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Abstract

This study investigates the diagnosis of heater disconnection using machine
learning algorithms and data clustering algorithms, comparing the merits of Eu-
clidean distance and Mahalanobis distance in the context of heater disconnection
diagnosis. Initially, a simulation model is constructed in MATLAB, and through
simulation runs, relevant data (voltage, current, resistance, temperature) of the
heater is collected using specified settings. Subsequently, this data is utilized for
learning and diagnosis by machine learning models.

Throughout the research process, various parameters are modified, and ran-
dom external disturbances (perturbations) are introduced to assess the stability
and accuracy of the machine learning system. Additionally, factors influencing
changes in Mahalanobis distance are studied, and the predicted factors are exper-
imentally validated.
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Chapter 1

Introduction

Temperature control systems play a crucial role in various applications, rang-
ing from industrial processes to scientific laboratories and residential environ-
ments. The ability to maintain precise and stable temperatures is essential for
ensuring the efficiency and reliability of these systems. For example, temperature-
control plays an important role in keeping many types of modern facilities oper-
ating efficiently, such as experimental space science instruments [1], vehicles [2],
batch reactors [3], refuge chambers [4], and medicine capsuling machines [5].
However, a common challenge in temperature control systems is the occurrence
of heater wire breakage, which can lead to significant operational issues. Identi-
fying and addressing heater wire breakage promptly is paramount to prevent dis-
ruptions in production, maintain experimental integrity, and enhance the overall
performance of temperature control systems.

In conventional temperature control systems, detecting heater disconnection
relies on manual inspection or sensor feedback [6]. Also, The fault diagnosis
methods can be typically categorised into model-based, knowledge-based, and
signal-based schemes [7]. The model-based method utilises the observers such as
Kalman filter, parity relation, model reference adaptive system (MRAS), mixed
logical dynamic (MLD) model and so on [8–12], where the diagnosis procedure
is performed by monitoring the residual signals between the measured outputs of
the actual system and the estimated variables of the predefined model. A demerit
of these schemes is that the diagnosis performance heavily depends on the ac-
curacy of model parameters. Manual inspections are time-consuming and prone
to human error, and subtle breaks may not be detected [13]. On the other hand,
sensor-based feedback systems may be limited by the accuracy of the sensors and
may not provide real-time insights into the health of the heating element. There-
fore, advanced and automated diagnostic methods are necessary to overcome these
limitations and improve the reliability of temperature control systems.
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Integrating artificial intelligence (AI) into temperature control systems has be-
come a promising solution to improve diagnostic capabilities. Fault diagnosis
methods based on artificial intelligence usually do not require the establishment
of precise mathematical models for the studied objects. According to the pres-
ence or absence of supervision, these methods can be categorized into supervised
learning, semi-supervised learning, and unsupervised learning [14]. The main
supervised learning methods include Artificial Neural Network (ANN) [15, 16],
Support Vector Machine (SVM) [17, 18], Random Forests (RFs) [19, 20], K-
Nearest Neighbor (KNN), etc.; Semi-supervised learning methods include gener-
ative methods [21] and divergence-based methods. Unsupervised learning meth-
ods mainly include Self-Organizing Maps (SOM) [22], clustering algorithms [23],
Principal Component Analysis (PCA) [24, 25], etc. There are also fault diagnosis
algorithms based on deep learning, reinforcement learning, and transfer learning
algorithms. Methods based on deep learning include convolutional neural net-
works (CNN) [26, 27], deep belief networks (DBN) [28], and stacked autoen-
coders (SAE) [29, 30]. Methods based on reinforcement learning include Q-
learning [31], and methods based on transfer learning include TrAdaBoost [32].

This paper utilizes a one-dimensional convolutional neural network (1D-CNN)
model from deep learning. In the simulation model constructed in MATLAB,
it learns and analyzes normal and abnormal (i.e., wire breakage) data from the
heater, diagnosing heater disconnections. Additionally, considering the scarcity of
abnormal situations in actual production processes (i.e., limited abnormal data),
unsupervised learning techniques such as clustering algorithms (Euclidean dis-
tance and Mahalanobis distance) are employed for diagnosis of wire breakage.

This paper begins by introducing the design and construction of the simu-
lation model, followed by an analysis of the simulation results. Next, the one-
dimensional convolutional neural network (1D-CNN) model used is presented,
showcasing the learning and validation results obtained from applying the 1D-
CNN to the data collected from the simulation results. Subsequently, the data
clustering algorithms and two distance metrics—Euclidean distance and Maha-
lanobis distance—are introduced. The simulation results are analyzed in terms of
learning and diagnosis using these algorithms, and the paper explores two factors
influencing Mahalanobis distance and their impact patterns. Finally, a summary
is provided for the entire study.
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Chapter 2

Temperature Control System and
Simulation

2.1 Design of the Temperature Control
System

The primary objective of this research is to identify instances of wire break-
ages, including both single and double breakages, as well as malfunctions within
a system consisting of 10 parallel heaters. This detection is achieved by analyz-
ing input parameters, namely input voltage, input current, and output temperature.
The conceptual representation of the model is illustrated,

RT = Rt [1 + αt (T − t)] (2.1)

where, the resistance RT and its corresponding temperature T are anticipated to
manifest a linear functional relationship. RT represents the resistance of the heater
at a temperature T , while Rt signifies the resistance of the heater at a temperature
t. αt denotes the temperature coefficient of impedance when the temperature is t
degrees Celsius.

In the context of metal conductors, it is expected that their resistance will
demonstrate a distinct correlation with temperature. This relationship is a critical
aspect of the proposed model, wherein the interplay between resistance and tem-
perature serves as a pivotal indicator for detecting wire breakages and malfunc-
tions. The comprehensive exploration of this relationship allows for a deeper un-
derstanding of the system’s behavior under various conditions. This research
endeavors to advance the understanding of wire breakage detection by intricately
examining the relationships between input parameters and the consequential ef-
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Figure 2.1: Schematic diagram of a parallel resistor wire heating system

fects on resistance and temperature. The proposed model, as depicted in Figure
2.1, represents a sophisticated framework for achieving enhanced reliability in
detecting both single and double wire breakages, along with other potential mal-
functions in a complex system of parallel heaters.

In the schematic diagram, applying voltage to the 10 parallel heaters results
in the generation of a load current within the circuit. As a consequence, the tem-
perature of the heaters will increase. The primary objective is to detect instances
where the heaters experience wire breakages due to excessively high temperatures.
Here, the relationship between the impedance and temperature of a copper wire is
illustrated in Figure 2.2.

2.2 Establishment of Simulation Model

2.2.1 Simulation model for subsystem

In the practical execution of data collection and diagnostic procedures, relying
solely on mathematical expressions proves inadequate for conducting meaningful
simulation runs. Consequently, after abstracting the tangible quantitative relation-
ships from the expression presented in Equation 2.1, the establishment of a ro-
bust and practical simulation model becomes imperative. This endeavor involves
leveraging Simulink to create a comprehensive and intuitive simulation model, as
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Figure 2.2: The Linear Relationship Between the Impedance and Temperature of
a Copper Wire

Figure 2.3: Simulation model of the impedance-temperature expression

illustrated in the accompanying figure, where, the gain, alp t, corresponds to the
temperature coefficient of impedance, αt.

Furthermore, this simulation model is designed to function as a cohesive sub-
system, seamlessly embedded within a more extensive and higher-level simula-
tion framework. This hierarchical integration allows for a modular and scalable
approach, fostering adaptability and ease of further model expansion. The utiliza-
tion of Simulink, as showcased in the graphical representation, not only enhances
the clarity of the simulation model but also paves the way for more advanced
analyses within the broader context of the overall system simulation.

Next, it is necessary to model the schematic diagram within the dashed lines in
Figure 2.1. Initially, the connection involves multiple heaters arranged in parallel.
Subsequently, temperature input signals are provided, and through the subsystem
depicted in Figure 2.3, corresponding resistance values are obtained. As it is a
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configuration of parallel resistances, the reciprocals of individual resistance val-
ues are calculated, summed, and then reciprocated again to derive the parallel
impedance, R.

Following this, based on the input voltage signal, V, and the calculated parallel
impedance, R, computations yield the circuit’s load current, I. It is important to
note that this configuration involves parallel connections of multiple resistances,
necessitating the reciprocal calculation and summation for obtaining the paral-
lel impedance, R. Subsequently, reciprocal transformation is applied once more
to finalize the impedance calculation. The illustration in Figure 2.4. depicts an
example of two heaters connected in parallel.

Figure 2.4: Example of two heaters connected in parallel

2.2.2 Establishment of closed-loop control model
and Simulation

In practical experiments, this paper initially considers the scenario of four
heaters connected in parallel. The above example is extended to incorporate four
heaters in parallel, followed by the establishment of a closed-loop control model,
as depicted in Figure 2.6, where, the subsystem with four heaters in parallel is en-
capsulated within the delineated green dashed box, constituting a comprehensive
simulation model, and the magnified view of this is shown in Figure 2.5. The ini-
tiation of this model involves introducing an input temperature reference signal.
Subsequently, a feedback loop is established, incorporating the negative feedback
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Figure 2.5: Subsystem of 4 parallel heaters

from the output temperature. The intricate dynamics within this subsystem are or-
chestrated through a temperature controller, yielding a voltage signal that serves
as the input voltage signal for this particular module. Likewise, the negative feed-
back loop from the ultimate output temperature concurrently functions as the input
temperature signal for this subsystem. Given that the temperature of the heaters
doesn’t undergo immediate discernible changes upon the generation of the load
current, a deliberate delay time is incorporated. This deliberate delay is strategi-
cally imposed to facilitate a more precise and distinct observation of the heaters’
temperature variations during this specified time interval.

This nuanced configuration ensures a meticulous examination of the interplay be-
tween the input temperature reference, the feedback loop, and the resulting voltage
and temperature signals within the subsystem. The deliberate inclusion of a time
delay feature amplifies the model’s fidelity, enabling a thorough capture of the
gradual temperature shifts in the heaters subsequent to the initiation of the load
current.

Based on this, the simulation parameters are configured. Firstly, for the tem-
perature controller, the sampling time is set to 0.1 seconds. Secondly, a first-order
lag for the current is established with a delay time of 100 seconds, and a time
delay of 5 seconds. The target output temperature value is set at 50◦C, with an
initial value of 0. The impedance-temperature relationship for each copper wire is
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Figure 2.6: Temperature closed-loop control model

Figure 2.7: Temperature output curves for different numbers of heater wire break-
ages

defined as follows: at 25◦C, the impedance is 10Ω, with a temperature coefficient
of impedance set at 0.00393.

With these specified parameters, the simulation is executed. Assuming differ-
ent numbers of heaters experiencing wire breakage (4, 3, 2, and 1), the temperature
input profiles are obtained, as depicted in Figure 2.7. And the output images for
input voltage versus load current are shown in Figure 2.8. The resistance value
output image is presented in Figure 2.9.

2.2.3 Analysis of Initial Simulation Results

In the three aforementioned figures, the visual representation distinguishes
different scenarios: the blue line signifies the normal condition, the red line rep-
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Figure 2.8: Output curves of input voltage vs. load current

Figure 2.9: Output of resistance
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resents one heater under wire breakage, the green line corresponds to two heaters
under wire breakage, and the purple line indicates three heaters under wire break-
age. In Figure 2.7, a discernible pattern emerges as the number of heaters experi-
encing wire breakage increases. Notably, the peak value of the output temperature
gradually diminishes, while the response time progressively extends. This obser-
vation provides valuable insights into the impact of heater wire breakages on the
dynamic behavior of the system.

Moving on to Figure 2.8, the plot unveils a nuanced relationship between input
voltage and load current under varying conditions denpending on the wire break-
age. As the input voltage undergoes gradual increments, an intriguing interplay
unfolds. The response time exhibits an analogous lengthening, accompanied by
a diminishing amplitude of oscillations. Simultaneously, the load current values
experience a gradual reduction in oscillation amplitude, coupled with a steady in-
crease in response time. This comprehensive analysis underscores a key trend:
with an escalating number of heater wire breakages, the ratio of voltage to current
undergoes a gradual increment, reflecting a continuous rise in impedance.

To further validate this trend, the resistance variation curve in Figure 2.9 serves
as a crucial piece of evidence. The resistance variations distinctly align with the
observed changes in the temperature, voltage, and current dynamics. This conver-
gence of evidence strengthens the assertion that an increasing number of heater
wire breakages correlates with a growing impedance in the system.

In summary, the detailed examination of Figures 2.7, 2.8, and 2.9 provides
a comprehensive understanding of the system’s response to varying degrees of
heater wire breakages. These findings contribute to the broader exploration of
impedance dynamics in parallel heater systems and lay the foundation for in-
formed decision-making in the context of machine learning diagnostics.
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Chapter 3

Diagnosis of Heater Wire Breakage
Based on 1-D Convolutional Neural
Network(1D-CNN)

Building upon the simulation model established in Chapter 2 and the initial
simulation run results and analysis, the next step involves multiple iterations of
the model. In each iteration, data will be collected to ensure a sufficient dataset
for subsequent machine learning analysis.

3.1 1-D Convolutional Neural Network

1D-CNN refers to one-dimensional convolutional neural network (1D Con-
volutional Neural Network), which is a variant of convolutional neural network.
1D-CNN is mainly used to process one-dimensional sequence data, such as au-
dio, text, etc. Compared with traditional fully connected neural networks, 1D-
CNN can better handle local relationships in sequence data, and therefore per-
forms better in tasks such as speech recognition, natural language processing,
and time series prediction. There are many advantages to using adaptive and
compact 1D CNN instead of traditional (2D) deep convolutional neural network.
First, compact 1D-CNN can be efficiently trained using limited 1D signal datasets,
whereas 2D deep CNN typically requires large-scale datasets, such as “big data”
scale datasets, in addition to requiring 1D to 2D data conversion. Prevents the
well-known ”overfitting” problem. One-dimensional CNN can be directly ap-
plied to raw signals (e.g. current, voltage, vibration, etc.) without any pre- or
post-processing such as feature extraction, selection, dimensionality reduction,
denoising, etc. Furthermore, due to the simple and compact configuration of this
adaptive 1D-CNN that only performs linear 1D convolutions (scalar multiplication
and addition), real-time and low-cost hardware implementation is feasible [33].

12



Figure 3.1: Comparison between a 1D-CNN and a 2D-CNN

The example in Figure 3.1 illustrates a simple comparison between a 1D-CNN
and a 2D-CNN, in which, the left example for natural language processing, a sen-
tence is made up of 9 words. Each word is a vector that represents a word as a
low dimensional representation. The feature detector will always cover the whole
word. The height determines how many words are considered when training the
feature detector. In our example, the height is two. In this example the feature
detector will iterate through the data 8times. In the right example for computer
vision, each pixel within the image is represented by its x- and y position as well
as three values (RGB). The feature detector has a dimension of 2 x 2 in our ex-
ample. The feature detector will now slide both horizontally and vertically across
the image.

1D-CNN usually consists of multiple alternating convolutional and pooling
layers, and finally uses a fully connected layer to map the extracted features to the
output. During the training process, 1D-CNN uses the backpropagation algorithm
to update the model parameters to minimize the loss function.

1D-CNN mainly consists of the following parts:

Input layer: receives one-dimensional sequence data as input to the model.

Convolutional layer: uses a series of trainable convolution kernels to slide
over the input data and extract features. Convolution operations can effectively
extract local information and thereby capture local patterns of the input sequence.

Activation function: performs nonlinear transformation on the output of the
convolution layer to enhance the expression ability of the model. Pooling layer:
By reducing the dimensionality of the convolutional layer output, the amount of
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calculation is reduced, while the robustness and generalization ability of the model
are improved.

Fully connected layer: Maps the output of the pooling layer to the output of
the model, usually used for tasks such as classification and regression.

3.2 Activation Function

In the realm of artificial neural networks, the activation function of a node
plays a pivotal role in determining the node’s output given a specific input or set of
inputs. Analogously, envisioning a standard integrated circuit as a digital network
reveals a series of activation functions, akin to being either ”ON” (1) or ”OFF”
(0) based on the input. This analogy aligns with the concept of a linear perceptron
within neural networks. However, it’s crucial to note that solely nonlinear activa-
tion functions empower these networks to effectively address nontrivial problems
using a minimal number of nodes. These specific activation functions, facilitating
nonlinearity in computations, are aptly termed ”nonlinearities.”

The most prevalent activation functions are generally categorized into three
groups: ridge functions, radial functions, and fold functions. An activation func-
tion, denoted as f , is considered saturating when

lim
|v|→∞

|∇f (v)| = 0 (3.1)

Conversely, it is classified as non-saturating when it does not exhibit saturation.
Non-saturating activation functions, exemplified by ReLU, may offer advantages
over saturating counterparts by mitigating issues associated with gradient van-
ishing [34]. Ridge functions, representing the archetypal activation functions,
are multivariate functions that operate on a linear combination of input variables.

Ridge functions as the most classic activation functions are multivariate func-
tions acting on a linear combination of the input variables. Often used examples
include

Linear activation : ϕ(v) = a+ v′b,

ReLU activation : ϕ(v) = max(0, a+ v′b),

Logistic activation : ϕ(v) = (1 + exp(−a− v′b))−1.

(3.2)
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Compared with the sigmoid and Tanh activation functions, the ReLU func-
tion does not have the saturation problem when the input is positive, i.e., it solves
the gradient vanishing problem and makes the deep network trainable; the com-
putation velocity is very fast, and only needs to judge whether the input is greater
than 0; the convergence velocity is much faster than the sigmoid and Tanh func-
tions. ReLU function output will make part of the neurons to be 0, which brings
network sparsity and also reduces the correlation between parameters, alleviating
the problem of overfitting to a certain extent. Some activation functions are shown
as follows.

sigmoid(x) = 1
1+e−x

tanh(x) = e−x−ex

e−x+ex
= e2x−1

e2x+1

ReLU =

{
x, if x ≥ 0
0, if x < 0

(3.3)

3.3 Parameter Configuration and Diagnostic
Results for Machine Learning and
Validation

Before configuring the parameters for machine learning, considering the need
for a sufficiently large dataset, it is planned to set the simulation runs to 200 times.
Consequently, the target temperature input value, initially set at 50◦C, will be
modified to a range of 50 to 300◦C. During the simulation runs, the amplitude of
this input temperature signal will vary, ensuring non-repetition and integer values
for each run. The simulation runtime is set at 30 seconds.

Based on this, parameters for machine learning are set. This study categorizes
the detection results into three classes: normal (no heater wire breakage), abnor-
mal 1 (one heater wire breakage), and abnormal 2 (two heater wire breakages).
Within the temperature range of 91 to 100◦C, with one node per 1◦C, 10 step re-
sponses are obtained. The data acquisition method involves selecting data at any
2-second interval within the first 15 seconds of the response. Given a sampling
time of 0.1 seconds, this results in collecting 20 sets of data for each step response.
With 10 step responses, a total of 200 data points are acquired (600 sets of data
in total, with 200 sets for normal data and 400 sets for abnormal 1 and abnormal
2 data combined). Among these, 80% of the data (160 sets each for normal, ab-
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Figure 3.2: The data collected for voltage and current every second after the onset
of the response at 15 seconds

normal 1 and abnormal 2) are used for learning, while the remaining 20% (40 sets
each for normal, abnormal 1 and abnormal 2) are used for validation and testing.
The input data consists of voltage and current.

All data after the onset of the response at 15 seconds are shown in Figure
3.2. In this figure, the red curve represents the voltage data, while the blue curve
represents the current data. From left to right, the cases correspond to normal,
abnormal 1, and abnormal 2 situations. It can be observed that the voltage remains
relatively unchanged with an increasing number of disconnected heaters, while
the current data values gradually decrease. The acquisition of data for machine
learning involves randomly selecting 2-second intervals from the data starting at
15 seconds.

3.4 Analysis of Machine Learning and
Validation

3.4.1 Confusion matrix

As a result, the process for machine learning is illustrated in Figure 3.3.

In machine learning, a confusion matrix is an error matrix commonly used
for visually evaluating the performance of supervised learning algorithms. The
confusion matrix is a square matrix of size (n classes, n classes), where n classes
represents the number of classes. Each row of the matrix represents instances
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Figure 3.3: Process and results of machine learning
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Figure 3.4: Single confusion matrix of 2 classes

from the true class, while each column represents instances from the predicted
class (as implemented in TensorFlow and scikit-learn). Alternatively, each row
can represent instances from the predicted class, and each column from the true
class (as defined in the Confusion matrix from Wikipedia). Through the confusion
matrix, it is easy to discern whether the system is confusing two classes, which is
the origin of the name ”confusion matrix.”

The confusion matrix is a specific type of contingency table or cross-tabulation
with two dimensions (actual and predicted) that share the same set of classes. In a
contingency table, each combination of dimensions and classes represents a vari-
able. Represented in tabular form, the contingency table visually depicts the fre-
quency distribution of multiple variables [35]. A single confusion matrix is like
what in Figure 3.4. Here, two categories for the data are established, distinguish-
ing them into predicted values and actual values. The region shaded with light
blue represents the content validated as true.
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Figure 3.5: The confusion matrix depicting the validation results

Next, the results of machine learning will be presented in the form of a confu-
sion matrix, as shown in Figure 3.5.

3.4.2 Analysis of learning results

In Figure 3.3, it is evident that during the machine learning process, a total of
4 seconds were spent on training. In the first epoch, the accuracy was only around
30%. After 15 epochs, there was a significant improvement, reaching 99.7%,
close to 100%. In the actual validation results, the accuracy was 98.3%. Out of
a total of 40 normal data sets and 80 abnormal data sets, there were 2 incorrect
classifications.

In the confusion matrix in Figure 3.5, the blue-colored blocks represent cor-
rect classifications, while the pink-colored blocks represent incorrect classifica-
tions. Through this confusion matrix, it is evident that both types of incorrect
classifications involve categorizing normal class into the abnormal 1 class.
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Figure 3.6: Visualization of time response (example 1)

Grad-CAM is a technique in deep learning and computer vision used to under-
stand which parts of an image are important in neural network decisions. It helps
visualize the most critical regions for a convolutional neural network (CNN) to
make the final classification decision on an input image. If visualizing instances
of misclassification in the results, specifically where the normal class is misjudged
as abnormal class 1, the corresponding images can be observed in Figures 3.6 and
3.7. In Examples 1 and 2, the upper curve represents the voltage profile, while the
lower curve corresponds to the current profile. Examining the reflected outcomes,
there is a tendency for the focal points to exhibit weaker intensity and variations.
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Figure 3.7: Visualization of time response (example 2)
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Chapter 4

Cluster Analysis of Heater Wire
Breakages

While machine learning methods are highly reliable for detecting heater wire
breakages, particularly with a substantial dataset, the practical industrial scenario
often involves rare occurrences of specific anomalies like heater wire breakages.
In other words, obtaining data for wire breakage conditions is challenging com-
pared to normal operating conditions. This scarcity of wire breakage data com-
promises the reliability of machine learning methods. In such situations, where
limited data availability becomes a bottleneck, a new approach is needed. Data
clustering methods successfully address this challenge by enabling effective de-
termination and classification based on a small dataset.

4.1 Data Clustering and Samples Distance

Cluster analysis is an unsupervised machine learning algorithm that catego-
rizes samples based on the similarity of data when no predefined categories are
given. Its input consists of a set of unlabeled samples, which are grouped into
clusters based on the distance or similarity of the sample data. The objective is to
minimize intra-group distances while maximizing inter-group differences [36].

Figure 4.1 presents a simple example of clustered samples where three dif-
ferent colors represent three distinct clusters. The objective of this study is to
distinctly differentiate the three conditions of heaters (normal, abnormal 1, abnor-
mal 2) in a similar clear manner to achieve accurate detection.

In cluster analysis, the analysis of distances between samples serves as a cru-
cial and effective metric for learning and classification. In this study, the examina-
tion of sample distances is employed as a key indicator to analyze and effectively
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Figure 4.1: Example of clustered samples

detect heater wire breakages.

The most commonly used distances include Euclidean distance, Manhattan
distance, Chebyshev distance, Minkowski distance, and Mahalanobis distance,
among others. These distances can be represented as illustrated in Figure 4.2,
where the distance between the origin and points is equal to 1. In this study, both
Euclidean distance and Mahalanobis distance were employed for data analysis.

Euclidean distance, being the most prevalent, is calculated by determining the
straight-line distance between two points. It is computed as the square root of
the sum of the squares of differences between corresponding dimensions of two
points and can be expressed as:

DEuclidean =

√√√√ n∑
i=1

(x2i − x1i)2 (4.1)

where x2i and xi represent the ith dimension of points 1 and 2, respectively, and
the sum is taken over all dimensions (n).

The Euclidean distance is suitable for scenarios characterized by the following
features. Firstly, when the clusters in the dataset have an approximately spherical
shape or follow a normal distribution, the Euclidean distance serves as a appropri-
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Figure 4.2: Multivariate distances (distance between points and the origin equals
1)
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ate metric. Secondly, it proves effective when there is a linear relationship among
data features, meaning that the change in one feature is proportionate to the change
in other features. Additionally, when the importance of features is similar with no
significant weight differences, and the units of each feature are consistent, the
Euclidean distance typically performs well. However, in scenarios with irregu-
lar data distributions, nonlinear relationships among features, or the presence of
outliers, other distance metrics may be more appropriate, as the Euclidean dis-
tance tends to be sensitive to such situations. Overall, in scenarios characterized
by the mentioned features, the Euclidean distance is a effective choice. However,
in specific circumstances, careful consideration of alternative distance metrics is
warranted [37].

Mahalanobis distance can be regarded as a modification of the Euclidean dis-
tance, addressing issues related to inconsistent and correlated scales among di-
mensions in Euclidean distance. For two vectors, x and y, the Mahalanobis dis-
tance between them can be expressed using the following formula:

DMahalanobis =
√

(x− y)TS−1(x− y) (4.2)

where, x and y are vectors representing two sample points, and S is the covariance
matrix.

The computation of the covariance matrix S is typically based on a dataset. If
there is a dataset containing n samples, each with m features, the calculation of
the covariance matrix S is as follows:

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (4.3)

where, xi is the vector of the ith sample, and x̄ is the mean vector of all samples.

The covariance matrix in Mahalanobis distance is a matrix that represents the
relationships between variables. In statistics and machine learning, the covariance
matrix is commonly used to describe the correlations and variabilities among mul-
tiple random variables. The elements of the covariance matrix represent the co-
variance between two random variables, and the diagonal elements represent the
variances of individual variables. The covariance matrix is a symmetric matrix,
where the (i, j) element indicates the covariance between the ith and jth variables.
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In Mahalanobis distance, the covariance matrix is applied through its inverse,
known as the precision matrix. The precision matrix is the inverse of the covari-
ance matrix and is used to adjust the calculation of Mahalanobis distance, taking
into account the correlations between different variables.

The covariance matrix plays a crucial role in Mahalanobis distance by quanti-
fying the relationships between variables, and its inverse (precision matrix) helps
in accurately calculating Mahalanobis distance to measure the relative positions
of samples in multidimensional space.

4.2 Simulation Model and Parameter
Modification

When employing machine learning methods, the subsystem used consists of a
model with four parallel heaters. Now, in Figure 4.3, the number of heaters will
be expanded to ten while still maintaining a parallel connection. This adjustment
will make the diagnostic conditions more stringent and demanding. Moreover, on
top of the existing simulation model, white noise interference and step response
disturbances have been separately introduced before the output signals. This is
done to demonstrate that the system remains stable and can correctly diagnose
heater wire breakages even in the presence of external disturbances. The modified
simulation model is illustrated in Figure 4.4.

In the figure, the red solid line box represents the step response disturbance. It
undergoes a step change to a specified value at a designated moment and utilizes
an integrator to simulate its decay process. Consequently, after the step, it will
gradually decay to zero over a certain period of time. As shown in Figure 4.5, this
is the waveform output of the step response disturbance.

The new experimental approach follows three main aspects:

1. Compute estimated values for temperature and resistance.

2. Utilize the covariance matrix learned from normal data to calculate the Eu-
clidean distance and Mahalanobis distance for the estimated temperature
and resistance values.

3. Diagnose heater wire breaks based on the deviation between the data and
normal values.
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Figure 4.3: Subsystem of 10 parallel heaters
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Figure 4.4: Waveform of Disturbance

Figure 4.5: Modified simulation model
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Upon the foundation of the original simulation data, white noise is set to fol-
low a normal distribution with a variance of 0.1. The amplitude of the step re-
sponse disturbance is designated as 20, and it will undergo a step change at 60
seconds, decaying to 0 within 10 seconds (thus returning to normal).

On the existing foundation of machine learning and detection parameters, the
data acquisition method is modified as follows: within 40 seconds after the re-
sponse to the step response disturbance, randomly select 2 seconds of data for
detection. The input signal is modified to be the average temperature Tave and the
average resistance Rave. The calculation methods for Tave and Rave are given by
the following formulas:

Tave =
1

n

n∑
k=1

Tk (4.4)

Rave =
1
n

∑n
k=1 vk

1
n

∑n
k=1 ik

(4.5)

Where Tk, vk, and ik represent the collected temperature, voltage, and current
data, respectively, and n is the number of data points. As 2 seconds of data are
randomly selected, there will be 20 data points, so the value of n is set to 20. And
1
n

∑n
k=1 vk is the calculation of average of voltage, while 1

n

∑n
k=1 ik is of current.

4.3 Simulation Results

4.3.1 Graphical output of collected data

After modifying the simulation model and various parameters, run the simu-
lation without applying the step response disturbance. Observe the temperature
variation curves for three different scenarios, as shown in Figure 4.6. From left to
right, these represent the normal, abnormal 1, and abnormal 2 scenarios of heater
wire breakage. It is clear from the figures that the wire breakage in the heater (i.e.,
increased resistance) causes a delayed and weakened temperature rise.

After observing the temperature variation without external disturbances, let’s
introduce a disturbance and run the simulation. Obtain the temperature variation
curve under normal conditions, as shown in Figure 4.6. The dashed line indicates
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Figure 4.6: Temperature output curves

the time point when the disturbance is applied, which is the time point of the step
response.

Similarly, calculating the average resistance value requires voltage and current
data. To establish an overall observation of the data, output the curves of voltage
and current with the changing number of wire breakages, as shown in Figure 4.8.
Again, from left to right, the wire breakage scenarios are normal, anomaly 1,
and anomaly 2. The red curve represents the voltage curve, while the blue curve
represents the current curve. Through the graphs, two observations can be made:

1. The lower limit and decay characteristics of the voltage are different.

2. The current values decrease in the order of normal, anomal 1, and anomal
2.

Then, calculate the average resistance value using the mean voltage and mean
current.

In the process of calculating the average resistance value and presenting it
alongside the average temperature value as functions of the data quantity, it’s
aimed to derive insightful curves that showcase the relationship between these
two essential parameters. These curves serve as valuable features in subsequent
analyses, particularly in the computation of Euclidean distance and Mahalanobis
distance. By aligning the vertical axis scales across these curve coordinate sys-
tems, a coherent and comprehensive visualization emerges, facilitating a nuanced
understanding of the interplay between the average resistance and temperature
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Figure 4.7: Time response of T(normal)

Figure 4.8: Time response curves of voltage and current
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values. This meticulous exploration enables us to glean valuable insights into the
nuanced behaviors of the system under varying conditions, enhancing ability to
discern patterns and anomalies in the data.

As illustrated in Figure 4.9, the curves depict the post-output graphs of average
temperature values and average resistance values. From left to right, the scenarios
represent normal, abnormal 1, and abnormal 2 conditions, each associated with a
distinct heater wire breakage situation. The upper curves represent the trends in
average resistance values, while the lower curves showcase the patterns in aver-
age temperature values. This visual representation offers a comprehensive insight
into the dynamics of the system under different heater wire breakage scenarios,
providing a clear distinction between normal and abnormal conditions.

From the graphs, the following observations can be made:

1. The average resistance values increase with the number of heaters under
wire breakage.

2. The average temperature values decrease with the number of heaters un-
der wire breakage (as wire breakage represents temperatures exceeding the
threshold, indicating a reduction in the quantity of data exceeding the thresh-
old).

4.3.2 Calculation and graphical output of distances

On the basis of the above data curve images, distance values for feature quan-
tities are calculated, combined with the average resistance values and average
temperature values, and output as a two-dimensional sample distribution graph.

For better observation, the two-dimensional plot separates the learning data
from the testing data.

As shown in Figure 4.10, it represents the two-dimensional plot of learning
data (average resistance value Rave and average temperature value Tave) under
normal conditions. In the graph, each black hollow point represents a data sample,
and the blue ”x” point denotes the centroid calculated by the Euclidean distance,
which is also the average point of the data.

As shown in Figure 4.11, it is a two-dimensional distribution map of detection
data (Average Resistance Value Rave and Average Temperature Value Tave) in
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(a) Normal (a)

(b) Abormal 1 (b)

(c) Abnormal 2 (c)

Figure 4.9: Coordinated comparison of average resistance values and average tem-
perature values
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Figure 4.10: Average resistance and average temperature (learning data)
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Figure 4.11: Average resistance and average temperature (validation data)

three scenarios. In the figure, black, red, and green hollow points represent the
distribution under normal, abnormal 1, and abnormal 2 conditions, respectively.
Similar to the image of learning data, the blue ”x” point is the centroid calculated
by Euclidean distance, which is also the average point of the data.

From Figures 4.10 and 4.11, the following observations can be made:

1. The average resistance increases with the number of broken heaters.

2. In the normal case, there are more instances exceeding the temperature
threshold, and there are also data points at higher temperatures.

3. No zero division due to current, and little variability in the features.

Next, calculate the Euclidean distance and Mahalanobis distance from the col-
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lected data. In this study, these data points are all in a two-dimensional plane, so
we only need to consider the two-dimensional calculation methods. The general
formulas for Euclidean distance and Mahalanobis distance in multi-dimensional
space have been discussed earlier (Equations 4.1 and 4.2). Here, we simplify them
to two-dimensional formulas:

DEuclidean =
√
X2 + Y 2 (4.6)

DMahalanobis =
1

2

[
X Y

] [1 r
r 1

]−1 [
X
Y

]
(4.7)

where, X and Y represent the horizontal and vertical coordinates of the data
sample points, respectively. The variable r in Mahalanobis distance denotes the
correlation coefficient.

Thus, the distribution of Euclidean distances for the samples is illustrated in
Figure 4.12. Here, black represents the normal condition, red represents the abnor-
mality 1 condition (1 heater wire breakage), and green represents the abnormality
2 condition (2 heater wire breakages). From the image, it can be observed that
within a certain data range (between 0 and 0.05), the Euclidean distances of the
samples exhibit a concentrated block, indicating a significant clustering of dis-
tances in this range. However, it is evident that there is a problem as there is
no clear distinction or boundary line among the Euclidean distances of the three
conditions. This lack of clear separation makes it challenging to use machine
learning for wire breakage diagnosis. This is because there are a considerable
number of outliers among the samples. Once there are many outliers, the calcula-
tion accuracy of the Euclidean distance rapidly decreases, resulting in an irregular
and undistinguished distribution of distance data. Therefore, using the Euclidean
distance is not suitable for this study.

Similarly, calculating the Mahalanobis distance results in the sample distribu-
tion plot shown in Figure 4.13.

The classification of the sample points in black, red, and green corresponds
to the performance of the Mahalanobis distance, where black represents normal,
red represents anomaly 1, and green represents anomaly 2. It can be observed
that in the calculated Mahalanobis distance, normal data (black) is concentrated
between 0 and 5. Due to the larger magnitude, the Mahalanobis distance distribu-
tion of normal data samples is shown in an enlarged view within the dashed box.
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Figure 4.12: Euclidean distance
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Figure 4.13: Mahalanobis distance
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Anomaly 1 data (red) is mainly distributed around 3× 105, and anomaly 2 data
(green) is primarily distributed between 14× 105 and 18× 105.

Here, it can be observed that using Mahalanobis distance, with an appropriate
threshold, not only perfectly distinguishes the three different wire breakage sce-
narios but also achieves a significantly large separation in distance magnitudes.
This not only addresses the issue of insufficient wire breakage data but also pro-
vides a better means to detect whether a heater is broken in practical industrial
production.

39



Chapter 5

Exploration of Factors Affecting
Mahalanobis Distance

5.1 Predicting Factors Influencing
Mahalanobis Distance

Mahalanobis distance is subject to the influence of various factors, especially
in multivariate scenarios, which can affect its effectiveness and interpretability.
The following factors are prone to impact Mahalanobis distance:

1. Covariance Matrix: The structure of the covariance matrix S signifi-
cantly influences Mahalanobis distance calculations. Changes or variations
in this matrix can have a substantial impact on distance measurements.

2. Outlier Handling: Sensitivity to outliers is a critical consideration for
Mahalanobis distance. Strategies for identifying and handling outliers are
crucial to prevent distorted distance measurements.

3. Correlation among features: Mahalanobis distance assumes correla-
tions between different features. Understanding the nature and strength of
these correlations is essential for accurate distance calculations.

4. Dimensionality of data: The effectiveness of Mahalanobis distance
may vary with the dimensionality of the dataset. High-dimensional spaces
present challenges, and the curse of dimensionality can impact reliability.

5. Sample size: The size of the dataset influences Mahalanobis distance per-
formance. Limited samples may require regularization techniques or al-
ternative distance metrics to address issues related to the inversion of the
covariance matrix.
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6. Normality assumption: Mahalanobis distance calculations assume mul-
tivariate normality. Deviations from this assumption can impact measure-
ment accuracy, necessitating adaptations if the data distribution is substan-
tially non-normal.

7. Threshold selection: Establishing an appropriate threshold for Maha-
lanobis distance is crucial for classification or anomaly detection. Optimal
threshold determination involves balancing false positives and false nega-
tives, often requiring iterative adjustments.

In Chapter 4, this paper has already introduced the covariance matrix, which
is a crucial factor for Mahalanobis distance. Outlier handling is a common step
in data analysis and statistics, aiming to identify and manage exceptional values
or outliers within a dataset. Outliers refer to data points that significantly differ
from other data points, and they can arise due to measurement errors, data entry
mistakes, system malfunctions, or genuinely rare events. In this study, the analysis
of data dimensions is not necessary since all data points in this research are two-
dimensional samples.

The normality assumption is a commonly used assumption in statistics, in-
dicating that the distribution of data follows a normal distribution (or Gaussian
distribution). Under this assumption, the data forms a bell-shaped curve, with the
mean, median, and mode being equal. The normality assumption is crucial for the
effectiveness of many statistical methods and inferences because some statistical
methods require the data to satisfy the assumption of normal distribution for effec-
tive parameter estimation and hypothesis testing. However, in practical applica-
tions, data may not always conform perfectly to a normal distribution. Therefore,
in research, the normality of data is typically tested using statistical methods or
alternative methods that are less sensitive to the assumption of normality.

In this study, a detailed exploration of threshold selection is not undertaken.
Instead, the investigation focuses on the impact of parameters and variables from
the simulation on the output results of the Mahalanobis distance.

5.2 The Impact of Time Duration on
Mahalanobis Distance

To elaborate on the impact of varying the Time Duration parameter, it is es-
sential to understand its significance in the context of the simulation framework.
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Time Duration serves as a critical variable that determines the temporal span over
which data is sampled during the simulation process. This temporal sampling is
particularly crucial in capturing the dynamic behavior of the system under inves-
tigation.

In the realm of this research, where the simulation involves the collection of
data points at a rate of 0.1 seconds, the Time Duration parameter plays a pivotal
role in shaping the granularity of the collected data. A nuanced exploration of
the Mahalanobis Distance is facilitated by manipulating the Time Duration set-
ting, allowing for a more comprehensive analysis of how variations in temporal
sampling influence the output of the Mahalanobis Distance metric. By defining
Time Duration as x seconds, the research aims to systematically investigate how
alterations in this temporal parameter impact the Mahalanobis Distance.

Now, it is planned to set the Time Duration parameter to 0.2 seconds, 0.5 sec-
onds, 1 second, 2 seconds, and 5 seconds, respectively, to systematically observe
the variations in the distribution of Mahalanobis Distance. Since previous experi-
ments have already investigated the case where Time Duration is set to 2 seconds,
there is no need to replicate the experiment for this specific duration.

As shown in Figure 5.1, the data distribution plot is obtained when the Time
Duration is set to 0.2 seconds. In the plot, black represents normal sample points,
red represents samples with anomaly 1, and green represents samples with anomaly
2. Due to the very short Time Duration, the data volume is significantly reduced
compared to the 2-second duration. Under this condition, successfully classify-
ing these data points demonstrates the reliability and stability of the heater wire
breakage diagnostic system.

Not only that, but it can be observed that the data distribution has also changed
compared to the previous experiment, being more concentrated in the range of
temperatures above 85. Next, the distribution of Mahalanobis distances is pre-
sented in Figure 5.2.

Next, change the time duration values to 0.5 seconds, 1 second, and 5 seconds,
respectively, and repeat the above experiment. Under different time duration con-
ditions, calculate the mean Mahalanobis distance for the normal, abnormal 1, and
abnormal 2 situations. Output the results as a line chart, as shown in Figure 5.3.
Here, the meanings of the black, red, and green data points are the same as be-
fore. The horizontal axis represents the set values of the time duration, while
the vertical axis represents the mean Mahalanobis distance. Each endpoint of a
different-colored line represents the mean Mahalanobis distance under the corre-
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Figure 5.1: Data distribution when time duration is 0.2 Seconds

Figure 5.2: Mahalanobis distance distribution for time duration of 0.2 seconds
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Figure 5.3: Variation in the mean value of Mahalanobis distance while time dura-
tion ranging

sponding color condition for the set time duration value.

It can be observed that the value of the time duration does indeed have an
impact on the Mahalanobis distance, but the regularity of the changes is not well-
reflected among these values.

5.3 The Impact of the Amplitude of
Disturbance on Mahalanobis Distance

Considering that when external disturbances are applied, the amplitude of the
step response (i.e., the intensity of the disturbance) also affects the collected data,
the next part of the study is to examine the influence of this amplitude on the final
Mahalanobis distance. Therefore, a controlled variable method should still be em-
ployed, by changing the amplitude values of the disturbance to 2, 5, 10, 20 while
keeping the time duration at 2 seconds, to observe the variation in Mahalanobis
distance.

The previous experiments have already explained the case with an amplitude
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Figure 5.4: Mahalanobis distance distribution for amplitude of disturbance of 10

of 20. Similarly, there will be no repetition of the experiment. Now, the Ma-
halanobis distance distribution obtained with an amplitude of 10 will be directly
presented, as shown in Figure 5.4.

From the illustrated content, it can be observed that in the case of anomaly 1,
the mean Mahalanobis distance is around 2.1× 105, while in the case of anomaly
2, the mean Mahalanobis distance is around 11.6× 105. Subsequently, by con-
tinuing to change the amplitude values to 5 and 2, obtaining the corresponding
Mahalanobis distance distributions and data, calculating the mean Mahalanobis
distance, and outputting the line chart for different amplitude conditions as shown
in Figure 5.5.

From the content in the figure, it can be observed that when the amplitude
of the step response disturbance changes, the mean Mahalanobis distance also
changes, showing a positive correlation trend. In other words, the mean Ma-
halanobis distance increases with the increase in the amplitude of the external
disturbance.
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Figure 5.5: Variation in the mean value of Mahalanobis distance while the ampli-
tude of disturbance ranging
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Chapter 6

Conclusion

This paper investigated the detection method for the occurrence of tempera-
ture anomalies and disconnection in the heating system of a temperature control
system. Several conclusions were drawn from the research. Firstly, in the temper-
ature control system, diagnosing the disconnection of the heater using traditional
machine learning methods is feasible. With a sufficient amount of data, accurate
results can be obtained. However, obtaining a substantial number of abnormal
data points is challenging in practical industrial production. Therefore, the use
of data clustering analysis methods can effectively address this issue. Upon com-
puting the Euclidean distance and Mahalanobis distance for the collected heater
data, it was found that the Euclidean distance does not differentiate well between
the three disconnection scenarios as effectively as the Mahalanobis distance. The
Mahalanobis distance, utilizing its eigenvector properties, distinctly classifies the
three situations: normal, abnormal 1 (one heater wire breakage), and abnormal 2
(two heaters wire breakages). Finally, in the exploration of factors affecting Ma-
halanobis distance, this study discovered that time duration does influence Maha-
lanobis distance, although the regularity of this influence is not prominent. Addi-
tionally, the amplitude of the step response disturbance also affects Mahalanobis
distance, and the mean Mahalanobis distance increases with the amplitude’s aug-
mentation.

In conclusion, this research provides valuable insights into the diagnosis of
heater disconnection in a temperature control system. The Mahalanobis distance,
particularly when accounting for factors like time duration and disturbance ampli-
tude, proves to be an effective and reliable method for classifying different discon-
nection scenarios in the absence of abundant abnormal data in practical industrial
settings.
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Q&A

Q: In page 11, how did you defined parameter of time delay τ and time constant t
(First-delay)?
A: The time delay τ was identified by the schematic of the system. From the
system, the relationship of resistance and temperature was shown. And based on
it, it could be found that how long it took to rise the temperature to a certain value.
So the time delay and base temperature could be calculated and defined.

Q: What is T and t?
A: In this research, t represents the base temperature, and T represents the real
time temperature. And there is a linear relationship between the two parameters.

Q: Were you the one who specified the t?
A: Yes. I specified the base temperature t. The t was specified to indicate a base
temperature so that the base resistance would be able to calculated. Based on it,
the real time temperature T could be calculated and collected.
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