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Abstract. Background/Aim: This study aimed to elucidate the
effect of radiotherapy on expression of immune response-
related genes in cervical cancer tissues. Materials and
Methods: Tumor tissues were obtained from 16 patients with
cervical cancer before initiation of radiotherapy and after
treatment with 10 Gy X-rays, delivered in five fractions.
Expression of 730 immune response-related genes was assessed
using an nCounter PanCancer Immune Profiling Panel
(NanoString Technologies. Seattle, WA, USA). Results: Of the
730 genes examined, 41 showed significant changes (fold
change of >1.5 or <0.66) in expression in post-radiotherapy
samples (28 up-regulated and 13 down-regulated). Analysis of
immune cell type-specific genes suggested predominant up-
regulation of those related to innate immunity postradiotherapy.
Interestingly, cytotoxic T-lymphocyte-associated protein
(CTLA4), a key negative regulator of T-cell activation, was
marked down-regulated in 93.7% of patients, with an average
fold-change of 2.0. Conclusion: To our knowledge, this study
is the first to show down-regulation of CTLA4 in clinical
cervical cancer tissues after treatment with radiotherapy.
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Radiotherapy (RT) is one of the three pillars of cancer therapy,
along with surgery and chemotherapy. Conventionally, it is
considered as a local treatment used to shrink or eliminate a
tumor inside the irradiated field; however, it can have systemic
effects because it induces antitumor immune responses.
During the past few decades, immune responses induced by
RT have been identified. These include immunogenic cell
death, which is a type of cell death leading to dendritic cell
recruitment followed by T-cell activation (1, 2), and up-
regulation of class I major histocompatibility complex
expression by irradiated cancer cells, which contributes to
tumor antigen recognition by T-cells (3-5). Recent studies
demonstrate induction of more specific immune responses,
such as transcription of immunogenic mutant genes and the
cyclic GMP-AMP synthase—stimulator of interferon genes
pathway in dendritic cells and tumor cells; DNA damage in
tumor cells triggers inflammatory responses (6, 7). By
contrast, and unlike in basic research, there is little evidence
of RT-mediated antitumor immune responses in clinical
samples. One of the reasons for this is the difficulty in
obtaining tumor tissues. Indeed, most analyses of local
immune responses at the clinical level use postoperative
specimens that have undergone neoadjuvant RT; therefore,
immune responses in directly irradiated lesions are still
unclear. Furthermore, from a technical point of view,
immunohistochemical staining (which is frequently used in
clinical studies) has limited sensitivity with respect to
detection of target molecules, as well as the number of
molecules that can be analyzed simultaneously.

nCounter is a method that labels arbitrary nucleic acids
with sequence-specific fluorescence barcodes and then
digitally counts the fluorescence signals, resulting in highly
sensitive and comprehensive measurement of mRNA
expression in clinical samples (8). The PanCancer Immune
Profiling Panel is an nCounter analysis package that
includes 730 immune response-related genes. This method
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Table 1. Patient characteristics.

Characteristic (n=16) Value
Follow up period, months Median (range) 63 (4-105)
Age, years Median (range) 59.5 (35-77)
FIGO stage, n (%) 1B 1(62%)
11 5 (31.3%)
11 10 (62.5%)
Tumor diameter <40 mm 1(62%)
41-60 mm 9 (56.3%)
>60 mm 6 (37.5%)
Pelvic LN involvement, n (%) Negative 5 (31.3%)
Positive 11 (68.7%)
PALN involvement, n (%) Negative 10 (62.5%)
Positive 6 (37.5%)
HPV type, n (%) HPV16 7 (43.7%)
HPV18 2 (12.5%)
Other 4 (25.0%)
Not detected 3 (18.8%)
Concurrent chemotherapy Yes 13 (81.2%)
No 3 (18.8%)
Tumor mutational burden Median (range) 11.1 (4.1-68.7)
PIK3CA mutation, n (%) Negative 10 (62.5%)
Positive 6 (37.5%)
ARID1A mutation, n (%) Negative 9 (56.3%)
Positive 7 (43.7%)
NOTCH]I mutation, n (%) Negative 8 (50.5%)
Positive 8 (50.5%)
FBXW?7 mutation, n (%) Negative 11 (68.7%)
Positive 5 (31.3%)

ARIDIA: AT-rich interaction domain 1A; FBXW7: F-box and WD repeat
domain-containing 7; FIGO: International Federation of Gynecology
and Obstetrics 2009; HPV: human papillomavirus; LN: lymph node;
NOTCHI: notch receptor 1; PALN: para-aortic lymph node; PIK3CA:
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha.

enables comprehensive analysis and comparison of
immune-related gene expression levels, e.g. between
normal and tumor tissues, or before and after treatments
containing immune checkpoint inhibitors (9, 10). As
mentioned above, the effects of RT on expression of
immune response-related genes in tissues subjected to RT
have not been fully elucidated. Therefore, we used
nCounter technology to examine the effects of RT on
expression of immune response-related genes in cervical
cancer tissues.

Materials and Methods

Patients. Patients who met the following inclusion criteria were
enrolled retrospectively: (i) Newly diagnosed and pathologically
confirmed squamous cell carcinoma of the uterine cervix, (ii) treated
with definitive RT at Gunma University Hospital from 2006 to
2013, and (iii) available fresh frozen tumor tissues obtained by
punch biopsy before initiation of RT (pre-RT) and after treatment
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Figure 1. Kaplan-Meier survival estimates of overall (OS) and
progression-free (PFS) survival for the present study cohort (n=16).

with 10 Gy X-rays in five fractions (post-RT). The interval between
initiation of RT and biopsy of the specimen after 10 Gy RT was
approximately 7 days.

Definitive RT, comprising external beam RT and computed
tomography-based high-dose-rate brachytherapy, was performed as
described previously (11). Patients with stage III-IV disease, tumor
diameter >40 mm, or nodal involvement received cisplatin-based
chemotherapy (40 mg/m?2 weekly) concurrently with RT.

Patients were followed up every 1-3 months for the first 2 years
after treatment and then every 3-6 months for the subsequent 3 years.
Disease status was assessed at each follow-up by gynecological
examination and imaging (computed tomography or magnetic
resonance). Overall (OS) and progression-free (PFS) survival were
recorded from the day of initiation of RT until the last follow-up. Data
pertaining to somatic mutations in genes with a mutation prevalence
greater than 30% were collected from previous reports (12, 13).

The study was conducted in accordance with the principles of the
Declaration of Helsinki and approved by the institutional review
board of Gunma University Hospital (approval number 1109). The
requirement for informed consent was waived by the Institutional
Review Board of Gunma University Hospital due to the opt-out
design of the study.

Analysis of immune response-related gene expression. Expression of
immune response-related genes was analyzed using an nCounter
Analysis System with a PanCancer Immune Profiling Panel
(NanoString Technologies, Seattle, WA, USA) (8). This panel
consists of 730 immune response-related genes, covering 24 different
immune cell types, and both the adaptive and innate immune
responses (14). Analysis was performed as reported previously (9,
14-17). Briefly, total RNA was extracted from frozen tumor tissues
using a NucleoSpin RNA kit (Macherey-Nagel, Diiren, Germany).
The quality of the extracted RNA was tested by absorbance
measurements and electrophoresis using the following cutoffs: >60
ng/ul for total RNA concentration, >300 ng for total RNA quantity,
and =50% for the electropherogram area corresponding to >300-
nucleotide fragments. Using 300 ng of RNA per sample,
hybridization was performed at 65°C for 16 h using nCounter Prep
Station (NanoString Technologies). Hybridized probes were bound
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Table II. Genes whose expression was changed by more than 1.5-fold post-radiotherapy.

Gene Encoded protein Fold change p-Value g-Value
Up-regulated CXCR2 C-X-C Motif chemokine receptor 2 2.10 0.004 0.076
IFNAI7 Interferon alpha 17 2.02 0.002 0.065
CXCL2 C-X-C motif chemokine ligand 2 2.00 0.009 0.092
TREM1 Triggering receptor expressed on myeloid cells 1 1.99 0.002 0.059
CXCL5 C-X-C Motif chemokine ligand 5 1.85 0.006 0.082
SELL Selectin L 1.83 0.005 0.082
MME Membrane metalloendopeptidase 1.77 <0.001 0.022
CEACAMS CEA Cell adhesion molecule 8 1.76 <0.001 0.008
CCL3L1 C-C Motif chemokine ligand 3 like 1 1.73 <0.001 0.053
CXCL3 C-X-C Motif chemokine ligand 3 1.73 0.004 0.076
SSX1 SSX Family member 1 1.72 0.028 0.157
CCLI8 C-C Motif chemokine ligand 18 1.71 0.042 0.193
ILIA Interleukin 1 alpha 1.67 0.028 0.157
LILRB2 Leukocyte immunoglobulin like receptor B2 1.62 0.007 0.088
CRI Complement C3b/C4b receptor 1 1.61 0.013 0.108
CT45A1 Cancer/testis antigen family 45 member Al 1.61 0.008 0.088
CEACAM1 CEA cell adhesion molecule 1 1.61 0.012 0.103
CCLI11 C-C Motif chemokine ligand 11 1.59 0.041 0.193
CCL22 C-C Motif chemokine ligand 22 1.58 0.009 0.092
CCL25 C-C Motif chemokine ligand 25 1.57 0.005 0.081
AIRE Autoimmune regulator 1.56 0.038 0.188
FPR2 Formyl peptide receptor 2 1.55 0.018 0.128
AMMECRIL AMMECR 1-like 1.54 0.024 0.146
ILIB Interleukin 1 beta 1.54 0.002 0.059
GAGEI1 G Antigen 1 1.53 0.010 0.098
ULBP2 UL16-binding protein 2 1.52 0.021 0.137
CCLI14 C-C Motif chemokine ligand 14 1.51 0.029 0.159
Down-regulated S100A12 S100 Calcium-binding protein A12 1.51 0.003 0.076
TNFRSF18 Tumor necrosis factor receptor superfamily member 18 0.48 <0.001 0.010
CTLA4 Cytotoxic T-lymphocyte associated protein 4 0.50 <0.001 0.022
GNLY Granulysin 0.58 0.011 0.102
ITGA4 Integrin subunit alpha 4 0.61 0.007 0.088
NOTCHI Notch receptor 1 0.61 0.001 0.056
LAG3 Lymphocyte activating 3 0.62 0.010 0.097
TTK TTK protein kinase 0.62 0.001 0.053
CD274 N/A 0.63 0.040 0.193
NLRC5 NLR family CARD domain-containing 5 0.64 0.006 0.083
BLNK B-Cell linker 0.64 0.029 0.161
TLR5 Toll-like receptor 5 0.64 0.015 0.115
IGF2R Insulin-like growth factor 2 receptor 0.66 0.025 0.150
HRAS HRas proto-oncogene 0.66 0.008 0.090

N/A: Not available. p-Values were calculated by paired #-test. g-Values were calculated by Benjamini-Hochberg method and those below 0.05 are

shown in bold.

and aligned to an nCounter Cartridge (NanoString Technologies) and
counted using a Digital Analyzer (NanoString Technologies) by
scanning 555 fields of view. Raw gene count data were processed
using nSolver 3.0 (NanoString Technologies). The background count,
determined as the average count of the negative controls, was
subtracted from the raw gene counts. The raw gene counts were then
normalized to the geometric mean of the positive control counts and
to that of internal reference genes.

Statistical analysis. Differences in gene expression between pre-
RT and post-RT samples from the same patient were examined

using a paired r-test. The outcomes of the paired t-test were
analyzed using the Benjamini-Hochberg method (18), with a false-
discovery rate (g) of 0.05. Differences in gene expression between
patients were stratified according to categorical variables and
examined using the Mann-Whitney U-test. Correlations between
gene expression and clinical or genetic factors (numerical
variables) were examined using Spearman’s rank-sum test. The
probability of OS and PFS was estimated using the Kaplan-Meier
method. All statistical analyses were carried out using GraphPad
Prism 8 (GraphPad Software, San Diego, CA, USA), with
statistical significance set at p=0.05.
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Figure 2. Volcano plot showing the statistical significance and the magnitude of postradiotherapy changes in expression of immune response-related
genes (n=730). Genes with a >1.5-fold or <0.66-fold change in expression and a value of p<0.05 (by paired t-test) and are indicated in magenta,
namely: AIRE: Autoimmune regulator; AMMECRIL: AMMECRI-like; BLNK: B-cell linker; CCL: C-C motif chemokine ligand CCL3LI: C-C motif
chemokine ligand 3-like 1; CEACAM: CEA cell adhesion molecule; CRI: complement C3b/C4b receptor 1; CT45A1: cancer/testis antigen family
45 member Al; CTLA4: cytotoxic T-lymphocyte-associated protein 4; CXCL: C-X-C motif chemokine ligand; CXCR2: C-X-C motif chemokine
receptor 2; FPR2: formyl peptide receptor 2; GAGEI: G antigen 1; GNLY: granulysin; HRAS: HRas proto-oncogene; IFNAI17: interferon alpha
17; IGF2R: insulin-like growth factor 2 receptor; ILI1A/B: interleukin 1 alpha/beta; ITGA4: integrin subunit alpha 4; LAG3: lymphocyte-activating
3; LILRB2: leukocyte immunoglobulin-like receptor B2; MME: membrane metalloendopeptidase; NLRC5: NLR family CARD domain-containing
5; NOTCH1: notch receptor 1; SI00A12: S100 calcium-binding protein A12; SELL: selectin L; SSX1: SSX family member 1; TLRS: toll-like receptor
5; TNFRSF 18: tumor necrosis factor receptor superfamily member 18; TREM1 : triggering receptor expressed on myeloid cells 1; TTK: TTK protein

kinase; ULBP2: UL16-binding protein 2.

Results

Data and samples from 18 patients were analyzed. Of these,
16 passed the quality test for RNA samples extracted from
pre-RT and post-RT tumor tissues. The median age of the 16
patients was 59.5 years (Table I), and the median follow-up
period was 63 months. Sixty-two percent of the patients had
stage III disease, as assessed by the International Federation
of Gynecology and Obstetrics classification, 2009 (19).
Ninety-three percent of the primary tumors were over 40 mm
in diameter. The 5-year OS rate was 86.6%, and the 5-year
PFS rate was 75.5% (Figure 1), which is consistent with the
outcome of a previous benchmark study (20). Thus, these
data suggest that the present study cohort is representative
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of patients with locally advanced cervical cancer treated with
definitive RT.

Next, we analyzed expression of 730 immune response-
related genes using the nCounter PanCancer Immune Profiling
Panel (NanoString Technologies) (8). We found that 182 genes
were significantly differentially expressed between the pre-RT
and post-RT samples (Figure 2). Among them, cyclin-
dependent kinase inhibitor 1 (CDKN1A) was significantly up-
regulated in post-RT samples, with the fourth-lowest p-value
(p=5.6x107; fold change=1.17). CDKNIA encodes p21, which
induces cell-cycle arrest in response to ionizing radiation (21).
In accordance with this, increased expression of p21 after RT
has been reported in clinical cervical cancer specimens (22).
Thus, these data suggest the technical robustness of the assays



Imamura er al: Immune Profiling of Radiotherapy-treated Cervical Cancer Tissues

.. | B-Cells p <0.05 AND:
] 7 1.50 < f.c.
= T-Cells| Helper i | 2 :
E Memory
(0] .
> ) f.c.<0.67
= Cytotoxic =
5 " 1 p>0.05
2 Natural killer
Gamma-delta
Dendritic cells |
? =
S | Macrophages 1
2 .
£ | Neutrophils [
> J
T | Eosinophils
c J
~ | Mast cells
0 20 40 60 80 100

Fraction (%)

Figure 3. Postradiotherapy changes in the expression of immune cell type-specific genes (n=97). The values indicate the fraction of genes in a given
cell type whose level was significantly altered post-RT. p-Values were assessed using a paired t-test. f.c.: Fold change.
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Figure 4. Change in expression of four genes, namely CEA cell adhesion molecule 8 (CEACAMS), cytotoxic T-lymphocyte-associated protein 4
(CTLA4), membrane metalloendopeptidase (MME) and tumor necrosis factor receptor superfamily member 18 (TNFRSF18), with g<0.05 (by
Benjamini—Hochberg method) and a >1.5-fold or <0.66-fold change between pre- and post-radiotherapy (RT) values in individual patients.

performed in the present study. Of the 182 differentially
expressed genes, 41 showed a >1.5-fold or <0.66-fold change
in expression; in the post-RT samples, 28 and 13 genes were
up-regulated and down-regulated, respectively (Table II).

Next, we analyzed immune cell types activated by RT,
focusing on 97 population-specific genes included in the
panel (23). Interestingly, we found evident up-regulation of
population-specific genes corresponding to neutrophils
(66.6%, 2/3 genes), macrophages (50.0%, 3/6 genes), and
dendritic cells (20.2%, 3/15 genes), whereas no genes
corresponding to these cell types were down-regulated
(Figure 3). These data indicate that RT induces innate
immune responses in cervical cancer tissues.

To further detect genes that showed robust changes in
expression in response to RT, we analyzed the expression
data using the Benjamini-Hochberg method (18). As a result,
four genes showed ¢<0.05 and >1.5-fold or <0.66-fold
change (Table II). Notably, cytotoxic T-lymphocyte
associated protein 4 (CTLA4), a negative regulator of T-cell
activation, was markedly down-regulated in the post-RT
samples; down-regulation was observed in 15 out of 16
patients, with an average 2.0-fold change (Figure 4).
Nevertheless, we were not able to identify clinical or genetic
factors associated with either steady-state expression or
down-regulation of CTLA4 (Table III). The influence of
CTLA4 status on treatment outcomes was not assessable due
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Table III. Association of expression of cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) with clinical and genetic factors.

p-Value
Factor Pre-RT Post-RT Fold change
Age 0.74 0.20 0.05
FIGO stage (IB+II vs. III) 0.11 0.95 0.71
Tumor diameter 0.73 0.11 0.64
Pelvic LN involvement 0.66 0.05 0.50
PALN involvement 0.63 0.42 0.11
Tumor mutational burden 0.18 0.33 0.93
PIK3CA mutations 0.21 0.87 0.71
ARIDIA mutations 0.40 >0.99 0.17
NOTCH]I mutations 0.79 0.57 0.15
FBXW7 mutations 091 091 >0.99

ARIDIA: AT-rich interaction domain 1A; FBXW7: F-box and WD repeat
domain-containing 7; FIGO: International Federation of Gynecology and
Obstetrics 2009; LN: lymph node; NOTCHI: notch receptor 1; PALN:
para-aortic lymph node; PIK3CA: phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha; RT: radiotherapy. p-Values were
calculated using the Mann-Whitney U-test (age, lymph node involvement,
and mutational status) or those using Spearman’s rank-sum test (other
factors).

to the small number of events (i.e. two events for OS and
four events for PFS). In addition, no clinical or genetic
factors were found to be associated with the kinetics of
membrane metalloendopeptidase (MME), CEA cell adhesion
molecule 8 (CEACAMS), or tumor necrosis factor receptor
superfamily member 18 (TNFRSFIS).

Discussion

Here, we describe comprehensive profiling of immune
response-related genes, which identified a significant
decrease in CTLA4 expression in cervical cancer tissues post-
RT. To the best of our knowledge, this is the first report to
demonstrate down-regulation of CTLA4 in response to RT in
clinical cervical cancer tissues. In addition, the results
suggest up-regulation of MME and CEACAMS, and down-
regulation of TNFRSF18, in response to RT.

CTLAA4, which is expressed constitutively by effector
regulatory T-cells (Tregs), is a member of the CD28 family
of receptors that binds competitively to CD80/86 (24-26).
Therefore, the present data suggest that RT reduces the
number of Tregs, or suppresses the activity of Tregs, in
cervical cancer tissues. Consistent with the present data,
exposure of isolated human T-cells to 10 Gy irradiation
reduced CTLA4 expression by CD4* Tregs (27). Importantly,
Tregs surviving 10 Gy irradiation had a weakened ability to
suppress CD8* T-cells. Similarly, Takenaka et al. reported
that a single dose of 10 Gy X-rays, or 24 Gy delivered in
three fractions, reduced Treg numbers in tumor tissue in a
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tumor transplant mouse model (28). These studies suggest
that our results may be due to a reduction of CTLA-4
expressing Tregs in response to X-rays. Reduced expression
of CTLA4 may be an immune activation response to RT (29).

Changes in expression of three other genes in response to
RT were also observed. MME, also known as CDI10, is
expressed by normal and pathological tissues, including
normal cervix stroma and endometriosis (30, 31). The effect
of RT on CD10% cells in cervical cancer tissues, and its
involvement in prognosis, is unknown. A previous study on
a head and neck squamous cell carcinoma cell line suggests
that CD10™" cells are radioresistant; therefore, the increase in
MME expression observed herein may reflect an RT-induced
decrease in CDI10~ cells, and relatively high survival of
CD10* cells (32). CEACAMS is also known as CD66b. A
previous immunohistochemistry study reported that CD66b
was expressed by tumor-associated neutrophils and was
observed in 78.8% of cervical cancer samples (33).
Intratumoral density of CD66b™ cells in cervical cancer
specimens affects the prognosis of patients who received RT
or surgery, but the underlying mechanism remains unclear
(33, 34). TNFRSF18 is a co-stimulatory factor expressed by
various cells, including T-cells, natural killer cells, and
neutrophils (35). Taken together, the results reported herein
are consistent with the post-RT kinetics of immune-related
genes in cancer tissues. However, a recent study showed that
irradiation with Cs-137 induced TNFRSF18 expression by
human mesothelioma cell lines (36). Interestingly,
sarcomatoid mesothelioma cell lines expressing the ligand of
TNFRSF18 show radioresistance. In the present study,
TNFRSF18 mRNA levels decreased significantly in samples
exposed to 10 Gy RT, which may reflect lymphocyte
depletion rather than TNFRSF 18 up-regulation or a relative
increase in the number of radioresistant T-cells. Changes in
TNFRSF18 expression in cervical cancer tissues after RT
should be addressed in the future.

This study has some limitations: (i) Evaluation was
conducted at only two time points (pretreatment and after
exposure to 10 Gy in five fractions), and (ii) the entire
cervical cancer tissue was analyzed. Although we found
up-regulation of innate immune responses at 10 Gy, it is
possible that induction of adaptive immunity may be
observed later. While the present analysis of whole tissue
allowed us to evaluate the actual response of the tissue to
10 Gy irradiation, additional analysis of cells isolated from
the same tissues may be valuable for detecting changes in
mRNA expression in a more detailed cell population e.g.,
such analyses can distinguish Tregs from other CTLA4
activated T-cells (37). In addition, it would be useful to
perform nCounter analysis on a larger number of patient
samples to clarify the prognostic impact. Lastly, other than
CTLA4, we were not able to investigate the genes whose
expression was significantly changed. This was due to the
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small sample size, i.e., detailed statistical analysis on those
genes might have increased the risk of false discovery.
Validation of the results of this study with larger cohort is
warranted.

In summary, we demonstrate for the first time the down-
regulation of CTLA4 in cervical cancer tissues in the clinical
setting of RT, indicating a potential role of RT in the
induction of an antitumor immune response in these tumors.
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