1)+6)× (5k+6)× (5(k+1)+6) box. We designate
the packing as Q2. Note that Q2 is adjustable. The number of inserted
pieces is at most

15(k + 1)k +
5 · (5(k + 1) + 6)(5k + 6)− 5 · (5k(k + 1))

4
. (4.8)

Finally, we insert xz-board B′ given by the interval [14, 18] into Q2 to
obtain a stable packing for a (5(k+1)+6)× (5(k+1)+6)× (5(k+1)+6)
box. We designate the packing as Q3. Note that Q3 is adjustable. The
number of inserted pieces is at most

15(k + 1)2 +
5 · (5(k + 1) + 6)2 − 5 · (5(k + 1))2

4
. (4.9)

The total number of pieces in the packing for a (5(k+1)+ 6)× (5(k+
1) + 6)× (5(k + 1) + 6) box is upper bounded by

15(k + 1)3 +
(5(k + 1) + 6)3 − (5(k + 1)3)

4
(4.10)

as desired.

Construction of the base packing for 31 × 31 × 31 box: Below we
explain how we found a 31× 31× 31 packing that used in the base case in
the proof of Theorem 19.
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Since there exists the stable packing for 5 × 5 × 5 torus illustrated in
Fig. 4.7, we have the building block of size 5×5×5with the same placement
of pieces to the packing and designate this building block as B0.

We create a 15 × 15 × 15 building block consisting of the placement
instantiated from a 5×5×5 building block as follows: First, we arrange three
placements instantiated from B0 along with x-axis, and then we designate
the placement of this combined building block as B1. Note that B1 is a
15 × 5 × 5 box. Second, we arrange three B1s along with y-axis and then
we designate the arrangement of the combined building block as B2. Note
that B2 is a 15×15×5 box. Finally, we arrange three B2s along with z-axis
and then we designate the arrangement of the building block as B3. Note
that B3 is a 15× 15× 15 box.

Next, by using building block B3, we will create 27 building blocks. We
package a 21×21×21 building block with the three space around B3 inside
the the building block. We designate the 21 × 21 × 21 building block as
B. For each x, y, and z axis, we divide the 21 × 21 × 21 building block
into 8, 5 and 8 lengths along with the axis, and then obtain the 27 building
blocks, and let P be the set of the building blocks: There are eight 8×8×8
building blocks; There are twelve 8× 8× 5 building blocks; There are six
8× 5× 5 building blocks; There is one 5× 5× 5 building block.

Finally, we will obtain the stable packing for a 31 × 31 × 31 box: We
designate a yz-board with [8, 12] in B as D. We insert two building blocks
of D into x = 8 in B and designate the obtained 31 × 21 × 21 building
block as B′. Next, we designate a xz-board with [8, 12] in B′ as D. We push
in two building blocks of D into y = 8 in B′ and designate the obtained
31 × 31 × 21 building block as B′′. Lastly, we designate a xy-board with
[8, 12] in B′′ as D. We push in two building blocks of D into z = 8 in B′′
and designate the obtained 31× 31× 31 building block as B′′′.

Thus, we add the constraints that the placement instantiated from B′′′
and the stable packing is stretchable to the IP formulation developed in [34].
By using an IP solver, we conducted a computer search for an adjustable
stable packing of the 31 × 31 × 31 box consisting of the building blocks
over P . The obtained adjustable stable packing for the 31 × 31 × 31 box
uses 5, 027 pieces. Thus, the base case holds.

By Theorem 19, we completed the cases n ≡ 1 (mod 5). Below we
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show that the same density bound can be achieved for every n such that
n ̸≡ 1 (mod 5).

When n is even, it is easy to see that an adjustable packing for an
(n+2)× (n+2)× (n+2) box can be obtained from an adjustable packing
for an n × n × n box by putting ((n − 2)3 − (n2))/4 = O(n2) pieces in a
suitable way around the boundary of the box. When n is odd, the following
lemma guarantees that such an extension is also possible.

Lemma 20. For every odd integer o ≥ 5, there exists a stretchable stable
packing for a 2× o× o box and also for a 2× (o+ 2)× o box.

Proof. Our proof is by induction on odd integer o.
The base case is o = 5. The packings for the box of size 2× 5× 5 and

2× 7× 5 are illustrated in Fig. 4.9 is obvious.
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Fig. 4.9: The stretchable stable packings for the box of size 2 × 5 × 5 and
2× 7× 5.

For o ≥ 7, a stretchable packing for a 2 × o × o box is obtained by
combining the packing for a 2×o×2 box and the packing for a 2×o×(o−2)
box. Similarly, a stretchable packing for a 2×(o+2)×o box can be obtained
by combining the packing for a 2×o×o box and the packing for a 2×2×o
box. See Figure Fig. 4.10.
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Fig. 4.10: The stretchable stable packings for the box of size 2× o× o and
2× (o+ 2)× o.

By padding the placement of pieces given in the lemma repeatedly, we
can expand an adjustable packing for a box of side length n to an adjustable
packing for a box of side length n+ 2, for an odd n.

Proof of Lemma 15. We give a stable packing for every n ≥ 36 satisfying
the statement of the lemma.

By using Lemma 20 if necessary, we can extend an adjustable packing
for a box of side length m to the one of side length m+2 by adding at most
((m+ 2)3 −m3)/4 pieces.

By Theorem 19, we have an adjustable stable packing for a (5k + 6)×
(5k+6)× (5k+6) box that uses at most S(k) pieces for every k ≥ 5. It is
easy to see that, for every n ≥ 36, we can obtain a packing for a box of side
length n by applying the above extension at most four times to a packing
given in Theorem 19 (for a suitable choice of k). A simple calculation on
the number of inserted pieces completes the proof of the lemma.

4.5 Concluding Remarks
In this chapter, for each shape of piece, we investigated the sparsest anti-
slide packings for a three-dimensional box of side length n. For the case
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of 2 × 2 × 1 pieces, we showed that there is a stable packing of density
12/25 = 0.48. Currently, we do not whether this value can be improved or
not.
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Chapter 5

Conclusion
In this thesis, we investigated the sparsest packing which is similar to the
(densest) packing problems and the problem of the card game which is
similar to the operation like the sort.

Topswops Problem is long-standing open for 50 years. We extended
the sequences for f(n) and g(n). Our results sets a new record for the
first time in 12 years [15, COMMENTS in A000375]. We concluded that
f(18) = 191 and f(19) = 221, g(18) = 1 and g(19) = 4, by applying an
algorithm developed by Knuth [33] in a parallel fashion.

As mentioned in Section 2.4, using our method, the traversal for all
nodes for n = 20 may take about 18, 000 days. If we can prepare many
threads, we have the exact value of f(20) by using our method. For example,
when we use 200 threads, the computation for n = 20 takes only about three
months. Since the computation for any n ≥ 21 takes much longer than for
n = 20, we would not attempt to obtain the exact values of f(n) for n ≥ 21
by using our method.

There is an exponential gap between the upper and lower bounds on
f(n) for a given positive integer n. Morales [31] showed that there is an
initial deck with Ω(n2) steps. They [29, 30] showed that a largest deck
requires O(1.618n) steps. To improve the upper and lower bounds would
be an interesting future work.

In Anti-slide Problem, we studied the problem where a box is two-
dimensional or three-dimensional.

First, we discussed Anti-slide Problem for the two-dimensional square
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box using T-tetrominoes in Chapter 3. We determined the value of F (n)
exactly for the case of n ̸≡ 0 (mod 3) by proving matching upper and lower
bounds of F (n) = ⌊2n/3⌋. Moreover, we showed F (n) ≤ n − 1 for the
case of n ≡ 0 (mod 3), but cannot prove F (n) = n− 1 for this case yet.

Second, we discussed Anti-slide Problem for the three-dimensional cu-
bic box in Chapter 4. In our previous work [26], we investigated the
asymptotic behavior of the minimum number of pieces of a stable packing
for an n× n× n box for various shapes of polycubes. The result obtained
in Chapter 3 indicated that L(n) ≤ n(n − 1) because a stable packing for
an n× n× n box is obtained by stacking n− 1 L-tricubes diagonally on an
n× n box. We observed that these could be categorized into three groups,
which is illustrated in Fig. 5.1. Each polycube in Group A, B, and C has
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Fig. 5.1: (Recall) Several shapes of pieces analyzed.

a stable packing with Θ(n), O(n2), and Θ(n3) pieces, respectively. We
believe that a polycube in Group B needs Ω(n2) pieces to pack.

We focused on a sparsest stable packing forL-tricube pieces and 2×2×1
pieces. We gave a new construction of a stable packing of L-tricubes. We
conjectured thatL(n) ≃ n2/2when n goes to infinity. Next, we investigated
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sparsest stable packings of 2 × 2 × 1 pieces. We showed a stable packing
of density 12/25 = 0.48 when a box is torus. We succeeded to remove
the assumption that a box is torus without increasing the density, hence we
concluded that V ≤ 0.48.

We list below some of the other problems and the topics in this thesis.

• Can we design a more efficient algorithm to find largest decks on n
cards, which is considering the multithread?

• Does f(n) = Θ(n3)?

• Does L(n) = Ω(n2)?

• What is the exact value of V ?

• Consider a polycube different from the polycubes in Fig. 5.1. Which
groups is the polycube categorized in?

• Consider that we fix any one group and any one polycube in the group
in Fig. 5.1. What is the relationship between the arrangement of a
stable sparsest packing of pieces and the asymptotic behavior of the
minimum number of the pieces?

• Consider two types of pieces for a stable packing, e.g., tesseract-
hypercubes and L-tricubes. What is the value of the minimum total
number of two pieces?
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