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Abstract 

Lymph node targeting is a commonly used strategy in particulate vaccines, 

especially for Pickering emulsion. Extensive research for internal delivery mechanisms 

about Pickering emulsions, especially complex intercellular interactions of deformable 

Pickering emulsions, has been notably sparse, yet holds significant potential for 

enhancing vaccine efficacy.  

 

This research provides an in-depth analysis of Pickering emulsions utilized as 

vaccine adjuvants, focusing on their transport mechanisms within the body at the tissue 

level. The innovative approach taken in developing a deformable albumin-stabilized 

Pickering emulsion caters to both intracellular and intercellular lymph node (LN) 

transfer pathways. This dual-pathway strategy significantly boosts antigen delivery, 

enhancing LN activation and stimulating a strong cellular immune response. Despite 

their promise, the complexities of Pickering emulsion transport, particularly the 

nuanced intercellular interactions, have been minimally addressed in scientific 

literature. 

 

The study employs computational simulations to dissect the transport process into 

distinct sequential phases: muscular injection, passage through skeletal muscle tissue, 

lymphatic capillary navigation, and eventual LN accumulation. The role of antigen-

presenting cells like dendritic cells is emphasized, alongside the mechanical behavior 

of lymphatic endothelial cell flaps which facilitates the transport of flexible particles. 

A sophisticated mesoscale model based on the dissipative particle dynamics (DPD) 

simulation method is enhanced, leading to a deeper understanding of scaling factors 

and cellular diversity in drug delivery systems. 
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The integration of the DistMesh algorithm represents an innovative step in 

depicting the cytoskeleton of various cell shapes, confirmed by the mechanical response 

of red blood cells during stretching tests. This aligns well with experimental findings 

and supports further investigation into cellular mechanics. 

 

Additionally, the study meticulously investigates the factors influencing the 

transport efficiency of Pickering emulsions in skeletal muscle tissue. It finds that 

variables such as the conservative force parameter in the DPD method, local tissue 

environmental conditions, viscosity, temperature, and initial velocity all contribute to 

transport efficiency, with the orientation of initial velocity vectors towards the axial 

direction of cells being particularly beneficial. 

 

This work not only sheds light on the behavior of flexible droplets in cellular 

environments but also paves the way for future exploration into cellular mechanical 

properties and the organization of biological activities at the cellular level. The insights 

gained are pivotal for the ongoing development and optimization of biomedical 

materials, particularly for vaccine delivery. 
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Vaccine targeting lymph node 

At the beginning of 2020, the COVID-19 virus swept across the world, bringing 

significant losses to people [1,2]. Researchers promptly commenced studies on vaccine 

development and preparation. Traditional vaccines generally use attenuated or 

inactivated viruses. After being introduced into the human body, these vaccines elicit 

an immune response. However, these methods have risks, including incomplete 

inactivation or even restoration of viral virulence. With technological development and 

scientific progress, substantial achievements have been made in the research of 

recombinant protein vaccines, split vaccines, peptide vaccines, and so on. 

 

There are some reasons that vaccines target lymph nodes: Firstly, lymph nodes are 

immunological hubs, which are central to initiating adaptive immune responses, where 

lymphocytes such as T and B cells become activated; Secondly, professional antigen-

presenting cells (APCs) within lymph nodes productively capture and expose vaccine 

antigen to lymphocytes to achieve effective antigen presentation; Thirdly, targeting 

lymph nodes helps in the generation of long-lived memory cells, key to sustained 

immunity due to the mechanism of memory cell induction; Fourth, concentrating 

vaccines in lymph nodes can intensify the immune system's recognition and response 

to the vaccine components. Thus, targeting lymph nodes aims to enhance vaccine 

efficacy by harnessing the immunological functions concentrated within them. 

Consequently, vaccines targeting the LNs hold significant promise for immediate 

engagement with antigen-presenting cells (APCs), which induces strong antibody 

production, T-cell activation, and anti-cancer outcomes. [3–5] 
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To facilitate drug delivery to the lymph nodes, there are various inoculation 

methods available: First, subcutaneous and intradermal injections can directly target the 

lymphatic system, suitable for macromolecules and nano-preparations, however, it may 

require more expertise to inject accurately and may cause discomfort at the injection 

site; Secondly, the intravenous injection can rapidly enter the blood circulation and is 

very effective for drugs requiring systemic action, however, the direct targeting ability 

to lymph nodes is weak, and the drug may be absorbed or degraded by other parts of 

the body before reaching the target; Thirdly, intra-lymph node injection which is 

directly acting on lymph nodes, can reduce systemic exposure to drugs and increase 

local concentration, however, the operation is technically demanding, may increase the 

risk of infection, and may be more painful for the patient. [6] 

 

1.1.2 Emulsion 

In an oil-water mixed system, due to the immiscibility of oil and water, the Gibbs 

energy of the formed dispersion system is high, rendering the system unstable. To 

obtain a stable system, emulsifiers, typically surfactants, are often added to the oil-

water mixture. The surfactant's tail chain penetrates the oil, with the head group 

anchoring at the oil-water boundary, providing stability to the system referred to as an 

emulsion. There are two primary emulsion categories: oil-in-water (O/W), where oil 

droplets are scattered within a water matrix, and water-in-oil (W/O), where water 

droplets are embedded in an oil environment. In O/W emulsions, oil forms the dispersed 

phase against a water backdrop, the continuous phase. Conversely, W/O emulsions 

have water droplets interspersed within a continuous oil medium. Both emulsion types 

consist of one phase dispersed as droplets within another, termed emulsion droplets. 

[7,8] 

 

Emulsions have numerous diverse applications. For example, in oil extraction, 

microemulsions with particle sizes below 100 nm are commonly used as oil and gas 
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production aids for chemical flooding and fracturing fluid displacement. In the 

petrochemical industry, it is difficult to separate mixtures of hydrocarbons with similar 

boiling points using conventional methods. However, by placing the mixture in a 

surfactant-containing aqueous solution, a stable O/W emulsion forms, encapsulating 

the components to be separated and rising into the organic solvent. Through selective 

permeation, separation can be achieved. Additionally, in wastewater treatment, the 

liquid film of emulsions is often used for extracting metal ions from mixtures, a method 

far more efficient than traditional extraction techniques. This liquid membrane 

technology allows for the effective separation of impurities, thereby purifying water. In 

the daily chemical industry, common products like creams, hair milk, gels, and 

conditioners fall under the category of emulsions. In the biopharmaceutical industry, 

Dieng and others have researched the use of particle-stabilized nanoemulsions for drug 

delivery. Results show that particle-stabilized emulsions can significantly improve drug 

resistance to stomach pH and achieve controlled drug release. This technology applies 

to the oral administration of insoluble drugs. Furthermore, emulsions are also applied 

in vaccines, which will be elaborated on in the following discussion regarding their use 

as adjuvants in vaccines.[9] 

 

1.1.2.1 Pickering emulsion 

Pickering emulsions, a century-old discovery, have witnessed a resurgence in 

interest in recent decades. Their unique stabilization mechanism, facilitated through the 

action of solid particulates at the junction between oil and water, sets them apart from 

traditional emulsions. By leveraging solid particles as stabilizers instead of 

conventional surfactants, Pickering emulsions exhibit enhanced stability against 

coalescence and present a myriad of advantageous properties. When designed with 

biocompatible solid particles, these emulsions become particularly promising for in 

vivo applications, leading to widespread adoption in diverse sectors ranging from 

biomedicine to cosmetics [10].  
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In the comparative analysis of Pickering emulsions and traditional surfactant-

stabilized emulsions, several key advantages of Pickering emulsions have been 

identified [10–12]: Stability: Research indicates that Pickering emulsions demonstrate 

superior resistance to droplet flocculation and coalescence, thereby ensuring enhanced 

long-term stability. Biocompatibility: Studies suggest that when employing solid 

particles deemed safe for in vivo use, Pickering emulsions exhibit increased 

biocompatibility, a factor critical for applications in drug delivery and biomedical fields, 

which in turn reduces the potential for adverse effects and toxicity. Environmental 

Impact: Literature supports the notion that Pickering emulsions, due to their reduced 

reliance on chemical surfactants, are more environmentally benign compared to their 

traditional counterparts. Economic Viability: Analyses reveal that the production of 

Pickering emulsions can be more cost-effective, primarily attributed to lower 

production costs and minimized dependency on chemical surfactants. Customizability: 

Empirical evidence suggests that the selection of diverse solid particles during the 

creation of Pickering emulsions allows for tailoring of their physical and chemical 

attributes, catering to specific requirements of varied applications. These findings 

elucidate the substantial potential of Pickering emulsions, particularly due to their 

unique stabilization mechanism and the ability to tailor their properties, rendering them 

highly suitable for applications necessitating heightened stability and biocompatibility. 

 

Pickering emulsions have multifaceted applications in the biomedicine [13], 

attributed to their intrinsic high stability, low toxicity, and exceptional biocompatibility. 

Notably, PEs are being actively researched for their utility in antitumor treatments, 

providing a novel approach to oncological therapies. They are also explored as carriers 

for antiviral drugs, offering new strategies to combat viral infections. In the domain of 

biosensing, Pickering emulsions serve as platforms for enhanced signal detection and 

amplification, while their role in biocatalysts involves safeguarding enzymes for 



 5 

improved biochemical reactions. Additionally, their contribution to wound healing 

signifies their potential in tissue repair and skin regeneration. The versatility of 

Pickering emulsions extends to various other applications, including skincare, where 

their protective qualities are harnessed for therapeutic benefits. 

 

 

Figure 1 The Illustration of the Difference of Pickering Emulsion based on Particle 

and Classical Emulsion Based on Surfactants 

 

1.1.3 Pickering emulsion for the enhanced drug delivery systems 

Due to distinctive characteristics, Pickering emulsions have become notably 

prominent in drug delivery applications. The solid particles that stabilize Pickering 

emulsions provide a robust barrier to coalescence, resulting in enhanced stability. This 

is crucial for drug delivery systems, where stability of the carrier notably affects 

efficacy and release profile of the encapsulated drug. Solid particulates within Pickering 

emulsions may be tailored to regulate drug dispensing velocity. By manipulating the 

particle size, surface chemistry, and porosity, it is possible to achieve sustained, delayed, 

or targeted drug release. This is especially beneficial for drugs that require controlled 

release to maintain therapeutic concentrations over extended periods. Pickering 
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emulsions can be designed for targeted drug delivery. By modifying the surface 

properties of the stabilizing particles, it is possible to direct the emulsion to specific 

tissues or cells. This targeted approach can increase the therapeutic efficacy and reduce 

side effects. Xia and colleagues harnessed the immunogenic properties of Pickering 

emulsions for use as vaccine adjuvant and delivery strategy. This highlighted the 

distinct softness and flexibility of Pickering emulsion in cellular interactions, showing 

its vast promise for biomedical uses [14]. Xia’s research group summarizes some recent 

progress of Pickering emulsions and their applications for drug delivery systems and 

proposes a more comprehensive understanding of the tuning aggregating particles and 

the underlying mechanism to improve the efficiency of drug delivery systems [15]. The 

aggregating particle properties dictating the formation of Pickering emulsion include 

the following factors: size, shape, wettability, and charge. Furthermore, this review 

discusses the structure-effect relationship, as well as aspects related to strategic loading, 

efficient delivery, and controlled release. Among them, to achieve efficient drug 

delivery, some different multi-scale barriers need to be tacked out from the tissue level 

which is a distribution of Pickering emulsion inside the organ or tissue or intercellular 

substance to the target tissue, the cellular level which is related to the cellular uptake 

process to obtain the high cellular concentrations, and the subcellular level which is 

related to the cytosolic delivery process to achieve the endosomal degradation of drugs. 

 

Xia's team has crafted a flexible albumin-based Pickering emulsion. Upon injection 

into muscle tissue, this emulsion navigates through cellular junctions and endothelial 

spaces, enabling a direct conduit to lymph nodes via an intercellular route. Its 

substantial size also permits retention at the site of injection, optimizing antigen uptake 

and APC activation, alongside targeted lymph node vaccine delivery through an 

intracellular route. Unlike solid particles that solely trigger an immune response 

intracellularly, this dual lymph node targeting approach markedly increases antigen 

concentration and lymph node activation, thereby potentizing cellular immunity and 
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improving survival in mice with tumors. Their research, utilizing indicators to label 

antigens, the cytoskeleton, and lymphatic endothelial cells, demonstrates that particle-

stabilized emulsions indeed accumulate within lymph nodes (LNs). Furthermore, by 

marking Resident Dendritic Cells (DCs) and Migratory DCs within LNs, the presence 

of an intercellular pathway for drug delivery is confirmed. However, the detailed 

mechanism of the intercellular pathway for drug delivery via Pickering emulsions 

requires further investigation. 

 

 

Figure 2 The scheme of Different Pathways of Drug Delivery Based on Pickering 

Emulsion from Tissue Level.  

 

Figure 2 elucidates the delivery process of Pickering emulsion through intracellular 

and intercellular pathways at the tissue level. The fundamental difference between the 

two pathways lies in the site of binding between Pickering and immune cells specialized 

in antigen presentation, like dendritic cells, one kind of APCs. For the intracellular 

pathway, larger-sized particulate vaccines (greater than 200nm) typically remain close 

to the site of administration, where potent cytokines and chemokines, along with co-

stimulatory molecules, draw in and stimulate APCs, including dendritic cells. 
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Subsequently, this stimulates the uptake of antigens by APCs, activation, and delivery 

to the lymph nodes, thereby enriching antigens within the lymph nodes. For the 

intercellular pathway, particles maliciously move through the interstitial flow within 

the body tissue, cross the intercellular gaps, and passively drain into the lymphatic 

vessels within the muscle tissue, accumulating in the lymph nodes and further activating 

APCs residing in the lymph nodes. APCs present antigens to the surrounding immune 

cells, including T cells and B cells, thus generating an adaptive immune response early 

in the vaccination process. The main difference between the two pathways is where the 

vaccine particles meet the meet immune cells that show antigens, like dendritic cells. 

In the intracellular pathway, big vaccine particles stay near where they are injected. 

Here, strong immune signals and other molecules attract and activate these immune 

cells. These cells then take up antigens and carry them to the lymph nodes, making the 

lymph nodes full of antigens. In the intercellular pathway, particles move through the 

spaces between cells, enter lymphatic vessels by themselves, and end up in the lymph 

nodes. There, they activate immune cells that live in the lymph nodes.  

 

Through the analysis of histological cell morphology [14,16–24], the transport 

process of vaccines employing Pickering emulsion droplets involves a series of distinct 

stages for intercellular pathway. Initially, in Stage 1, the droplets are introduced into 

the body via intramuscular injection. Following this, in Stage 2, they navigate through 

the intercellular matrix space between skeletal muscle cells. Subsequently, in Stage 3, 

the droplets enter the lymphatic capillaries, facilitated by the gaps in lymphatic 

endothelial cells (LECs). This leads to Stage 4, where the droplets flow through 

lymphatic vessels to reach the lymph nodes. Finally, in Stage 5, the antigen contained 

within the Pickering emulsion droplets activates the immune response at the lymph 

nodes, culminating in the vaccine delivery process. We schematically illustrate the 

lymph node transfer process of soft droplets in the following Figure 3. This process is 

still complicated, and we can convert different stages into similar solved problems. 
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Stage 2 is like the particular colloid diffusion movement in confined spaces. Stage 3 is 

to try to figure out how changes in tissue pressure regulate the opening and closing of 

lymphatic capillary endothelial cell microvalves. Stage 4 is similar to blood flow in 

blood vessels. In summary, analyzing the drug delivery process from the perspective of 

cellular and tissue levels represents a mesoscale challenge. The SEM images show the 

physiological relationship and structure of related tissues and cells. The Figure 4 

illustrates the relationship. LY stands for the lymphatic capillary, SKM stands for 

several muscle layers, and V stands for the venular microvessels.  

 

 

Figure 3 Schematic Illustration on the Lymph Node Transfer of Pickering Droplets 
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Figure 4 Scanning electron micrographs of lymphatic capillary as viewed in inclined 

sections through the muscle tissues [25] 

 

1.2 Analysis of the scale of research problems from biology 

Given that the research scope of this topic is centered on the cellular and tissue 

levels in biological organisms, it is imperative to systematically elucidate the 

relationships between the constituent units at different hierarchical levels. Furthermore, 

for the specific research subject, it is crucial to clearly outline the physiological 

characteristics of the relevant cells and tissues. Doing so will establish a defined 

physical context for constructing models and simplifying problems, thereby facilitating 

subsequent quantitative analysis. 

 

1.2.1 Hierarchical levels of a biological system 

An organism, as a whole, is characterized by its highly organized and structured 

hierarchy, which can be deconstructed either in a top-down direction from large too 

small or in a bottom-up direction from small-to-large as shown in Figure 5. From a 

bottom-up perspective, the hierarchical structure of an organism begins at the most 

fundamental level with atoms, such as hydrogen, oxygen, and carbon, which are the 

smallest units of matter. These atoms combine to form a wide array of biomolecules, 

which vary greatly in size and structure and perform diverse functions. The four major 

types of macromolecules include nucleic acids, proteins, carbohydrates, and lipids and 

smaller molecules include water, ions, metabolites, and hormones. At the subcellular 
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level, which is shown in Figure 6, molecules aggregate to form more complex structures 

like organelles and the cytoskeleton. Organelles (such as mitochondria, endoplasmic 

reticulum, and Golgi apparatus) perform specific biological functions, including energy 

transformation, protein synthesis, and secretion. The cytoskeleton provides structural 

support and shape to the cell and is involved in cell movement and division. From the 

perspective of cellular level, the smallest fundamental unit of structure and function in 

a living organism, various molecules and subcellular structures within the cell work 

together to enable the cell to perform a wide range of functions, including metabolism, 

proliferation, and response to external environmental changes. Tissues represent the 

next level in this hierarchy, linking cellular structure to organ systems. Tissues are 

groups of cells with common structures and functions and the four main tissue types in 

humans include muscular, epithelial, nervous, and connective. Further up the hierarchy, 

organs form from the assembly of different tissue types. Each organ, such as the brain 

in the nervous system or the stomach in the digestive system, performs specific 

functions and works collaboratively within organ systems. At the highest level of 

organization, the organism is a complex integration of various organ systems, including 

the respiratory, digestive, nervous, cardiovascular, and muscular systems. These 

systems work in unison to maintain the organism's overall function and homeostasis, 

highlighting the intricate and interconnected nature of biological structures from the 

smallest atomic level to the complete organism.[26,27] 
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Figure 5 The illustration of the hierarchy structure for human [26] 
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Figure 6 A generalized diagram of an animal cell [27] 

 

1.2.2 Physiological characteristics of related tissues and cells 

Given the objective of research to understand underlying mechanisms of drug 

delivery methods at the tissue level and considering the lack of previous systematic 

research in this area, it is essential to have a clear understanding and summary of the 

cellular morphology and mechanical properties of the basic units composing tissues. 

Therefore, this section provides a systematic overview of the primary tissues and 

morphologies involved in the drug delivery process, and through this review, clarifies 

the tissue environment related to the delivery pathway for Pickering emulsions. The 

procedure of intramuscular injection primarily engages the skeletal muscle and 

lymphatic structures belonging to the immune system, encompassing lymph capillaries, 

lymphatic vessels, and lymph nodes. 
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1.2.2.1 Skeletal muscular tissue 

Muscle tissue contains a rich array of immune cells and capillaries, facilitating the 

absorption and distribution of vaccine components. When injected into muscle, these 

components enter the circulatory system more effectively, triggering an immune 

response. Additionally, the arm's proximity to axillary lymph nodes allows vaccine 

components to enter the lymphatic system and activate a systemic immune response 

through the activity of immune cells. 

 

Muscle cells, also known as muscle fibers, are visible within muscle tissue and the 

illustration of muscular tissue is shown in Figure 7. These cells are elongated, tubular 

in shape, and develop from muscle stem cells (myoblasts). After muscle formation, 

muscle cells differentiate into various types, including skeletal, smooth, and cardiac 

muscles. Skeletal muscle is responsible for body movements; cardiac muscle primarily 

facilitates heartbeats and blood circulation. Smooth muscle is associated with blood 

vessel walls, the digestive tract, and the respiratory system. [18,21] 
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Figure 7 A diagram of the skeletal muscle tissues [28] 

 

Muscle tissue (skeletal muscle) is organized from the macroscopic to the 

microscopic level as follows [18,28–30]: 

Muscle: This is the most macroscopic level, where muscle comprises numerous 

muscle cells (or fibers). Muscles are responsible for body movement and posture 

maintenance. The length and diameter of muscles vary based on location and function 
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interior the body. For example, thigh muscles are larger in length and diameter than 

arm muscles. 

Fascicle: A fascicle refers to a bundle of fibers or cells in biological tissues. This 

term is commonly used to describe the structure of muscle tissue. 

Muscle Fiber: Muscle fibers are essentially muscle cells and form the basic unit of 

muscles. Each muscle fiber consists of many myofibrils. The length of muscle fibers 

typically ranges from a few millimeters to several centimeters (2-3 cm), with a diameter 

of about 10 to 100 micrometers. 

Myofibril: Myofibrils are structures within muscle fibers, composed of numerous 

myofilaments. They are the fundamental units of muscle contraction. Myofibrils 

usually have the same length as muscle fibers, as they are components of the fibers. 

The diameter of myofibrils is about 1 micrometer. 

Myofilament: Myofilaments are protein filaments that make up myofibrils. There 

are two primary types of myofilaments: actin (thin filaments) and myosin (thick 

filaments). Muscle contractions are produced by the sliding of these filaments. 

Myofilaments are about 1 to 2 micrometers in length, with a diameter of a few 

nanometers. 

 

1.2.2.2 Immune system 

The lymphatic network comprises vessels, nodes, and related organs. Interstitial 

fluid is absorbed by small capillary lymphatics [20], which coalesce into larger 

precollectors, collectors, trunks, and ducts, as depicted in Figure 7. This fluid, now 

termed lymph, is propelled through rhythmic contractions of vessel walls, equipped 

with smooth muscle, while one-way valves inhibit reverse flow. Lymph progresses 

from capillary lymphatics, through collectors, to lymph nodes. 
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Figure 8 Illustration of structures of lymphatic capillaries and lymphatic vessels[24] 

 

Capillary lymphatics have diameters ranging from 10 to 60 micrometers, with wall 

thicknesses between 50 to 100 nanometers, and terminate blindly. Openings in the 

capillary endothelium, functioning as one-way valves, permit lymph entry. These 

valves open when interstitial pressure rises, allowing fluid into the lymphatics, and 

close when internal pressure mounts. 

 

Lymphatic Endothelial Cells (LECs) have special intercellular connections known 

as "buttons," including both adherent junctions and tight junctions [16]. Capillary 

lymphatic endothelial cells measure 49 micrometers in length and 18 micrometers in 

width. The diameter of anchoring filaments (buttons) is 6-10 nm, and they are 15-30 

nm wide. Buttons are irregular junctions between the overlapping, finger-like 

protrusions of adjacent endothelial cells in initial lymphatics, laden with proteins from 

adherents and tight junctions, creating anchor points for neighboring LECs aligned with 

the cell margin. The flap tips between buttons have a loose overlap, facilitating free 

entry into the lymphatics, propelled by the pressure gradient from interstitial space to 

lumen. Figure 9 depicts the anatomy of lymphatic capillaries, with sections C-E 

showcasing the endothelial openings of these capillaries. 
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Figure 9 Scanning electron micrographs of the inner of the initial lymphatics[25] 

 

Dendritic cells are regarded as the most effective professional antigen-presenting 

cells, pivotal in orchestrating immune defense against pathogens and maintaining self-

tolerance and non-reactivity to benign environmental antigens [31]. DCs capture 

pathogens or their parts, process these antigens, and present them in a form that is 

recognizable to T-cells, initiating a specific immune response in the lymph node.  

 

1.3 Innovation of research 

1.3.1 Current research challenges 

Comprehensive studies elucidating the intracorporeal delivery mechanisms of 

Pickering emulsions, especially the intricate intercellular interactions of deformable 

Pickering emulsions, remain significantly scarce and have historically received 

minimal attention. Yet, they play a crucial role in vaccine efficacy. 
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The current understanding of the drug delivery process, particularly quantitative 

analysis and simulated models is still quite limited. Most knowledge of this process, 

especially for soft and deformable droplets like Pickering emulsions, remains vague. 

 

At present, the depth of understanding and simulation of internal kinematics at the 

tissue level within the human body is profoundly limited, and there is a significant lack 

of effective models. 

 

1.3.2 Targets of research 

Develop a model system suitable for representing the coexistence of Pickering 

emulsions and cells, which can adequately characterize their transport processes and 

kinetic behaviors; analyze the drug delivery process within skeletal muscle tissue, 

employing simulation methods to quantitatively analyze relevant processes, and 

explore the impact of various factors on the transport process, thereby elucidating the 

underlying mechanisms of dual lymph node transfer strategy because of the 

deformability of Pickering emulsion, and providing guidance for the design of 

Pickering emulsions. 

 

1.3.3 Current state of research 

Despite the potential of deformable Pickering emulsions in vaccine delivery, both 

experimental and simulated studies on this topic remain sparse. In terms of experiments, 

with the size of the cell gap ranging from 20 to 100nm, it is difficult for solid particles 

to pass through the cellular gaps and concentrate within the lymph nodes [32]. As an 

alternative strategy, Song et al. explored the deformability of albumin-stabilized 

Pickering emulsion [4]. Though, the size of the emulsion droplet (~330 nm) is larger 

than 3 times the intercellular gap, the cell-mimic deformability granted the droplets to 

attach and squeeze themselves between the cell gaps under the interstitial flow and 
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adjust droplet size to cross the endothelial cell gap. This allows the deformable 

Pickering emulsion to achieve high lymph node retention of the vaccines and induces 

increased immune activations. Therefore, the quantitative analysis and mathematic 

models are expected to elucidate the process details and offer implications to optimize 

novel Pickering emulsions with higher lymph node transport efficiency and 

immunogenicity.  

 

In terms of simulation, no direct relevant research has been found yet, now. Recent 

advances, such as the simulation work [33] and other related work [34–36]have 

showcased the potential of multiscale modeling and dissipative particle dynamics (DPD) 

in understanding the behavior of biological systems and inspire the simulation of this 

research. The CRUNCH group developed a red blood cell model that has deformable 

viscoelastic membranes that show rheological response and hydrodynamics behavior 

based on the dissipative particle dynamics simulation method. Later, this model shows 

some potential in other related areas such as cellular movement in confined spaces and 

the process of nanoparticle endocytosis by the cell membrane. 

1 
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Chapter 2 Mathematical framework of 

dissipative particle dynamics simulation for 

the cellular tissues 

Natural systems can be characterized at different scales, including microscale, 

mesoscale, and macroscale [37]. Microscale involves dimensions and timescales at the 

nanometer and nanosecond levels, governed by the laws of quantum or classical 

mechanics [38,39]. The macroscale refers to phenomena that can be directly observed 

and quantified, characterized by continuous partial differential equations like the 

Navier-Stokes equations in fluid mechanics [40]. Mesoscale, situated between the 

micro and macro realms, typically focuses on the order of micrometers and 

microseconds, involving systems like colloidal suspensions, polymer solutions, and 

biological membranes, which are categorized as complex fluids. 

 

Complex fluid systems are crucial in industrial technology, especially within 

biological and biomedical sciences, for applications like lab-on-a-chip devices, 

separators, and drug delivery mechanisms. In contemporary science, computer 

simulations, particularly Molecular Dynamics, are essential for the mathematical 

modeling of these natural systems. However, due to computational cost limitations, MD 

is primarily applicable to microscale simulations. 

 

To surmount the challenges of using macroscale PDEs for mesoscopic phenomena, 

methods like Computational Fluid Dynamics (CFD) [41] have emerged. Though adept 

for large-scale events, these techniques cannot fully represent mesoscale fluid behavior, 

missing out on the microstructure and randomness. Enter mesoscopic simulations like 

Dissipative Particle Dynamics (DPD), which marry MD's Lagrangian aspects with 

Lattice-Gas Automata's scale considerations [42]. DPD outpaces MD and surpasses 
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LGA in versatility, having matured into a robust framework with refined models and 

algorithms, thus enhancing complex fluid simulations. DPD's theoretical underpinnings 

have been thoroughly investigated through both macro-to-meso and micro-to-meso 

lenses. 

2.1 Dissipative particle dynamics  

Dissipative Particle Dynamics (DPD) is a simplified molecular dynamics approach 

where each particle symbolizes a group of molecules, interacting through conservative, 

dissipative, and random forces [43,44]. This model adheres to the coarse-graining 

process previously outlined, with the movement of each particle governed by Newton's 

second law, thereby establishing the particles' equations of motion: 

 𝑑𝐫𝑖

𝑑𝑡
= 𝐯𝑖 

(1) 

 
𝑚𝑖

𝑑𝐯𝑖

𝑑𝑡
= ∑(𝐟𝑖𝑖′

DPD + 𝐟𝑒

𝑖≠𝑖′

) (2) 

𝑚𝑖 is the mass of particle 𝑖, which is generally set to 1 to simplify the calculation. 

𝐟𝑒 is the additional extra force that is exerted on the particle. The force 𝐟𝑖𝑖′
DPD  is divided 

into three parts: conservative force 𝐟𝑖𝑖′
𝐶 ，dissipative force 𝐟𝑖𝑖′

𝐷  and random force 𝐟𝑖𝑖′
𝑅 . 

The conservative force is 

 𝐟𝑖𝑖′
𝐶 = 𝑎𝑖𝑖′𝑤𝐶(𝑟𝑖𝑖′) (3) 

The dissipative force is 

 𝐟𝑖𝑖′
𝐷 = ∑ −𝛾𝑖𝑖′𝑤𝐷(𝑟𝑖𝑖′ )(𝐞𝑖𝑖′ ∙ 𝐯𝑖𝑖′ )𝐞𝑖𝑖′

𝑖≠𝑖′

 (4) 

The random force is 

 
𝐟𝑖𝑖′

𝑅 = ∑ 𝜎𝑖𝑖′𝑤𝑅(𝑟𝑖𝑖′)𝜃𝑖𝑖′𝐞𝑖𝑖′

𝑖≠𝑖′

= ∑ 𝜎𝑖𝑖′𝑤𝑅(𝑟𝑖𝑖′)𝜁𝑖𝑖′∆𝑡−
1
2𝐞𝑖𝑖′

𝑖≠𝑖′

 (5) 

 

The conservative force acts as a soft potential along the center-to-center distance 

between particles, representing the chemical properties of the DPD system. It is derived 

from pairwise interaction potentials between neighboring particles, where 𝑎𝑖𝑖′  is the 
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repulsive force parameter that determines the strength of their collisions. 𝑤𝐶(𝑟𝑖𝑖′)is the 

conservative force weight function, which is generally the standard weight function 

𝑤𝐶(𝑟𝑖𝑖′) = 1 −
𝑟

𝑖𝑖′

𝑟𝑐
. Where，𝑟𝑖𝑖′  is the interparticle distance, 𝐫𝑖𝑖′ = 𝐫𝑖 − 𝐫𝑖′，𝑟𝑖𝑖′ =

|𝐫𝑖𝑖′| and 𝑟𝑐 is the truncation radius, which indicates the effective range of force exerted 

between particles and is usually considered as the unit length, i.e.,𝑟𝑐 = 1. 𝐞𝑖𝑖′ denotes 

the unit vector between particle 𝑖 and particle 𝑗, taken as 𝐞𝑖𝑖′ =
𝐫

𝑖𝑖′

𝑟𝑖𝑖′
, with the direction 

from 𝑖′ to 𝑖. The conservative force is fluid/system dependent as a whole. 

 

Essentially, the dissipative force is a kind of frictional force and represents viscous 

resistance with the fluid, which could account for energy loss. 𝛾𝑖𝑖′  is intensity 

controlling parameter and 𝑤𝐷(𝑟𝑖𝑖′) = 1 −
𝑟

𝑖𝑖′

𝑟𝑐
, is weight function of dissipative force. 

The negative symbol represents the direction of force exerting on a pair of particles is 

opposite from their relative velocity. Furthermore, 𝐟𝑖𝑖′
𝐷  is proportional to the 𝐯𝑖𝑖′ , which 

illustrate that the more value of 𝐯𝑖𝑖′ , the more viscous resistance between a pair of 

particles. 

 

The random force weight function 𝑤𝑅(𝑟𝑖𝑖′)  is to be chosen as the formula 

𝑤𝑅(𝑟𝑖𝑖′) = (1 −
𝑟

𝑖𝑖′

𝑟𝑐
)

𝑚𝑅

. In the standard DPD method, the parameter 𝑚𝑅 was initially 

fixed at 1. However, varying the exponent values allows for the adjustment of fluid 

viscosity, consequently leading to an increase in the Schmidt number [45,46]. The 

random force is a stochastic part of interaction between dissipative particles and makes 

up for lost degrees of freedom eliminated after the coarse-graining in order to prevent 

the tendency that the system is cooling down with only dissipative force interaction. 

 

According to the fluctuation-dissipation theorem [47], temperature regulation is 

realized by striking a balance between random and dissipative force and we can obtain 
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the relationship of the dissipative force weight function 𝑤𝐷(𝑟𝑖𝑖′)  and 𝑤𝑅(𝑟𝑖𝑖′) , 

dissipative forces coefficient 𝛾𝑖𝑖′  and random forces coefficient 𝜎𝑖𝑖′:  

 𝑤𝐷(𝑟) = [𝑤𝑅(𝑟𝑖𝑖′)]2, 𝜎𝑖𝑖′
2 = 2𝛾𝑖𝑖′𝑘𝐵𝑇 (6) 

where 𝑇 is the temperature and 𝑘𝐵  is the Boltzmann constant. By the way, the 

dissipative and random forces constitute the thermostat of DPD. 

 

More than the cutoff 𝑟𝑐 , the interparticle force of particles vanishes to zero. 

According to the view of fluid particle model [48] and single dissipative-particle-

dynamics particles model [35,49,50], we could consider a DPD particle to represent 

one real particle in the simulation. 

 

In summary, by employing reduction and coarse graining of discrete atoms in the 

Molecular Dynamics, the representation of fundamental particles in the DPD method 

is formed. Interatomic forces in MD are reduced to conservative forces in DPD. 

Furthermore, dissipative forces and random forces are introduced to characterize 

viscosity dissipation behavior and the continuous irregular random motion that 

becomes significant at the mesoscale relative to the macroscale. Figure 10 describe the 

coarse-grained dissipative particle’s representation and effect of different basic force. 

 

The DPD method has been verified by simulating Lennard-Jones fluid with 

molecular dynamics method and Navier-Stokes equation. The simulation result shows 

good aggrement with equilibrium simulations, Couette flow simulations, Poiseuille 

flow simulations by different methods. [51] 
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Figure 10 The illustration of representation of basic particle for dissipative particle 

dynamics method and effects of different forces 

 

2.2 Mesoscale viscoelastic membrane model 

2.2.1 Introduction of MVMM 

The mesoscale viscoelastic membrane model has evolved from the development of 

mesoscale models for red blood cells, whose membrane consists of a lipid bilayer 

supported by an internal cytoskeleton. The cytoskeleton, composed of a compact 

network of spectrins and actins, provides structural stability. The properties including 

viscosity, elasticity, and bending stiffness, are concluded from the physical properties 

of these biological components. The development process for this model is summarized 

as follows: First, a spring-based crosslinked network membrane model was initially 

introduced and subsequently refined as a discrete representation of hemoglobin at the 

protein level [52,53]. Secondly, building on this foundation, a systematic coarse-

graining method was crafted, considerably reducing the number about the number of 

independent variables [54]; Thirdly, the simplified model is further optimized to deliver 

accurate mechanical responses [55]; Fourth, this spring-based crosslinked network 
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model has more applications in some similar fields, such as the deformation and 

marginalization of white blood cells [56], modeling rigid nanoparticles in the 

simulation of their evolution in endocytosis within the cell membrane [34], even the 

simulation of complete blood flow [57]. In addition, the mesoscale viscoelastic 

membrane model is constantly evolving, not only in combination with standard 

dissipative particle dynamics (DPD) methods but also extending to coarse-grained 

molecular dynamics (CGMD) [58], lattice Boltzmann method (LBM) [59] , and 

transport dissipative particle dynamics (tDPD) [60] mesoscale numerical simulation 

methods. 

 

2.2.2 Numerical model 

The cell membrane model consists of a set of vertices (DPD particles) and the two-

dimensional triangular network they form, with the 𝑁𝑣 vertices interconnected to form 

𝑁𝑠  edges and subsequently 𝑁𝑡  triangles. The total energy describing the triangular 

network model could be divided into four different parts, such as in-plane elastic 

viscous dissipative energy, bending energy, surface area energy, and volume energy, 

which are labelled by 𝑈𝐼𝑃, 𝑈𝐵, 𝑈𝐴, 𝑈𝑉 respectively [61]. 

 𝑈({𝐫𝑖}) = 𝑈𝐼𝑃 + 𝑈𝐵 + 𝑈𝐴 + 𝑈𝑉 (7) 

 

The in-plane energy is given by the following equation: 

 

𝑈𝐼𝑃 = ∑[𝑈𝐼𝑃𝑆(𝑙𝑗) + 𝑈𝐼𝑃𝑉(∆𝑣𝑗)]

𝑁𝑠

𝑗=1

+ ∑
𝐶𝑞

𝐴𝑘
𝑞

𝑁𝑡

𝑘=1

 (8) 

In the equation, IPS and IPV represent the in-plane spring energy and the in-plane 

viscous dissipation, respectively. The first summation term in the equation expresses 

the contribution of the viscous springs; 𝑙𝑗is the length of the j-th spring, and ∆𝑣𝑗is the 

difference in relative velocities at the ends of the spring. The second term represents 

the summation of the elastic energy stored in each triangular piece of network segment 

from the physical viewpoint, where 𝐴𝐾 is the area of the k-th triangle.  
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A more concise and intuitive model consisting of the potential energy of the worm-

like chain (WLC) model and power function (POW) is adopted here. As shown in the 

following equation: 

 

𝑈𝐼𝑃 = ∑ 𝑈𝑊𝐿𝐶

𝑁𝑠

𝑗=1

+ ∑ 𝑈𝑃𝑂𝑊

𝑁𝑠

𝑗=1

= ∑ [
𝑘𝐵𝑇𝑙𝑚(3𝑥𝑗

2 − 2𝑥𝑗
3)

4𝑝(1 − 𝑥𝑗)
+

𝑘𝑝

(𝑚 − 1)𝑙𝑗
𝑚−1]

𝑁𝑠

𝑗=1

 (9) 

where, 𝑥𝑗 =
𝑙𝑗

𝑙𝑚𝑎𝑥
∈ (0,1), where 𝑙𝑚𝑎𝑥 , 𝑝 , 𝑘𝑝  and 𝑚  represent the maximum spring 

extension, the persistence length, the spring constant, and the specified exponent, 

respectively. The attractive forces exerted by the WLC springs cause the components 

to contract. The force produced by POW model can neutralize the contractility of the 

triangular surface bases. The combined action of both can generate an equilibrium 

spring length and, in this way, 𝑝 and 𝑘𝑝 can be obtained from the relationship of the 

related parameters from WLC model and the selected exponent 𝑛. At this point, the 

stored elastic energy can be ignored and 𝐶𝑞 can be set to 0 [61]. 

 

The bending energy is concentrated on the edges of the two adjacent neighbor 

triangular segments from each other to maintain cell shape and resist bending 

deformation, and the bending potential energy is shown as follows: 

 

𝑈𝐵 = ∑ 𝑘𝑏(1 − cos(𝜙𝑗 − 𝜙0))

𝑁𝑠

𝑗=1

 (10) 

where 𝑘𝑏, 𝜙𝑗 and 𝜙0 are the bending modulus, the instantaneous angle between two 

adjacent triangles sharing a common edge 𝑗, and the spontaneous angle, respectively. 

 

In equations 7, the last two terms represent the conservation of the cell membrane 

area and the incompressibility of the internal fluid, respectively, by enforcing area and 

volume constraints to maintain the cell shape. 

 

𝑈𝐴 =
𝑘𝑎

2𝐴0
𝑡𝑜𝑡 (𝐴 − 𝐴0

𝑡𝑜𝑡)2 +
𝑘𝑑

2𝐴0
∑(𝐴𝑘 − 𝐴0)2

𝑁𝑡

𝑘=1

 (11) 

 
𝑈𝑉 =

𝑘𝑣

2𝑉0
𝑡𝑜𝑡 (𝑉 − 𝑉0

𝑡𝑜𝑡)2 (12) 
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where, 𝑘𝑎, 𝑘𝑑, 𝑘𝑣, 𝐴, 𝑉, 𝐴0
𝑡𝑜𝑡 and 𝑉0

𝑡𝑜𝑡 are the constraint coefficients of the global area, 

constraint coefficients of the local area, constraint coefficients of volume, the 

instantaneous total area, total volume, the specified total area, and total volume, 

respectively. 

 

The forces 𝐟𝑖
MVMM on the nodes can be obtained by taking the derivative of the 

elastic network energy: 

 
𝐟𝑖

MVMM = −
𝜕𝑈({𝐫𝑖})

𝜕𝐫𝑖
 (13) 

 

2.2.3 Membrane mechanical properties 

According to the analysis for a node in a segment of a two-dimensional hexagonal 

network of equilateral triangles and the virial theorem [62–65], the Cauchy stress at 

node 𝐯 is obtained by the following equation in the research : 

 
𝜏𝛼𝛽 = −

1

𝑆
[
𝑓(𝑟1)

𝑟1
𝑟1

𝛼𝑟1
𝛽

+
𝑓(𝑟2)

𝑟2
𝑟2

𝛼𝑟2
𝛽

+
𝑓(|𝐫2 − 𝐫1|)

|𝐫2 − 𝐫1|
(𝑟2

𝛼 − 𝑟1
𝛼) (𝑟2

𝛽
− 𝑟1

𝛽
)]

− (𝑞
𝐶𝑞

𝐴𝑘
𝑞+1 +

𝑘𝑎(𝐴0
𝑡𝑜𝑡 − 𝑁𝑡𝐴)

𝐴0
𝑡𝑜𝑡 +

𝑘𝑑(𝐴0 − 𝐴)

𝐴0
)𝛿𝛼𝛽 

(14) 

where，𝛼 and 𝛽 represent x or y, 𝑓(𝑟), 𝑁𝑡 , 𝛿𝛼𝛽  and 𝑆 are the spring force, the total 

number of triangles, the Kronecker delta, and the area of the hexagonal element 

centered at 𝐯, respectively. 𝐴0
𝑡𝑜𝑡 = 𝑁𝑡𝐴0 

 

2.2.3.1 Shear modulus 

The shear modulus can be represented as 𝜇0 =
𝜕𝜏𝑥𝑦

𝜕𝛾
|

𝛾=0
, which can be obtained by 

taking the derivative of the stress tensor with respect to the applied shear strain 𝛾. 

 
𝜇0 =

√3𝑘𝐵𝑇

4𝑝𝑙𝑚𝑥0
(

𝑥0

2(1 − 𝑥0)3
−

1

4(1 − 𝑥0)2
+

1

4
) +

√3𝑘𝑝(𝑚 + 1)

4𝑙𝑛
𝑚+1  (15) 

 

2.2.3.2 Compression modulus 
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The elastic area compression modulus K is derived from calculating the in-plane 

pressure against the area contraction, and the pressure is given by the following 

equation: 

 
𝑝 = −

1

2
(𝜏𝑥𝑥+𝜏𝑦𝑦) =

3𝑙

4𝐴
𝑓(𝑙) + 𝑞

𝐶𝑞

𝐴𝑘
𝑞+1 +

(𝑘𝑎 + 𝑘𝑑)(𝐴0 − 𝐴)

𝐴0
 (16) 

 

The compression modulus 𝐾 is then defined as: 

 
𝐾 = −

𝜕𝑃

𝜕 log(𝐴)
|
𝐴=𝐴0

= −
1

2

𝜕𝑃

𝜕 log(𝑙)
|

𝑙=𝑙0

= −
1

2

𝜕𝑃

𝜕 log(𝑥)
|

𝑥=𝑥0

 (17) 

 
𝐾 =

√3𝑘𝐵𝑇

4𝑝𝑙𝑚(1 − 𝑥0)2
[(𝑞 +

1

2
) (4𝑥0

2 − 9𝑥0 + 6) +
1 + 2(1 − 𝑥0)3

1 − 𝑥0
] + 𝑘𝑎 + 𝑘𝑑 (18) 

 𝐾 = 2𝜇0 + 𝑘𝑎 + 𝑘𝑑 (19) 

 

Furthermore, we can obtain the Young's modulus and Poisson's ratio as: 

 
𝑌 =

4𝐾𝜇0

𝐾 + 𝜇0
, 𝑌 → 4𝜇0, 𝑖𝑓 𝐾 → ∞ (20) 

 
𝜈 =

𝐾 − 𝜇0

𝐾 + 𝜇0
, 𝜐 → 1, 𝑖𝑓 𝐾 → ∞ (21) 

In practice, we use values of 𝜇0 = 100 and 𝑘𝑎 + 𝑘𝑑 = 5000, which produce a 

Young's modulus of the approximately incompressible membrane about 2% less than 

its asymptotic value of 4𝜇0 [61]. 

 

2.2.3.3 Bending rigidity 

The connection between the bending modulus 𝑘𝑏 and the macroscopic membrane 

bending stiffness 𝑘𝑐 can be deduced from a hypothesis of spherical shell. By equating 

the macroscopic bending energy and 𝐸𝐵, and deriving the spontaneous angle 𝜙0 based 

on the number of the whole nodes 𝑁𝑣 on the spherical surface, we obtain: 

 
𝑘𝑏 =

2

√3
𝑘𝑐 , 𝜃0 = cos−1 (

√3(𝑁𝑣 − 2) − 5𝜋

√3(𝑁𝑣 − 2) − 3𝜋
) (22) 

 

2.2.3.4 Membrane viscosity 
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For the membrane viscosity aspect of the mesoscale viscoelastic membrane model, 

the influence of original DPD dissipative force and random force is insufficient. 

Referring to the fluid particle model [48], the dissipative force term in standard DPD is 

modified as [61]: 

 𝐟𝑖𝑗
𝐷 = −𝛾𝑇𝐯𝑖𝑗 − 𝛾𝐶(𝐯𝑖𝑗 ∙ 𝐞𝑖𝑗)𝐞𝑖𝑗 (23) 

The first term in the equation provides the dominant viscous contribution, while the 

second term is similar with the dissipative force of standard DPD. 𝛾𝑇 𝛾𝐶 are dissipative 

coefficients. According the general fluid particle model and the fluctuation-dissipation 

relationship, the random force is adjusted accordingly and the details of calculation 

could be found in software [60,66]. The shear stress 𝜏𝑥𝑦 over a brief period can be 

estimated based on the contribution of the dissipative force in the aforementioned 

equation. 

 
𝜏𝑥𝑦 = 𝛾̇ (𝛾𝑇 +

1

4
𝛾𝐶) (24) 

where, 𝛾̇ is the constant shear rate. Hence, the membrane viscosity is: 

 
𝜂𝑚 =

𝜏𝑥𝑦

𝛾̇
= √3 (𝛾𝑇 +

1

4
𝛾𝐶) (25) 

This equation indicates that 𝛾𝑇  constitutes a major part of membrane dissipation. 

Consequently, the numerical outcomes exhibit minimal sensitivity to the value of 𝛾𝐶. 

Given the elevated values of 𝛾𝐶 might induce numerical instability in the simulations, 

it is often set to the minimum value of 
1

3
𝛾𝑇 [61]. 

 

2.2.4 Unit scaling analysis 

In the development of a coarse-grained cellular model, the physical quantalities 

and parameters of DPD model in model must be scaled with physical units. The length 

scale factor 𝜆 is based on the characteristic length at equilibrium, 𝐿0
𝑀, which is chosen 

the form as diameter in this work, where [𝐿0
𝑀] = 𝜆 and the 𝑀 represents model units. 𝜆 

can be obtained by the following formula: 

 
𝜆 =

𝐿0
𝑃

𝐿0
𝑀

[𝑚] (26) 
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where [𝑚] represents meters. 

 

The young’s modulus(2D) is utilized for an additional input parameter for energy 

scaling process. An energy scaling factor 𝜉  is obtained by dimensional analysis of 

Young’s modulus 𝑌: 

 
𝜉 = (𝑘𝐵𝑇)𝑀 =

𝑌𝑃

𝑌𝑀
(

𝐿0
𝑃

𝐿0
𝑀)

2

[𝐽] =
𝑌𝑃

𝑌𝑀
(

𝐿0
𝑃

𝐿0
𝑀)

2

(𝑘𝐵𝑇)𝑃 (27) 

where, [𝐽]  denotes joules and 𝑘𝐵𝑇  represents a unit of energy from Boltzmann’s 

constant and temperature in the field of thermodynamics and statistical mechanics. 

Furthermore, force scaling factor 𝜀 and pressure scaling factor 𝜈 can be obtained by: 

 
𝜀 =

𝑌𝑃

𝑌𝑀

𝐿0
𝑃

𝐿0
𝑀

[𝑁] =
𝜉

𝜆
[𝑁] (28) 

 
𝜈 =

𝜉

𝜆3
[𝑃𝑎] 

(29) 

 

Based on dimensional analyses of viscosity 𝜂  and Newton’s second law, time 

scaling factor 𝜏 and mass scaling factor 𝜇 can be calculated as follows: 

 
𝜏 =

𝜂𝑃

𝜂𝑀

𝑌𝑀

𝑌𝑃

𝐿0
𝑃

𝐿0
𝑀

[𝑠] (30) 

 
𝜇 =

𝑌𝑃

𝑌𝑀
𝜏2[𝑘𝑔] 

(31) 

where [𝑠] denotes second and [𝑘𝑔] denotes kilogram. 

 

2.3 The relationship of different concepts for the mathematic 

framework 

In summary, the Dissipative Particle Dynamics (DPD) method can indeed be 

considered an application of Lagrangian mechanics where the dynamics of a system are 

typically described by tracking the time evolution of each particle's position and 

momentum. 
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The relationship of different concepts of the framework in this research is shown 

in Figure 11. The standard DPD method offers a basic framework to describe the 

dynamical property of an indivisible particle, which naturally involves how to represent 

the interaction between particles and how to iterate over the dynamic behavior under 

the constraints of the thermostat. Additionally, as dissipative particles are a coarse-

grained abstraction, their dimensional selection is arbitrary. Therefore, it is essential to 

clearly define the mapping relationship from the real entities to reductive particles. In 

addition to the dissipative and random forces that describe energy dissipation processes 

and irregular Brownian motion at the mesoscale, other interactions are abstracted and 

simplified as conservative forces. To characterize the dynamic behavior of cells (a 

group of dissipative particle clusters), the interactions among dissipative particle 

clusters are categorized and the originally singular conservative force between 

dissipative particles is enhanced. Thus, the dynamic evolution of dissipative particles 

is conducted under the constraints of macroscopic mechanical properties. In addition to 

the viscosity of particles induced by dissipative and random forces (Within the scope 

of single-particle DPD in this study), the material mechanical properties of the entities 

represented by the clusters of dissipative particles are obtained by solving the 

relationship between the discrete particles' virial stress and the Cauchy stress. 
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Figure 11 The Relationship of Different Concepts 

 

Given that the focus of this project is on the transport processes in drug delivery 

methods, the research is centered on describing the kinetic transfer processes. 

Therefore, the theoretical framework of this project is primarily situated within the 

theoretical system of the Dissipative Particle Dynamics (DPD) method, which adheres 

to the conservation of momentum. Additionally, the standard DPD theory has been 

further developed to include energy conservation and mass conservation, leading to 

the emergence of the energy-conserving DPD (eDPD) method [67] and the transport 

DPD (tDPD) method [68]. 

 

2.4 Summary 

The development of a dissipative particle dynamics framework provides a valuable 

computational tool for simulating cellular tissues at the mesoscale. By effectively 

bridging the detailed molecular interactions and the broader, continuous fluid dynamics, 
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DPD enables the exploration of complex fluids within biological and biomedical 

contexts with greater computational efficiency. 

 

The framework's strength lies in its ability to reduce computational load without 

sacrificing the essential physics of mesoscale phenomena. Using conservative, 

dissipative, and random forces, the DPD model captures the nuanced behaviors of 

mesoscale systems, including the thermal and viscous effects crucial for realistic 

simulations. 

 

In summary, the DPD simulation framework represents a significant advance in the 

modeling of natural systems, especially in the field of drug delivery. It stands as a robust 

approach to understanding the complex interactions within cellular environments, 

paving the way for future innovations in the simulation and analysis of biological 

systems.  
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Chapter 3 Cell modeling 

3.1 Introduction 

Figure 12 provides a visual comparison of the hierarchical structures in a biological 

system ranging from tissue to molecular levels, coupled with an illustration of the 

coarse-graining technique. Coarse graining is a computational strategy for simplifying 

complex biomolecular models by reducing the degrees of freedom. It involves 

aggregating multiple atoms or molecular details into larger representative units (coarse 

grains) to streamline simulations. The figure displays, from left to right, tissue-level 

organization (as exemplified by blood tissue), cell-level structure (represented by a red 

blood cell), subcellular architecture (cellular network structures), macromolecular 

complexity (protein complex) [69], and their respective coarse-grained models. This 

visualization underscores the significance of cross-scale analysis in biological research, 

particularly for comprehending intricate biological processes and developing 

therapeutic interventions. 
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Figure 12 Visual representation of biological hierarchy and coarse-graining approach 

 

The cytoskeleton refers to the fibrous network structure present within biological 

cells, primarily composed of cytoplasmic filamentous proteins. The cytoskeleton is not 

a static structure but is dynamically remodeled. As a load-bearing architecture, the 

cytoskeleton assists in maintaining cellular shape and structure, providing resistance 

against external forces that may compromise cell integrity; it exerts forces on the 

surrounding matrix and plays a pivotal role in the mechanical sensing mechanisms of 

the cell. 

 

Erythrocytes exhibit a high degree of deformability yet possess stable mechanical 

properties capable of withstanding substantial shear stress. Their robust mechanical 

performance is attributed to the spectrin-actin membrane skeleton, a quasi-hexagonal 

cytoskeletal network formed underneath the bilayer. This network, or "nodal" structure, 

consists of interconnected long and flexible (𝛼1𝛽1)2 spectrin tetramers linked by short 

actin filaments (F-actin) complexes, creating a two-dimensional lattice. The mechanical 

properties of the cytoskeleton are reflected by this planar network structure in three-

dimensional space. The schematic diagram is shown in Figure 13. Based on the 
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mesoscale viscoelastic membrane model and the structure of cytoskeleton, actin is 

mapped to a Dissipative Particle Dynamics (DPD) particle, while the extensibility of 

(𝛼1𝛽1)2 spectrin can be characterized by a worm-like chain model and is represented 

as a bond between DPD particles. 

 

Figure 13 Membrane skeleton organization in RBCs [70] 

 

The cytoskeleton, composed of actin and spectrin, is not exclusively situated on 

the membrane of erythrocytes; its reticular structure is also extensively present across 

various other cell types, such as nerve cells [28], immune cells, and so on. As for the 

endothelium cells, the cytoskeleton is primarily composed of spectrin and its binding 

proteins including F-actin, and shows a similar structure to red blood cells [71]. As for 

the skeletal muscle fiber, sarcolemma is the outlet membrane of the skeletal muscle cell 

(muscle fiber) and is equivalent to the cell membrane in other cell types. It envelops 

muscle fibers and is closely associated with them. The sarcolemma directly surrounds 

muscle fibers, isolating them from the external environment. Internally, the sarcolemma 

is attached to a fine network structure known as the basement membrane, which 
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enhances the stability of muscle fibers. SEM shows that actin and spectrin exit in the 

sarcolemma[30]. As for the innate immune cells such as myeloid cells including 

macrophages, dendritic cells, and granulocytes, generate large membrane protrusions, 

which are broadly referred to as ruffles [72,73]. The cortex of myeloid cells is 

characterized by a dense network of isotropically distributed F-actin and spectrin is 

distributed between actins.  

 

To streamline the model, this study omits the intracellular cytoskeletal components 

other than the cell membrane. Additionally, constraints on the surface area and volume 

are incorporated into the mesoscale viscoelastic membrane model to mitigate the impact 

of omitting these components. The tetrameric lattice structure in two dimensions 

exhibits favorable mechanical responsiveness and equivalence, hence this study 

uniformly employs this architecture to represent cells. 

 

The unique properties of the cytoskeleton necessitate specific requirements for 

mesh model construction: The mesh must accurately represent the complex architecture 

of the cytoskeleton, encompassing the diverse cellular shapes and the connectivity of 

grid points; A two-dimensional surface model within a three-dimensional space must 

be established; The distances between grid points should be approximately equal, 

fulfilling both the requirements of spectrin and ensuring the stability of the model. 

 

3.2 Mesh generation method 

The DistMesh algorithm [74,75] is a mesh generation tool based on the principles 

of distance functions and adaptive mesh density. Utilizing Delaunay triangulation, it 

optimizes nodes through a force-based smoothing process, yielding high-quality 

meshes suitable for simulating complex geometrical structures. The principal advantage 

of the DistMesh algorithm lies in its flexibility and efficiency, particularly evident when 



 39 

handling biomedical models with intricate surfaces, as it can produce meshes with 

appropriate density and uniform distribution. 

 

SDF stands for "Signed Distance Function," a mathematical and computer graphics 

concept that describes the shortest distance from a point to a surface or shape. The value 

at each point in an SDF represents the distance to the nearest surface, with positive 

values indicating a position outside the surface, negative values indicating a position 

inside, and zero typically representing a position exactly on the surface. Therefore, the 

complicated shape of the cell could be constructed by DistMesh algorithm. 

 

3.3 Evaluating Results of Generated Mesh 

To represent the quality of mesh generation, the following criteria have been 

selected: The minimum mesh quality, expressed as the ratio of area to perimeter, where 

the ideal mesh elements are equilateral triangles, at which point the ratio of area to 

perimeter is maximized; The coefficient of variation of area, the standard deviation of 

the area of mesh elements relative to the average area, is used to describe the degree of 

variation in the area relative to the average area, where a smaller value indicates a more 

uniform distribution of mesh element areas; The proportion of nodes with different 

connectivities, for a two-dimensional tetrahedral planar mesh, the higher the proportion 

of nodes with six connectivities, the better. 

 

For the cell types and their morphological characteristics involved in this study, 

cellular mesh models of various shapes have been constructed, including capsule 

(muscle fiber), concave (red blood cell), ellipsoid (flap of a lymphatic endothelial cell), 

leaf (lymphatic endothelial cell), and sphere (dendritic cell). In addition to the 

parameters of cell morphology, the distance between nodes serves as an independent 

variable in the mesh generation process.  
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The mesh results for different shape cells are listed in Appendix 1. In summary, 

the results indicate that the distribution of nodes exhibits a commendable level of 

uniformity. The comparatively symmetrical triangles align well with the requirements 

for a two-dimensional tetrameric lattice of the cytoskeleton, suggesting suitability for 

representing the cellular framework. The different shapes of cell models are shown in 

Figure 14 

 

 

Figure 14 Different shapes of cell 

 

3.4 Validation of cellular properties 

Molecular mechanics experimental techniques are instrumental in the study of 

mechanical properties at the molecular and cellular levels, crucial for understanding 

biological processes. These techniques facilitate the elucidation of how biological 

molecules respond to mechanical forces, a key factor in signaling transduction 

mechanical work, and molecular interactions within cells. Their significance extends to 

disease research, particularly in understanding the molecular basis of diseases like 
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cancer and genetic disorders, where alterations in cellular mechanical properties are 

often implicated [76,77].  

 

Relevant techniques include: atomic force microscopy (AFM), which employs a 

sharp probe to measure surface forces; optical tweezing, which exerts force on cells by 

driving photons to capture microbeads attached to the cell surface; micropipette 

aspiration, wherein gentle suction is applied to a micropipette placed on the cell surface, 

causing the cell to deform; and magnetic twisting cytometry, which uses a magnetic 

field to manipulate magnetic beads attached to the cell surface and so on [78]. 

 

To validate the mechanical performance of the constructed model, a simulation of 

optical tweezer experiments was conducted and compared with experimental data. Two 

high-refractive-index beads were tethered along the diameter axis at the two ends of the 

cell, and these beads could be separated from each other using laser light. By finely 

adjusting the optical trapping force and documenting the alterations in shape through 

an optical microscope, changes in the cell's axial and transverse diameters were 

measured in response to the stretching force applied. The optical tweezer stretching 

experiments are illustrated in Figure 15. 

 

 

Figure 15 Schematic illustration of stretching test of the cell by optical tweezers 
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A model of a red blood cell with 500 particles was subjected to pulling forces at 

opposite ends to investigate its stretching deformation characteristics. Forces ranging 

from 0 pN to 200 pN were applied. The results of cell deformation under different forces 

are presented in Figure 16, and the corresponding axial displacements of stretching 

force and transverse displacements of the cell at various applied forces are summarized 

in Figure 17. The optical images and measured data of true red blood cell experiment 

results are shown in Figure 18 and Figure 17, respectively. 

 

 

Figure 16 Deformation diagram of red blood cell under stretching force 
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Figure 17 Deformation length of red blood cell under different stretching force. 

Explement data from [77] 

 

 

Figure 18 Optical images of healthy red blood cell under stretching forces [77] 

 

The displayed graph provides an academic comparison between experimental and 

simulated biomechanical responses of red blood cells to stretching forces, showing an 

increase in axial diameter and a decrease in transverse diameter with rising force, and 

demonstrating the model's accuracy through the alignment of simulated and 

experimental data. 
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Some research studies have validated the accuracy of this model in aspects of 

fluid flow and dynamics through simulations such as red blood cell flow in the 

microfluid channel and examining their mechanics, rheology, and dynamics 

associated with the experiment results. [57,79] 

 

3.5 Summary 

In conclusion, this dissertation has successfully demonstrated the efficacy of a 

mesoscale viscoelastic membrane model in representing the mechanical behavior of the 

cytoskeleton across various cell types. By employing a coarse-graining approach, as 

visually summarized in Figure 12, we reduced the complexity of biological structures 

from the tissue level down to the macromolecular level, culminating in a 

computationally efficient representation that did not sacrifice the essential mechanical 

properties inherent to the cytoskeletal framework. This was particularly exemplified by 

the spectrin-actin membrane skeleton of erythrocytes, which exhibited remarkable 

mechanical stability under substantial shear stress, as delineated in our models and 

supported by empirical data. 

 

The adoption of the DistMesh algorithm for mesh generation provided a flexible 

and robust method for constructing meshes that accurately reflected the complex 

architecture of the cytoskeleton and its mechanical responsiveness. The mesh quality, 

homogeneity of node distribution, and uniformity of element areas, as detailed in the 

Appendices, were critical to the model's success and demonstrated the utility of the 

DistMesh algorithm in creating geometries that conform to the intricate shapes of 

various cells. 

 

The validation of the cellular models through the simulation of optical tweezer 

experiments and comparison with experimental stretching tests further reinforced the 
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model's reliability. The model capably replicated the deformation characteristics of red 

blood cells under stretching forces, providing insight into the cytoskeletal dynamics 

and the mechanical properties at play during cellular deformation. 

 

Overall, this research encapsulated in thesis underscores the latent potential for 

computational modeling in augmenting understanding of cell mechanics. It paves the 

way for future investigations into the mechanical properties of cells and the role of the 

cytoskeleton. It provides robust tool and theory support for further observations of 

biological activity from the perspective of cellular organization.  
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Chapter 4 Transport phenomenon of 

Pickering emulsion in skeletal muscular 

tissue 

4.1 Introduction 

From the previous analyses of targeting lymph node transfer, we could find the 

possibilities of fluid pathways due to the physiological function and anatomical 

structures of lymph capillaries, besides the cellular pathway [23]. In this research, we 

investigate the transport process of Pickering emulsion in the skeletal muscular tissues 

first, furthermore, we integrate and produce a framework for 3-D cell modeling and 

dynamics analysis in cellular tissues. 

 

Muscle cells, also known as muscle fibers, are observed within muscle tissues, 

specifically in skeletal muscles here. Morphologically, these cells are elongated and 

tubular in shape. Muscle fibers are essentially muscle cells and serve as the fundamental 

units of muscles. Each muscle fiber is composed of numerous myofibrils. Typically, 

the length of a muscle fiber ranges from a few millimeters to several centimeters (2-3 

cm), with a diameter spanning approximately 10 to 100 micrometers [18,21]. For the 

Pickering emulsion, the diameter of the emulsion droplets ranges between 330nm and 

500nm considered in this research [4,15]. 

 

4.2 Model simplification 

In the consideration of simplifying the model, a uniform layer of cells is modeled 

to represent the process of flexible particles traversing the tissue layer of muscular cells. 
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Each cell is modeled as a capsule-like structure, which resembles the shape of muscle 

cells. The cells are uniformly sized and evenly distributed, with consistent intercellular 

gaps. The upper part of the cell layer is represented as the interior of the part of the 

muscle tissues. The flexible particles cross the cell gap from the upper part of the cell 

layer to the lower part of the cell layer, and this process is used to represent the process 

of the flexible particles crossing the part of the fascicle in the muscle tissue, thus 

allowing the Pickering emulsion to better carry out the next process to transport into 

the capillary of the immune system. The liquid filling the simulation box is modeled 

implicitly. To simplify the model and streamline the computational process, this study 

doesn’t consider the adhesion between cells. 

 

The entire simulation box is divided into the following order from top to bottom 

according to the actual physical model: boundary – free motion zone - fixed cell zone - 

free motion zone - boundary. The middle layer of the simulation box is set as a cell 

layer to represent the position of the intercellular matrix binding to the muscle cells by 

fixing the position of certain points on the cells, while the cells as a whole can maintain 

a certain viscoelasticity to show the morphological changes of the cells when the 

flexible particles cross the cell gap. The two sides of the simulated box immediately 

adjacent to the fixed cell zone are the free-motion zone, where the flexible particles 

move freely imposing additional constraints and additional forces. In the top free 

motion zone, new particles can be added at certain initial velocities, so that the flexible 

particles exhibit a top-to-bottom direction of motion. A layer of fixed DPD particles is 

set at the top and bottom of the box to indicate the boundary, which restricts the motion 

of the flexible particles to prevent them from crossing the boundary of the simulated 

box. The illustration is shown in Figure 19. 

 



 48 

 

Figure 19 Illustration of the Simplified Model 

 

Based on the morphological and mechanical properties analysis of cells and 

Pickering emulsions, the diameter of muscle cells is approximately 20 micrometers [18], 

with Young's modulus of about 12 kPa [80]. The Pickering emulsion has a diameter of 

around 500nm and a Young's modulus of approximately 36.5 MPa [4]. In this context, 

the Pickering emulsion can be considered as a rigid particle. Drawing on the triangular 

lattice spring network derived from hemoglobin modeling and rationalizing the process 

of flexible particles traversing the cell gap, a capsule-type layer of cells lined up side 

by side as the part of muscular tissue was constructed separately, and DPD particles 

were constructed represent the Pickering emulsion, and different viscoelastic 

parameters were set to reflect the different viscoelasticity between the cells and the 

particles. The cells are evenly distributed with the beads on the surface. Two 

neighboring beads create a bond element, three neighboring beads construct a triangular 

element, and a pair of triangular elements sharing a common edge constitute a bending 

element. 

 

4.2.1 Extraction of physical quantities 
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To characterize the physical system of the model, it is necessary to first confirm 

the physical quantities in the real world, which are summarized in Table 1. 𝐿0
𝑃  

represents the characteristic length, where the diameter of muscle fibers is adopted as 

the characteristic length in this context, typically falling within the range of 10-100 

micrometers [18]. The value of (𝑘𝐵𝑇)𝑃 is taken at the temperature T=296K. 𝑁𝑣
𝑃 and 

𝑁𝑠
𝑃 represent the number of actins and spectrins in biology, respectively, but in the 

modeling process, a rough estimate was made, as the impact of different levels of 

coarse-graining on the mechanical properties and deformability of the cell is not 

pronounced [54]. Based on the finite element analysis, the result 𝑌𝑃 = 3𝜇0
𝑃  was 

obtained, which aligns well with the experimental observations [81]. Here, the 'P' in the 

superscript stands for physical units. 

 

Table 1 Physical Quantities in Physical Units 

Physical Quantity Value 

Symbol Meaning Cell Droplet 

𝐿0
𝑃  Characteristic length 20 × 10−6𝑚 0.5 × 10−6𝑚 

(𝑘𝐵𝑇)𝑃 Energy unit per unit particlal mass 4.086 × 10−21𝐽 4.086 × 10−21𝐽 

𝑁𝑣
𝑃 Number of vertices ~ - 

𝑁𝑠
𝑃 Number of springs ~ - 

𝜇0
𝑃 Linear shear modulus 6.3 × 10−6𝐽/𝑚2 - 

𝑌𝑃 Young’s modulus 18.9 × 10−6𝐽/𝑚2 - 

𝜂𝑃 Viscosity 0.022𝑃𝑎 ⋅ 𝑠 0.0013𝑃𝑎 ⋅ 𝑠 

𝑘𝑐
𝑃 Bending rigidity 2.4 × 10−19𝐽 - 

 

4.2.2 Physical quantities in model units and parameters of the model 

In the mathematical framework-based model, the physical quantities and model 

parameters, represented in model units, are summarized in Tables 2 and 3. Model units 

and scaling factors will be discussed in the next section. Since Young's modulus(3D) 

𝑌𝑉
𝑃 for the emulsion droplet is much larger than that of the cell, and the volume of the 
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emulsion droplet is much smaller than that of the cell, the emulsion droplet can be 

regarded as a rigid sphere passing through the cell gap, and the deformability is mainly 

reflected in the flexibility of the cell. Therefore, the mesoscale viscoelastic membrane 

model is still used to represent the cell, and the DPD particle is used to represent the 

emulsion droplet, and cut-off radius of DPD forces on the DPD particles are set to 

control the volume of emulsion droplet. 

 

Table 2 Physical Quantities in Model Units 

Physical Quantity Value 

Symbol Meaning Notice Cell Droplet 

𝐿0
𝑀 Characteristic length  20𝜆 0.5𝜆 

(𝑘𝐵𝑇)𝑀 Energy unit per unit particule mass  0.084ξ 0.084ξ 

𝑁𝑐
𝑀 Number of vertices  5206 - 

𝑁𝑠
𝑀 Number of springs  15612 - 

𝜇0
𝑀 Linear shear modulus set 100ξ/λ2 - 

𝐾𝑀 Elastic area-compression modulus By Eq.19 5200ξ/λ2 - 

𝑌𝑀 Young’s modulus By Eq.20 392.45ξ/λ2 - 

ν𝑀 Poisson’s radio By Eq.21 0.962 - 

𝜂𝑀 Viscosity By Eq.25 168.87ν ⋅ τ - 

𝑘𝑐
𝑀 Bending rigidity  5.0165ξ - 

 

Table 3 Parameters of the Model 

Parameters of Models Value 

Symbol Notice Cell Droplet 

𝑟𝑐 Cut-off distance for DPD particle 1.58𝜆 0.5λ 

𝑙0 Equilibrium length, In Eq.9 8.58𝜆 - 

𝑥0 Maximum spring extension ratio, In Eq.9 2.2 - 

𝑙𝑚 Maximum spring extension, In Eq.9, 𝑙𝑚 = 𝑥0𝑙0 18.87𝜆 - 

𝑝 Persistence length, In Eq.9 ~ - 

𝑘𝑝 POW force coefficient, In Eq.9 ~ - 

𝑚 Exponent in POW function, In Eq.9 2.0 - 
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𝑘𝑎 Global area constraint constants, In Eq.11 4900𝜉/𝜆2 - 

𝑘𝑑 Local area constraint constants, In Eq.11 100𝜉/𝜆2 - 

𝑘𝑣 Volume constraint constants, In Eq.12 5000𝜉/𝜆2 - 

𝐴0
𝑡𝑜𝑡 Desired total area, In Eq.11 6.2 × 105𝜆2 - 

𝐴0 Desired local area, In Eq.11 31.79𝜆2 - 

𝑉0
𝑡𝑜𝑡 Desired total volume, In Eq.12 1.5 × 107𝜆3 - 

𝑎 DPD conservative force coefficient, In Eq.3 4.0 2.0 

γ𝐶 MVMM dissipative coefficient, In Eq.23 30 - 

γ𝑇 MVMM dissipative coefficient, In Eq.23 90 - 

σ𝐶 MVMM random coefficient, In software ~ - 

σ𝑇 MVMM random coefficient, In software ~ - 

𝛾 DPD dissipative force coefficient, In Eq.4 30 45 

σ DPD random force coefficient, In Eq.5, By Eq.6 2.38 2.76 

𝑘𝑏 Bending coefficient, In Eq.10, By Eq.22 5.79𝜉 - 

𝜙0 Spontaneous angle, In Eq.10, By Eq.22 0° - 

 

𝐿0
𝑀 , 𝑁𝑐

𝑀 , 𝑁𝑠
𝑀 , 𝐴0

𝑡𝑜𝑡 , 𝑉0
𝑡𝑜𝑡  presented are extracted from the establishment to the 

model. 𝑙0 and 𝐴0 are mean values obtained from mesh generation statistical results due 

to the stress-free model. According to equations 9 and 15, 𝑘𝑝 and 𝑝 could be obtained 

by the 𝜇0
𝑀 formula and equating by attractive and repulsive force formula and be auto 

calculated in the software without need of input (Fedosov et al., 2010; Tang & 

Karniadakis, 2014). σ𝐶 and σ𝑇 are auto calculated in the software according to the Eq.6 

and (𝑘𝐵𝑇)𝑀. 𝑘𝑐
𝑀 is calculated by 𝑘𝑐

𝑃 and energy unit ξ. In the simulations, 𝜇0
𝑀, 𝑘𝑎, 𝑘𝑑, 

𝑘𝑣, γ𝑇 and 𝛾 reference to other works (Pozrikidis, 2010; Yazdani et al., 2021). 

 

Table 4 Scaling Factor between Physical Units and Model Units 

Symbol Meaning Notice Value 

𝜆 length unit By Eq.26 1 × 10−6𝑚 

𝜉 energy unit By Eq.27 4.81586 × 10−20𝐽 

𝜖 force unit By Eq.28 4.81586 × 10−14𝑁 

𝜈 pressure unit By Eq.29 4.81586 × 10−2𝑃𝑎 
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𝜏 time unit By Eq.30 2.70518 × 10−3𝑠 

𝜇 mass unit Eq.31 3.52425 × 10−13𝑘𝑔 

 

4.3 Methods of modeling and simulating: 

The cell modeling process begins with the use of DistMesh algorithm [74,75] 

written by MATLAB to draw triangular mesh based on the input shape in terms of 

distance function without considering the accurate representation of the number of 

actins and spectrins [54]. Then, a system modeling script is constructed using Python 

to generate simulation model in the data format that can be read by revised version 

LAMMPS [60,66] which contains the MVMM model.  

 

Periodic boundary conditions are applied in the simulation box. In addition, 

Lennard-Jones potential functions are added between the droplet particles and cells to 

serve as bounce-back boundary conditions to prevent emulsion particle transport into 

the interior of the cell. Walls are also added at the top and bottom of the z-axis to prevent 

DPD particles from crossing. The particle representing the Pickering emulsion is 

distributed at the top free motion zone randomly based on the norm distribution of the 

average mean velocity and direction vector. An external downward force is applied on 

the Pickering emulsion to represent the effect of pressure. The cells in the middle of the 

box are fixed with force to prevent significant displacement due to the effect of the 

extracellular matrix. At the apical and basal vertices of the cell, additional bonds are 

introduced to connect with the nearest wall particles, ensuring the stabilization of the 

cell's position, and reflecting the restrictive role of the extracellular matrix on cell 

movement.  

 

4.4 Results 
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4.4.1 Computational efficiency analysis 

Based on the method illustrated before, the top view picture of the simulation box 

is illustrated in Figure 20. The size of the simulation box is 84𝜆 × 84𝜆 × 120𝜆. The 

diameter of a muscular cell is 20𝜆. The length of a muscular cell 70𝜆, which is shorter 

than the actual length, to simplify the simulated model. Every cell is uniformly 

distributed in the middle of the simulation box. In this case, the gap between the cells 

is set as 1𝜆. Every muscular cell is constituted of 5206 nodes and 15612 bonds. The 

total number of cells is 16. As for the particles representing Pickering emulsion, the 

total number is 141 and they are randomly distributed at the top area of the simulation 

box satisfying the Gaussian distribution. The average velocity of the Pickering 

emulsion droplet particle is 0.01082072𝜆/𝜏  and the average direction of initial 

velocity is [1,0,0], which is perpendicular to the cell axis direction of distribution. The 

density of distribution is 0.001. As for the particles representing the walls, the number 

is 14112. They are uniformly distributed in the XY plane at both ends of the Z axis. 

The total number of particles for the simulation system is 97549. The total number of 

bonds is 249824. The total number of angles is 166528. The total number of dihedrals 

is 249792. 
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Figure 20 The top view picture of the simulation box 

 

To maximize the proficiency of simulation, the parallel computing ability is tested. 

The results are shown in Table 5. The version of GPU is Tesla K80 and the result shows 

that the results show that the GPU parallel capability of the software used is relatively 

poor. Therefore, all cases use single-card computing. For one computing task whose 

timesteps is set to 1000000 steps, the time cost is about 81264 seconds. The parallel 

computing ability is not highly effective, therefore the research adopts 1~4 GPU in most 

cases to achieve high efficiency. 

 

Table 5 The result of parallel computing ability testing on GPU 

GPU Numbers Timesteps Time cost GPU memory cost GPU efficiency 

12 1000 18.3394s 247-252M 29-96% 

8 1000 15.156s 263M 85-96% 

6 1000 33.1031s 278-288M 32-97% 

4 1000 28.277s 315M 92-98% 

2 1000 37.1292s 404M 94-99% 

1 1000 66.4075s 585M 95% 
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4.4.2 Criteria for the transport process 

To evaluate the efficiency of the transport phenomenon of Pickering emulsion 

between muscular cells from the microscopic viewpoint method, the criteria is selected 

as the diffusion coefficient which is obtained by the mean square of displacement (MSD) 

[62] according the Einstein’s theory for Brownian motion and transport time along the 

fixed distance from the end to end.  

 

The diffusion coefficients (D) were calculated by analyzing the trajectories of 

particles obtained from dynamics simulations. The positional data for each particle was 

collected over time to compute the MSD. The MSD for each particle was determined 

using the formula: 

 MSD(∆𝑡) = 〈[𝐫(𝑡 + ∆𝑡) − 𝐫(𝑡)]2〉 (32) 

where 𝐫(𝑡) is the position vector of a particle at time 𝑡, and the angle brackets ⟨⟩ 

denote an ensemble average over all particles and a temporal average over multiple 

starting points to ensure statistical robustness. 

 

The MSD values were plotted against time intervals ∆𝑡  to ensure a linear 

relationship, indicating diffusive behavior. A linear regression analysis was performed 

on the MSD versus ∆𝑡 plot to extract the slope, which corresponds to 6𝐷  in three-

dimensional systems, following Einstein’s relation for diffusion. The diffusion 

coefficient 𝐷 was then calculated by dividing the slope by 6: 

 
𝐷 =

Slope of MSD vs. ∆𝑡  

6
 (33) 

All units were corrected to ensure that 𝐷 was expressed in terms of length2/time. The 

following Figure 21 shows the ensembled averaged MSD result of Pickering emulsion 

which demonstrates a near-linear relationship with the time delta.  
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Figure 21 Ensemble Averaged Mean Square of Displacement (MSD) 

 

4.4.3 Quantitative analysis of factors affecting the transport process  

We initially examined the conservative force parameter 𝑎 in DPD, investigating its 

values at 1.0, 2.0, and 3.0. It can be observed from the Figure 22 that as the conservative 

force parameter 𝑎  increases, the diffusion coefficient of the Pickering emulsion 

decreases, and the diffusion time correspondingly increases. This outcome illustrates 

the role of parameter 𝑎 in modulating inter-particle interactions, which in turn affects 

the diffusion behavior of particles in the emulsion. Given that the conservative force in 

the DPD method represents the radial repulsive force between a pair of particles, it can 

indicate that an increase in 𝑎 leads to enhanced repulsive forces between particles, 

resulting in greater particle separation and a reduced likelihood of particle movement 

due to concentration gradients. This enhanced repulsion may cause particles to be more 

dispersed in space, thereby increasing the difficulty and time required for them to 

diffuse to a specific region. Moreover, the reduction in diffusion coefficient and the 

increased transport time may also imply a more stable spatial organization of Pickering 

emulsion particles. In certain applications, such as drug delivery systems, this increased 

stability may be beneficial as it can slow down the release of active components. 
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However, for processes that require rapid diffusion and mixing, such as in catalytic 

reactions, increased repulsive forces and decreased diffusion coefficients may not be 

desirable effects. There is a potential link between particle characteristics (such as 

surface modification or polarity size) and the DPD conservative force parameter. If 

emulsion particles are modified on their surface to enhance their interactions, this could 

lead to an increase in repulsion, thereby affecting the diffusion process. This indicates 

that the design and optimization of emulsions should consider not only the chemical 

properties of the particles but also their interactions in the simulation environment. 

 

 

Figure 22 The Influence of DPD Conservative Force Parameter of Pickering 

Emulsion 

 

Further, the impact of local cellular tissue environmental factors on the transport 

efficiency of Pickering emulsion is investigated, as shown in Figures 23-25. The driving 

force applied to the Pickering emulsion can be approximated as the pressure in the local 

tissue cellular environment or the external driving force from the muscle injection 

process or the driving force from concentration differences. Under these driving forces, 

Figure 23 indicates that the Pickering emulsion droplets would traverse through the 
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intercellular gaps within the tissue faster under greater local driving forces. The 

increased diffusion coefficient with higher applied force suggests that the droplets are 

experiencing less resistance in the medium, allowing them to spread more quickly. This 

could be due to the fact that higher forces help to overcome the various frictional and 

viscous forces that act on the droplets, facilitating their movement through the tissue 

matrix. Conversely, the decrease in transport time with increased force implies that the 

droplets can reach their target sites more rapidly. This is particularly relevant in medical 

applications where the time-sensitive delivery of therapeutic agents is crucial. The 

ability to control the transport time of the emulsion droplets by adjusting the applied 

force could lead to more efficient and targeted drug delivery strategies. By fine-tuning 

the applied force, it may be possible to enhance the penetration of droplets through the 

intercellular gaps of tissues, ensuring that the active agents are distributed evenly and 

reach the site of action effectively. Moreover, the relationship between force and 

transport properties could be further exploited to understand the interaction of droplets 

with complex tissue structures. For example, in dense or fibrous tissues, higher forces 

might be required to achieve the same level of diffusion as in less dense tissues. 

Understanding these relationships can aid in the design of emulsion-based delivery 

systems that are customized for specific tissue types and therapeutic needs. 
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Figure 23 The Influence of Pushing Force on Pickering Emulsion 

 

Concurrently, the influence of the statistic average initial velocity vector direction 

of the Pickering emulsion on its transport efficiency was examined. Figure 24 presents 

the impact of the initial velocity vector direction of Pickering emulsion droplets on their 

transport efficiency. The direction vector (1,0,0) represents a direction perpendicular to 

the axial alignment of the cells, whereas the direction vector (0,0,-1) represents a 

direction parallel to the axial alignment of the cells. It is observable that the transport 

efficiency is higher when the average direction vector of the velocity is closer to the 

axial alignment direction of the cells. Intuitively, when the movement direction of 

droplets is aligned with the principal axis of the cells, their path through the intercellular 

gaps is more direct, which may reduce the resistance they encounter during motion, 

thereby enhancing transport efficiency. These findings emphasize the importance of 

considering not only the chemical and physical properties of emulsion droplets in the 

design of emulsion-based drug delivery systems but also their kinematic characteristics, 

including the direction of the direction of the velocity vector. By adjusting the initial 

direction of velocity during the injection or delivery process, the delivery path and 

timing of therapeutic agents can be optimized. 
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Figure 24 The Influence of the Direction Vector of Pickering Emulsion 

 

Moreover, in the modeling, the size of the intercellular gaps between cells is altered 

to inspect the influence of the cellular environment within the tissue on the Pickering 

emulsion. Figure 25 denotes that larger intercellular gaps actually lower the diffusion 

coefficient, while the transport time of the Pickering emulsion consequently increases. 

The results shown in Figure 7 might seem counterintuitive to initial assumptions, which 

could be attributed to the following reasons: Here, the Pickering emulsion droplets have 

an average initial velocity direction that is perpendicular to the axial alignment of the 

cells. Therefore, lateral diffusion contributes significantly to the diffusion process, and 

the increase in intercellular gaps markedly lengthens the path for lateral diffusion. This 

increases the likelihood of encountering obstacles or taking more circuitous paths, as 

the droplets are more influenced by interactions with the spaces between cells, with an 

increased chance of collisions, thereby enhancing the complexity of the path during 

diffusion. This complexity leads to a significant increase in energy dissipation 

throughout the diffusion process, thereby reducing the droplets' kinetic energy, 

resulting in a decreased diffusion coefficient and increased transport time. Typically, 

studies on near-wall hindered diffusion focus on a single channel, whereas the transport 

phenomena examined here within the tissue present a complexity that goes far beyond 
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a single channel, specifically, for Pickering emulsion droplets, the contributions 

resulting from longer lateral diffusion distances, more complex diffusion pathways, and 

more frequent interactions with the walls of the diffusion channels outweigh the 

contributions from single near-wall hindered events [82], thus exhibiting the 

characteristics seen in Figure 25. 

 

 

Figure 25 The Influence of Size of Gaps between Cells 

 

Further investigations are conducted on other factors affecting the transport 

performance of Pickering emulsion, including viscosity (represented by the DPD 

dissipative force parameter gamma), temperature, interaction between Pickering 

emulsion and cell (represented by DPD conservative force parameter between DPD 

particle and cell model), and the initial velocity magnitude of Pickering emulsion. 

Considering the fluctuation-dissipation theorem and the fact that the shear modulus of 

cells changes with variations in environmental temperature, Table 6 summarizes the 

impact of temperature variations on various parameters within the model. Table 7 

summarizes the variance values of the diffusion coefficient under the influence of 

various parameters, indicating that the variance of the 𝛾𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  parameter of DPD 
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emulsion droplets is the smallest, implying that surface viscosity has a relatively smaller 

impact on the transport of Pickering emulsion compared to the other parameters listed 

here. 

 

Table 6 Analyses for Parameters of Temperature 

𝑇 (𝑘𝐵𝑇)𝑀 (𝑘𝐵𝑇)𝑀 𝜎𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒  𝜎𝑐𝑒𝑙𝑙  𝜇0
𝑃 𝜇0

𝑀 

296K  4.086 × 10−21𝐽 0.0848 2.763 2.256 6.30 × 10−6𝑁/𝑚 100.00 

303K  4.183 × 10−21𝐽 0.0868 2.796 2.282 6.16 × 10−6𝑁/𝑚 97.73 

308K  4.252 × 10−21𝐽 0.0882 2.819 2.301 6.12 × 10−6𝑁/𝑚 97.20 

310K  4.280 × 10−21𝐽 0.0888 2.828 2.309 5.80 × 10−6𝑁/𝑚 92.06 

312K  4.307 × 10−21𝐽 0.0894 2.837 2.316 5.39 × 10−6𝑁/𝑚 85.60 

314K  4.335 × 10−21𝐽 0.0900 2.846 2.324 4.90 × 10−6𝑁/𝑚 77.78 

 

Table 7 Analysis of Variance of Simulation Parameters 

Parameter Range Mean Value Variance 

𝛾𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 25~45 0.085007429 1.89194 × 10−6  

𝑎𝑖𝑛𝑡𝑒𝑟 1~5 0.088832662 5.66877 × 10−6 

𝑇 296~314𝐾 0.090481135 8.93948 × 10−6 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 4~15𝜇𝑚/𝑠 0.092851366 7.54986 × 10−6 

 

Notice that this study didn’t consider the adhesion influence between cells and 

emulsion particles, which could further decrease the transport efficiency of Pickering 

emulsion droplets between tissues and affect the distribution of Pickering emulsion in 

a real muscular tissue environment. Besides, in order to reflect the pressure within the 

tissue, this simulation is during an unsteady process. The current model only 

incorporates the effects of radial repulsive conservative forces; some research work 

[83–86] considering DPD particles with fixed charge may suggest the potential to 

include the effects of charge forces in the model. As for the influence of viscosity, this 

study doesn’t show the apparent correlation on the 𝛾𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 parameter, which could be 

concluded from the thermostat setting is not enough, which is the Langevin thermostat 
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in this study, maintaining the temperature by modifying Newton’s equations of motion 

[87]. 

 

4.5 Summary 

Based on the elaborated results and discussions, the following conclusions can be 

drawn regarding the transport phenomenon of Pickering emulsion between muscular 

cells: 

 

a. The transport efficiency of Pickering emulsion is significantly influenced by a 

variety of factors including the conservative force parameter in the DPD method, local 

cellular tissue environmental factors, viscosity, temperature, interaction between 

Pickering emulsion and cell, and the initial velocity magnitude of Pickering emulsion. 

 

b. The impact of the local cellular environment within the tissue significantly 

affects the transport efficiency of Pickering emulsion. Specifically, greater local driving 

forces, which could be due to the pressure in the local tissue cellular environment or 

external driving forces from muscle injection process or concentration differences, 

expedite the traversal of Pickering emulsion droplets through the intercellular gaps 

within the tissue. Moreover, the orientation of the initial velocity vector of the Pickering 

emulsion towards the axial direction of the cells enhances the transport efficiency. 

Conversely, an increase in the size of the intercellular gaps leads to a decrease in the 

diffusion coefficient and an increase in the transport time of the Pickering emulsion. 

 

c. An increase in the conservative force parameter a in the DPD method, 

representing the radial repulsive force between particles, leads to a decrease of the 

diffusion coefficient and a corresponding increase of diffusion time for Pickering 

emulsion. This suggests that a larger mutual repulsive force among Pickering emulsion 



 64 

particles potentially results in lower transport efficiency. The magnitude of this 

repulsive force could be attributed to factors such as the surface modification or polarity 

size of the Pickering emulsion. Among other investigated factors, the variance of the 

gamma parameter of DPD emulsion droplets is found to be the smallest, suggesting that 

surface viscosity has a relatively lesser impact on the transport of Pickering emulsion. 

 

These findings provide a comprehensive understanding of the various factors 

affecting the transport efficiency of Pickering emulsion between muscular cells, which 

is crucial for optimizing the transport process in practical applications. The insights 

gained from this study could be instrumental in designing more effective transport 

systems for Pickering emulsion, thereby facilitating its potential applications in drug 

delivery and other relevant fields.  

 

The study highlights key design principles for biocompatible Pickering emulsions 

used as drug delivery systems by exploring the effects of various factors on their 

transport efficiency. Increasing the conservative force parameter 'a' in DPD simulations 

decreases diffusion coefficients and increases diffusion time, indicating a stronger 

repulsive force and greater particle separation. This could enhance the stability of the 

emulsion, beneficial in applications like slow-release drug delivery systems. Local 

driving forces, such as pressure and forces from muscle injections, can speed up the 

transport of emulsion droplets through tissue intercellular gaps, suggesting that external 

force application could be fine-tuned for more effective and targeted drug delivery. 

Furthermore, the orientation of the initial velocity vector of the emulsion affects 

transport efficiency, with alignment parallel to the axial alignment of cells being more 

efficient. The size of intercellular gaps has a complex influence on transport, with larger 

gaps potentially increasing transport time due to more complex diffusion paths and 

energy dissipation. Other factors like viscosity, temperature, emulsion-cell interactions, 

and the initial velocity magnitude of the emulsion also affect transport performance.  
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Additionally, based on the analysis of the physiological structure of lymphatic 

capillaries and collecting vessels, the 2-micron-wide pillow structures on capillary 

lymphatics, which open and close under interstitial to intraluminal pressure gradients, 

may provide a pathway for fluid transport for the transportation of Pickering emulsion. 

This mechanism potentially facilitates the movement of Pickering emulsion within the 

lymphatic system, thereby broadening the understanding of how the physiological 

architecture can influence the transport dynamics of Pickering emulsion. This aspect 

exemplifies the interdependence between biological structures and the transport 

phenomena of nano or micro-scale emulsions like Pickering emulsion, enriching the 

comprehension of how engineering and biological systems can be integrated for 

enhanced performance in biomedical applications. 
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Chapter 5 Conclusions and Perspectives 

5.1 Conclusion 

Pickering emulsion has become an advantageous material for vaccine adjuvants in 

recent years because of its good stability, high controllability, and excellent 

biocompatibility, especially the vaccine adjuvant prepared with Pickering emulsion in 

Xia et al.'s experiment owned the advantage of high efficiency of immune response, 

and they developed a deformable albumin-stabilized Pickering emulsion according to 

the dual LN transfer strategy combining the intracellular pathway and intercellular 

pathway, which clearly augments antigen build-up and activates lymph node drainage, 

thereby efficiently boosting cellular immune reactions. However, comprehensive 

studies elucidating the intracorporeal delivery mechanisms of Pickering emulsions, 

especially the intricate intercellular interactions of deformable Pickering emulsions, 

remain significantly scarce and have historically received minimal attention. The 

current understanding of the drug delivery process, particularly quantitative analysis 

and simulated models is still quite limited. Most knowledge of this process, especially 

for soft and deformable droplets like Pickering emulsions, remains vague. At present, 

the depth of understanding and simulation of internal kinematics at the tissue level 

within the human body is profoundly limited, and there is a significant lack of effective 

models. To clarify this mechanism and facilitate the future development of this material, 

in this research, the intrinsic mechanism for the key process from perspective of tissue 

level was analyzed in detail by employing computational simulation techniques.  

 

First, the thesis elucidates the delivery process of Pickering emulsion through 

intracellular and intercellular pathways at the tissue level, according to the 

physiological characteristics of tissues and cells related to the transport process of 

Pickering emulsion. The total process could be divided into the following steps 
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separately in sequence: muscular injection, transport in skeletal muscle tissue, flow 

through gaps between flaps of lymphatic endothelial cells of lymph capillary, flow 

through lymph vaccine, and accumulation in the lymph node. For the intracellular 

pathway, Antigen-presenting cells, such as dendritic cells, undergo the process of 

antigen uptake within skeletal muscle tissue, where the antigen carrier during delivery 

is the dendritic cell itself. For the intercellular pathway, dendritic cells undergo the 

process of antigen uptake within the lymph nodes, and the antigen carrier during 

delivery in this scenario is the Pickering emulsion. The opening and closing mechanism 

of the flap of lymph endothelial cells of lymphatic capillaries under the influence of 

internal and external pressure provides a fluid way for the transport of flexible particles. 

 

Secondly, to depict the internal kinematics at the tissue level within the human 

body, this thesis enhanced a more advanced model at the mesoscale according to the 

dissipative particle dynamics simulation method. By organizing and clarifying the 

relationships between concepts, the scaling factor was derived, further elucidating its 

relationship to coarse-graining, and this understanding was extended to a variety of cell 

types. The DPD simulation framework represents a significant advance in the modeling 

of natural systems, especially in the field of drug delivery. It stands as a robust approach 

to understanding the complex interactions within cellular environments, paving the way 

for future innovations in the simulation and analysis of biological systems. 

 

Thirdly, according to features of the cellular model under the DPD simulation 

framework, this thesis successfully applied the DistMesh algorithm to generate the 

different shape cells to depict its cytoskeletal. The mesh results indicate that the 

distribution of nodes exhibits a commendable level of uniformity. The comparatively 

symmetrical triangles align well with the requirements for a two-dimensional tetrameric 

lattice of the cytoskeleton, suggesting suitability for representing the cellular 

framework. Besides based on this model, the stretching test of red blood cell shows a 
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good mechanical response consistent with the experiment. It paves the way for future 

investigations into the mechanical properties of cells and the role of the cytoskeleton. 

It provides robust tool and theory support for further observations of biological activity 

from the perspective of cellular organization. 

 

Fourthly, the research first investigates the Pickering emulsion transport in the 

skeletal muscle tissue to clarify the intercellular pathway mechanism and examine 

various factors affecting the transport process. The transport efficiency of Pickering 

emulsions is significantly influenced by a range of factors. The conservative force 

parameter in the DPD method affects the repulsion between particles, impacting the 

diffusion coefficient and transport time. Local cellular tissue environmental factors, 

including local driving forces such as pressure and external forces from processes like 

muscle injection or concentration gradients, facilitate the movement of Pickering 

emulsion droplets through tissue gaps. Additionally, factors such as viscosity, 

temperature, emulsion-cell interactions, and the initial velocity of the emulsion all play 

roles in transport efficiency. The initial velocity's directionality towards the cell axial 

direction also enhances efficiency, while larger intercellular gaps can reduce it. 

Interestingly, the surface viscosity, as indicated by the gamma parameter variance in 

DPD emulsion droplets, appears to have a lesser impact compared to other factors like 

surface modification or polarity size of the emulsion, which affect the magnitude of the 

repulsive force among the emulsion particles. 

 

This study sheds light on the nuanced interplay between engineered and biological 

systems influencing the transport dynamics of Pickering emulsions. Such insights hold 

valuable potential for optimizing transport processes in practical biomedical 

applications like drug delivery. Importantly, the desired transport efficiency varies 

depending on the specific application. For instance, while a more rapid transport might 

be crucial for lymph node-targeted drug delivery, certain applications requiring a 
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slower release of active components could benefit from the reduced transport efficiency 

observed with increased particle repulsion or larger intercellular gaps. 

 

5.2 Perspectives 

Pickering emulsions are emerging as potent vehicles for vaccine adjuvants, prized 

for their stability, tunability, and biocompatibility. The work by Xia et al. highlights a 

novel albumin-stabilized Pickering emulsion designed for dual lymph node (LN) 

transfer pathways—both intracellular and intercellular. This dual-pathway approach 

maximizes antigen delivery, enhancing LN accumulation and activation, thereby 

stimulating a robust cellular immune response. Despite the advantages, a 

comprehensive understanding of Pickering emulsion transport mechanisms within the 

body, particularly the complex intercellular interactions, remains underexplored. The 

current landscape of quantitative analysis and simulated models for drug delivery is 

nascent, with the transport processes, especially of malleable droplets like Pickering 

emulsions, remaining largely uncharted. 

 

Crucially, this research methodically examines the transport of Pickering 

emulsions in skeletal muscle tissue, establishing a more intricate understanding of the 

intercellular pathway and identifying multiple influencing factors. It reveals how local 

cellular tissue environments, viscosity, temperature, and other variables can affect the 

efficiency of Pickering emulsion transport. The findings point to the potential for 

further explorations into the mechanical behaviors of cells and the intricacies of 

biological activity at a cellular level. 

 

In advancing the cellular model that incorporates particles, future efforts will focus 

on achieving more precise modeling by incorporating the effects of angular momentum, 

considering the impact of solvent particles, and coupling with the Grand Canonical 
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Monte Carlo (GCMC) method. Additionally, the influence of boundary conditions will 

be meticulously considered. This includes a more accurate calculation of the Cauchy 

stress, leveraging a modern and precise expression of virial stress. Regarding the 

investigation of vaccine delivery via the intercellular pathway, further simulations are 

necessary to understand the valves' opening and closing mechanism in lymphatic 

endothelial cells (LECs) of capillary lymphatic vessels, especially under varying 

pressure conditions influenced by Pickering emulsions. Moreover, simulating 

lymphatic flow within lymphatic vessels in the presence of Pickering emulsions will 

provide deeper insights into the complex dynamics of vaccine distribution and the 

resulting immunological responses. These enhancements in modeling and simulation 

are pivotal in refining our understanding of vaccine delivery mechanisms, ultimately 

leading to the development of more efficient and targeted vaccine administration 

strategies. 

 

In summary, this study not only advances our theoretical and practical knowledge 

of Pickering emulsions as vaccine adjuvants but also sets the stage for future 

breakthroughs in the simulation and analysis of biological transport systems, 

contributing to the development of more effective biomedical materials. 
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Appendix 

1. Script of Mesh Generation for Different Types of Cells 

Presented herein is a script for the generation of surface meshes for three-dimensional 

geometric figures, employing Matlab syntax and constructed in accordance with the 

Distmesh toolkit. The Distmesh toolkit is accessible online. Notice that it has been 

observed in practical modeling endeavors that Distmesh exhibits reduced stability in 

mesh generation for three-dimensional shapes with excessive curvature, such as 

epithelial cells. These cells, characterized by a thickness markedly small relative to 

their length and width, lead to increased curvature at their edges. 

 

% Define circular parameters: topological flag, and edge length 

% leaf = 1; sphere = 2; capsule = 3; ellipsoid = 4; concave = 5 

for flag = 1:5 

    if flag == 1 

        h0_values = [0.5,0.8,1,2,3]; 

    elseif flag == 2 

        h0_values = [1,2,3,4,5]; 

    elseif flag == 3 

        h0_values = [5,6,7,8.1,9]; 

    elseif flag == 4 

        h0_values = [0.4,0.6,0.8,1,2]; 

    elseif flag == 5 

        h0_values = [0.3,0.5,0.7,0.91,1.1]; 

    end 

     

    for h0 = h0_values 

        % Define the three-dimensional shape geometric parameters 

        switch flag 

            case 1 

                % Rotation matrix rotating 60 degrees around the z-axis 

                A = [1/2, -sqrt(3)/2, 0; sqrt(3)/2, 1/2, 0; 0, 0, 1];  

                % Rotation matrix rotating 120 degrees around the z-axis  

                B = [-1/2, -sqrt(3)/2, 0; sqrt(3)/2, -1/2, 0; 0, 0, 1]; 

                % The radii lengths of the flap ellipsoid along the x-axis, y-axis, and z-axis 
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                a = 48; b = 32; c = 8;  

                % The radius length of the cellular ellipsoid 

                d = 36; e = 36; f = c;  

            case 2 

                rs = 40; % radius of sphere 

            case 3 

                % Parameters of the hemisphere radius and cylinder height 

                r = 50; h = 1900;  

            case 4 

                % The radii lengths of the flap ellipsoid along the x-axis, y-axis, and z-axis 

                ea = 80; eb = 48; ec = 8;  

            case 5 

                D0 = 7.82; % cell diameter 

                a0 = 0.0518; a1 = 2.0026; a2 = -4.491; 

        end 

        % Define SDF 

        switch flag 

            case 1 

                fd = @(p) dunion(dunion(dunion(sum((p).^2./ ... 

                    repmat([a^2, b^2, c^2], size(p, 1), 1), 2) - 1, ... 

                    sum((p*A).^2./repmat([a^2, b^2, c^2], size(p, 1), 1), 2) - 1), ... 

                    sum((p*B).^2./repmat([a^2, b^2, c^2], size(p, 1), 1), 2) - 1), ... 

                    sum((p).^2./repmat([d^2, e^2, f^2], size(p, 1), 1), 2) - 1); 

            case 2 

                fd = @(p) dsphere(p,0,0,0,rs); 

            case 3 

                fd = @(p) p(:,1).^2 + p(:,2).^2 + (1/4) * (abs(p(:,3) - h/2) + ... 

                    abs(p(:,3) + h/2) - h).^2 - r^2; 

            case 4 

                fd = @(p) sum((p).^2./repmat([ea^2, eb^2, ec^2], size(p, 1), 1), 2) - 1; 

            case 5 

                fd = @(p)(D0 .* sqrt(1 - 4 .* (p(:,1).^2 + p(:,2).^2) / D0^2) .* ... 

                    (a0 + a1 .* (p(:,1).^2 + p(:,2).^2) / D0^2 + a2 .* (p(:,1).^2 + ... 

                    p(:,2).^2).^2 / D0^4)).^2 - p(:,3).^2; 

        end 

        % Define mesh generation parameters 

        fh = @huniform; % uniform distribution 

        % Define the size of the box 

        switch flag 

            case 1 

                box0 = [-(max(a,b)+1),-(max(a,b)+1),-(c+1); ... 

                    (max(a,b)+1),(max(a,b)+1),(c+1)]; 
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            case 2 

                box0 = [-rs,-rs,-rs; rs,rs,rs]; 

            case 3 

                box0 = [-r,-r,-(2*r+h); r,r,(2*r+h)]; 

            case 4 

                box0 = [-2*ea,-2*eb,-2*ec; 2*ea,2*eb,2*ec]; 

            case 5 

                box0 = [-D0,-D0,-D0; D0,D0,D0]; 

        end 

        box = 1.1*box0; 

        [p,t] = distmeshsurface(fd,fh,h0,box); % Mesh generation 

    end 

end 
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2. Mesh Results of Different Types of Cells 

In the evaluation of mesh generation quality for computational simulations, two 

standard metrics are commonly employed: the minimum mesh quality which is the 

minimized value of (2 × √3 × area ÷ perimeter) for all every triangular area, and the 

coefficient of variation of area which is defined as the ratio of the standard deviation to 

the mean for all triangular area. When the minimum mesh quality approaches zero, it 

typically indicates that the elements within the mesh are highly anisotropic, exhibiting 

a slender or elongated shape. A lower value of coefficient of variation of area signifies 

a more uniform distribution of element areas with the mesh, which is generally 

indicative of superior mesh quality. Figure 26-30 evaluates different shapes cellular 

mesh results. 

 

Figure 26 Evaluation of Capsule Shape Mesh Result 
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Figure 27 Evaluation of Concave Shape Mesh Result 

 

 

Figure 28 Evaluation of Ellipsoid Shape Mesh Result 
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Figure 29 Evaluation of Leaf Shape Mesh Result 

 

 

Figure 30 Evaluation of Sphere Shape Mesh Result 

 

Table 8 Percent of vertices with different connections for capsule shape 

length 

of 

edge 

Percentage of 

vertices with 5 

connections 

Percentage of 

vertices with 6 

connections 

Percentage of 

vertices with 7 

connections 

Percentage of 

vertices with other 
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5 0.28% 99.47% 0.24% - 

6 0.50% 99.05% 0.45% - 
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7 0.41% 99.24% 0.34% - 

8.1 0.47% 99.16% 0.37% - 

9 0.45% 99.23% 0.32% - 

 

Furthermore, because the structural characteristics of the cell membrane’s 

cytoskeleton, specific requirements are imposed on the connectivity of grid nodes. A 

grid with 6-connectivity is considered the most ideal configuration in this context. 

Consequently, further analysis has been conducted to examine the proportion of nodes 

with different connectivity patterns across cells of various shapes. Table 9-12 amylases 

these features. 

Table 9 Percent of vertices with different connections for concave shape 

length 

of 

edge 

Percentage of 

vertices with 5 

connections 

Percentage of 

vertices with 6 

connections 

Percentage of 

vertices with 7 

connections 

Percentage of 

vertices with other 

connections 

0.3 7.39% 85.81% 6.80% - 

0.5 9.38% 82.84% 7.77% - 

0.7 9.31% 84.31% 6.37% - 

0.91 12.21% 80.23% 6.40% 1.16% 

1.1 13.70% 78.77% 5.48% 2.05% 

 

Table 10 Percent of vertices with different connections for ellipsoid shape 

length 

of 

edge 

Percentage of 

vertices with 5 

connections 

Percentage of 

vertices with 6 

connections 

Percentage of 

vertices with 7 

connections 

Percentage of 

vertices with other 

connections 

0.4 3.91% 92.19% 3.88% 0.02% 

0.6 4.13% 91.76% 4.11% 0.01% 

0.8 4.16% 91.74% 4.06% 0.02% 

1 4.58% 90.88% 4.53% 0.01% 

2 5.90% 88.36% 5.74% - 

 

Table 11 Percent of vertices with different connections for leaf shape 
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length 

of 

edge 

Percentage of 

vertices with 5 

connections 

Percentage of 

vertices with 6 

connections 

Percentage of 

vertices with 7 

connections 

Percentage of 

vertices with other 

connections 

0.5 3.83% 92.36% 3.81% 0.00% 

0.8 4.62% 90.81% 4.57% - 

1 5.10% 89.87% 5.03% - 

2 6.93% 86.41% 6.66% - 

3 7.26% 86.09% 6.65% - 

 

Table 12 Percent of vertices with different connections for sphere shape 

length 

of 

edge 

Percentage of 

vertices with 5 

connections 

Percentage of 

vertices with 6 

connections 

Percentage of 

vertices with 7 

connections 

Percentage of 

vertices with other 

connections 

1 4.99% 90.05% 4.95% - 

2 6.39% 87.38% 6.23% - 

3 7.50% 85.35% 7.14% - 

4 10.91% 78.85% 10.24% - 

5 9.70% 81.59% 8.71% - 
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