1	Protective Effects of Extracorporeal Shockwave Therapy on the Degenerated
2	Meniscus in a Rat Model
3	
4	Abstract
5	Background
6	Loss of the meniscus function in association with degenerative changes affects the
7	development and progression of knee osteoarthritis, for which there is currently no
8	effective treatment. Extracorporeal shockwave therapy (ESWT) is an established
9	treatment for musculoskeletal disorders. However, the therapeutic effect of ESWT on
10	meniscal degeneration remains unclear.
11	Purpose
12	To evaluate the therapeutic effect of ESWT on the degenerated meniscus of the anterior
13	cruciate ligament transection (ACLT) model.
14	Study Design
15	Controlled laboratory study.
16	Methods
17	Twelve-week-old male Wistar rats were randomly assigned to three groups (normal,
18	ESWT-, and ESWT+). Unilateral ACLT of the right knee was performed in the latter

19	two groups. At 4 weeks after ACLT, the ESWT+ group received 800 shockwave
20	impulses at an energy flux density of 0.22 mJ/mm ² in a single session. Histological
21	changes were examined in the posterior portion of the medial meniscus after ESWT
22	(n=15 per group). In addition, we performed real-time polymerase chain reaction (PCR)
23	after ESWT (n=5 per group) to analyze the expression of Connective tissue growth
24	factor/CCN family member 2 (CTGF/CCN2), SRY (sex determining region Y)-box 9,
25	vascular endothelial growth factor α , aggrecan, collagen type 1 alpha 2 (Col1a2), and
26	collagen type 2 alpha 1 (Col2a1). Immunohistochemistry was used to analyze the
27	expression of CTGF/CCN2 and Ki-67 (n=5 per group) after ESWT.
28	Results
28 29	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher
28 29 30	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly
28 29 30 31	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT– group at 4 and 12 weeks after ESWT. In addition, real-
28 29 30 31 32	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT– group at 4 and 12 weeks after ESWT. In addition, real- time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2a1 decreased 4
28 29 30 31 32 33	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT– group at 4 and 12 weeks after ESWT. In addition, real- time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2a1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA
28 29 30 31 32 33 34	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT– group at 4 and 12 weeks after ESWT. In addition, real- time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2a1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA expression of CTGF/CCN2 increased 24 h after ESWT, and the expression of Col2a1
28 29 30 31 32 33 34 35	Results The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT– group at 4 and 12 weeks after ESWT. In addition, real- time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2a1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA expression of CTGF/CCN2 increased 24 h after ESWT, and the expression of Col2a1 increased 4 weeks after ESWT (all significant data were P<0.05). The ratio of

37	ESWT+	group	after	ESWT.

38	Conclusion
39	The present study revealed that ESWT might suppress ACLT-induced meniscus
40	degeneration by stimulating cartilage repair factors and inducing collagen type 2.
41	Clinical relevance
42	ESWT can be an effective treatment to protect the degenerated meniscus in a rat model
43	of ACLT.
44	Key terms
45	extracorporeal shockwave therapy (ESWT); meniscal degeneration; cartilage repair
46	factor; CCN2; collagen type 2
47	What is known about the subject:
48	ESWT is known to protect the cartilage of the knee and prevent progression of
49	osteoarthritis, in addition to promoting the healing of meniscus tears.
50	What this study adds to existing knowledge:
51	ESWT can therefore be an effective option for the treatment of degenerated menisci
52	after an anterior cruciate ligament tear.
53	

54 Introduction

Knee osteoarthritis is a clinically common disease that affects a large number of patients 55 and has a significant impact on socioeconomics and patient well-being¹². The 56 57 degenerative changes and damage of the cartilage and meniscus are related to the development and progression of knee osteoarthritis^{1,3-5,22}. The meniscus has essential 58 59 roles in joint lubrication, shock absorption during dynamic loading, and stability of deficient cruciate ligaments^{6,19,23}. Because medial meniscus contact force and internal 60 61 hoop tension increase in anterior cruciate ligament-deficient knees, meniscal injury is thought to be associated with chronic anterior cruciate ligament tears^{10,27}. In knee 62 osteoarthritis induced by anterior cruciate ligament transection, meniscal degeneration 63 precedes cartilage degeneration³. Therefore, the prevention and treatment of meniscal 64 65 degeneration and damage are critical to prevent the development and progression of knee osteoarthritis after an anterior cruciate ligament tear. However, there is currently 66 67 no effective treatment for meniscal degeneration. Extracorporeal shock wave therapy (ESWT) has therapeutic effects on 68 musculoskeletal disorders²⁵. ESWT promotes biological processes, including tissue 69 70 regeneration, wound healing, angiogenesis, bone remodeling, anti-inflammation, and chondroprotective effects^{2,29,31-33}. Previous studies have revealed that ESWT 71

72	demonstrates chondroprotective effects by promoting the expression of collagen type 2
73	and osteogenesis growth factors, angiogenesis, subchondral bone remodeling, and anti-
74	inflammation ^{25,29,32,33} . On the other hand, in the repair process of meniscus tears, ESWT
75	affected the activation of factors related to meniscal healing and the activation of cell
76	proliferation, thereby promoting the repair process ¹¹ . However, the therapeutic effect of
77	ESWT on the degenerated meniscus remains unknown.
78	This study aimed to investigate the reparative or protective effects of ESWT on
79	the degenerated meniscus after an anterior cruciate ligament tear. In the present study,
80	the frequently used anterior cruciate ligament transection (ACLT) model-in the
81	meniscus is not damaged during surgery-was used to achieve this objective. We
82	hypothesized that ESWT would suppress the progression of meniscal degeneration by
83	activating meniscal healing factors.
84	

85 Methods

86 Animals

87	The animal experimentation protocol (20-038) in the present study was approved by the
88	Animal Care and Experimentation Committee of Gunma University. All efforts were
89	made to minimize the suffering and the number of animals used in this study. Eighty
90	medial menisci of 12-week-old male Wistar rats (body weight, 240-280 g) that were
91	purchased from Japan SLC (Hamamatsu, Japan) were used in this study. All rats were
92	housed at the Biological Resource Center under controlled temperature (24°C) and
93	illumination with a 12-hour light and dark cycle, with ad libitum access to food and tap
94	water.

95

96 Surgical Procedure

97 The rats were divided into three groups (normal, ESWT–, and ESWT+). The normal 98 group stayed without surgery. The two other groups underwent ACLT via an incision on 99 the medial parapatellar approach. The rats in the surgical groups were anesthetized with 100 an intraperitoneal injection of ketamine and xylazine (60 mg ketamine/kg body weight 101 and 12 mg xylazine/kg body weight). According to the method of a previous study^{3,15}, 102 the right knee joint was opened via a medial parapatellar approach with the patella

103	dislocated laterally. Then, the anterior cruciate ligament was identified and transected
104	with a scalpel without damaging the cartilage or meniscus. The articular capsule and
105	skin were closed with interrupted sutures using 5–0 silk thread. The rats in both groups
106	were allowed unrestricted cage activity. None of the rats showed severe activity
107	limitation after the surgery. None of the rats had infected wounds.
108	
109	ESWT application
110	According to the method of a previous study, the ESWT+ group received 800 impulses
111	of shockwave at 0.22 mJ/mm ² energy flux density under general anesthesia in a single
112	session at 4 weeks after surgery (Dornier MedTech; Dornier ARIES Vet) ^{11,31} . A single
113	type of ESWT at a single time point induced the activation of meniscal repair and
114	cartilage protection ^{11,31} . The ESWT probe was applied slightly behind the medial joint
115	line in full extension under anesthesia with an intraperitoneal injection of ketamine and
116	xylazine (60 mg of ketamine/kg body weight and 12 mg of xylazine/kg body weight).
117	The focus of shockwave treatment was the medial meniscus posterior segment.
118	Ultrasound gel was applied to the skin in contact with the shockwave probe.
119	

120 Sample Collection and Preparation

121	The rats were euthanized at 24 h and 2, 4, and 12 weeks after ESWT. Fifty medial
122	menisci were subjected to histological examinations, and 30 were analyzed by real-time
123	polymerase chain reaction (PCR). The medial meniscus was harvested from the knee
124	joint, and the surrounding synovial membrane was removed. The harvested menisci
125	were immediately immersed in formalin for 24 h for histological evaluation. They were
126	immersed in a neutral decalcification solution (Yuaikasei) for five days and embedded
127	in paraffin. The meniscus specimens for real-time PCR were frozen in liquid nitrogen
128	immediately after collection and stored at -80°C until use.
129	

Histologic Evaluation of Meniscal Degeneration 130

131	We used specimens obtained 4 weeks after ACLT to evaluate the degenerative effect of
132	ACLT on the medial meniscus. We used specimens obtained at 2, 4, and 12 weeks after
133	ESWT for evaluation in the ESWT– group and the ESWT+ group ($n=5$ per group) and
134	analyzed the medial meniscus posterior segment. The paraffin blocks were cut at 2.5
135	μ m, and serial sections perpendicular to the posterior segment of the meniscus were
136	stained with hematoxylin-eosin and Safranin O-Fast Green. We determined sections
137	perpendicular to the posterior segment of the meniscus by measuring the length of the
138	posterior segment and setting the evaluated section as the median value from the

139	beginning of the cut. We determined the meniscal degenerative score, which graded i)
140	surface integrity, ii) cellularity, iii) matrix/fiber organization and collagen alignment,
141	and iv) Safranin-O staining intensity. The score ranges from 0 to 18 points (this total
142	score can be converted to a grade as follows: $G1 = 0-4$ (normal tissue), $G2 = 5-9$ (mild
143	degeneration), $G3 = 10-14$ (moderate degeneration), and $G4 = 15-18$ (severe
144	degeneration) ^{15,22} . Two orthopedic surgeons independently assessed ten specimens to
145	calculate the interobserver intraclass correlation coefficient. The interobserver intraclass
146	correlation coefficient intraobserver intraclass correlation coefficient were 0.84 and
147	0.90, respectively.

149 Immunohistochemical Analyses

150	We used specimens obtained 2 and 4 weeks after ESWT for evaluation in the normal,
151	ESWT-, and ESWT+ groups (n=5 per group). After deparaffinization and rehydration,
152	2.5-mm-thick sections were prepared with a streptavidin-biotin-peroxidase system kit
153	(Histofine; Nichirei) and chromogen (diaminobenzidine). Specimens were stained with
154	rabbit polyclonal anti-Ki67 antibody (concentration 1:200; Novus) to analyze the
155	proliferation rate of meniscal cells, anti-Connective tissue growth factor/CCN family
156	member 2 (CTGF/CCN2) antibody (concentration 1:800; Abcam) to analyze the change

157 in the ratio of cells expressing cartilage-repairing factor, and anti-collagen type 2

antibody (concentration 1:200; Abcam) to analyze changes in the expression of collagen
type 2.

---- ·) P

- 160 We identified immunoactivity from five frames of sections obtained from the 161 same specimen. We analyzed images using a cell counter plugin software program (Fiji 162 ImageJ). For quantitative measurements, percentages refer to the sum of the positively stained cells over the sum of the total cells counted in all five frames^{30,32}. In addition, 163 164 ten frames of images from randomly selected specimens were independently assessed 165 by two orthopedic surgeons to calculate the interobserver intraclass correlation 166 coefficient. The interobserver intraclass correlation coefficient and intraobserver 167 intraclass correlation coefficient were 0.84 and 0.86, respectively. 168 169 **Real-time PCR** 170 A 3×3 mm piece of the posterior segment of the medial meniscus was resected from the
- 171 ESWT- and ESWT+ groups at 24 h and 4 weeks after ESWT. In the normal group, a
- 172 3×3 mm piece of the posterior segment of the medial meniscus was harvested from rats
- 173 of the same age (n=5 per group). For this experiment, a bead crusher μ T-12 (Taitec) was
- 174 used to homogenize the piece of the meniscus. An RNeasy Mini Kit (Qiagen) was used

175	to extract the total RNA. cDNA was synthesized from isolated total RNA with a
176	ReverTra Ace® qPCR RT Kit (Toyobo). Then, quantitative real-time PCR was
177	performed according to the instructions of SYBR Green Real-time PCR Master Mix
178	(Toyobo). A StepOne Real-Time PCR System (Applied Biosystems) was used to
179	perform quantitative real-time PCR. We measured the mRNA levels of CTGF/CCN2,
180	SRY (sex determining region Y)-box 9 (SOX9), vascular endothelial growth factor α
181	(VEGF- α), aggrecan (Acan), collagen type 1 alpha 2 (Col1a2), and collagen type 2
182	alpha 1 (Col2a1). Levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were
183	used as an internal control. The quantified relative expression of these genes was
184	normalized to GAPDH by the delta-delta CT method. The nucleotide sequences of the
185	primers are shown in Table 1.

186 **Table 1.** Primers

Gene	Primer Sequence
GAPDH	
Forward	5'-GTCTTCACTACCATGGAGAAGG-3'
Reverse	5'-TCATGGATGACCTTGGCCAG-3'
CTGF/CCN2	
Forward	5'-CCACCCGAGTTACCAATGAC-3'
Reverse	5'-GTGCAGCCAGAAAGCTCA-3'
SOX9	
Forward	5'-AGACCAGTACCCGCATCT-3'
Reverse	5'-CGCTCCGCCTCCTCCAC-3'
VEGF-a	

Forward	5'-TTCAGAGCGGAGAAAGCATT-3'
Reverse	5'-GAGGAGGCTCCTTCCTGC-3'
ACAN	
Forward	5'-TTGGAGCCGGAGACGACAGA-3'
Reverse	5'-AGAGGCAGAGGGACTTTCGGT-3'
COL1A2	
Forward	5'-CCGTGCTTCTCAGAACATCA-3'
Reverse	5'-CTTGCCCCATTCATTTGTCT-3'
COL2A1	
Forward	5'-TTCCTCCGTCTACTGTCCACTGA-3'
Reverse	5'-CTACATCATTGGAGCCCTGGAT-3'

188 Statistical Analysis

189 All data are expressed as the mean \pm standard deviation (SD). The Kruskal–Wallis test

190 followed by the Dunn-Bonferroni post hoc test method was used to evaluate differences

among the three groups. The Mann–Whitney U test was used to evaluate the differences

192 between the two groups. All statistical analyses were performed using SPSS version

193 25.0 (IBM Japan, Tokyo, Japan). *P* values of <0.05 were considered to indicate

194 statistical significance.

196 Results

197 Histopathological Analyses

198 The histological examination of the normal meniscus with HE staining and safranin O

199 staining showed that the meniscus surface was smooth, with well-defined cell

200 distribution and density, and slight safranin O staining in the inner region (Figure 1A).

201 In the normal group, no significant degenerative changes were observed over time with

aging during the observation period. At 4 weeks after ACLT (i.e., 0 weeks post-ESWT),

203 the meniscal surface was smooth. However, areas of hypercellularity were observed in

the outer regions, and the safranin O staining intensity was slight (Figure 1B). From 4

205 weeks post-ACLT, the ESWT- group showed an increase in tears from the meniscal

surface to inside the meniscus, an increase in areas of hypocellularity, more

207 disorganized extracellular matrix, and stronger safranin O staining over time (Figure

1D). From 4 weeks post-ACLT, the ESWT+ group showed a gradual increase in the

209 number of hypocellular areas and a slight disruption in extracellular matrix

- 210 organization, but the changes, including the damage to the meniscus surface, occurred
- 211 relatively gradually (Figure 1D).
- The meniscal histopathological scores are shown in Figure 1C, E. The scores of
- 213 the normal group were significantly lower than those of the ESWT– group at 0 weeks

(mean \pm SD: 0.8 ± 0.8 vs. 4.2 ± 0.8 , p=0.008) (Figure 1C). The scores in the normal group did not increase over time with aging during the observation period. However, the scores gradually increased in the ESWT+ and ESWT– groups. At 2 weeks, the scores of the ESWT+ and ESWT– groups did not differ to a statistically significant extent. However, the score of the ESWT+ group was significantly lower than that of the ESWT– group at 4 weeks (mean \pm SD: 8.2 ± 1.2 vs. 12.0 ± 2.6 , p=0.016) and 12 weeks

 $(11.8 \pm 1.6 \text{ vs. } 15.2 \pm 1.0, p=0.008)$ (Figure 1E).

226 extracorporeal shockwave therapy (ESWT) with hematoxylin and eosin (HE) staining

- and safranin O staining. (C) The histopathological scores at 4 weeks after ACLT and 0
- 228 weeks after ESWT. (D) Safranin O staining in the normal, ESWT-, and ESWT+ groups

at 2, 4, and 12 weeks after ESWT. (E) The histopathological scores at 2, 4, and 12

230 weeks after ESWT. Data are expressed as the mean \pm standard deviation. P values were 231 determined with the Mann–Whitney U test. *P<0.05 (n=5 per group). Bar=200 μ m 232

233 Immunohistochemical Analysis

234 The medial meniscus posterior segment in the normal, ESWT– and ESWT+ groups was

subjected to immunostaining with an anti-CTGF/CCN2 antibody at 2 and 4 weeks after

236 ESWT (Figure 2A). The ratio of CTGF/CCN2-positive cells to all cells is shown in

Figure 2B. This ratio did not change at any of the observation time points in the normal

group (47.8% and 45.8%, respectively). The overall positive cell ratio increased to

239 71.1% at 4 weeks in the ESWT+ group, while the positive cell ratio decreased to 25.6%

- at 4 weeks in the ESWT– group. In the ESWT+ group, this ratio was significantly
- higher than that in the ESWT– group at 2 weeks (p=0.003) and 4 weeks (p=0.002).

Figure 2. (A) Immunostaining with anti-Connective tissue growth factor/CCN family

251	Immunostaining of the medial meniscus posterior segment with an anti-Ki67
252	antibody was performed in the normal, ESWT-, and ESWT+ groups at 2 and 4 weeks
253	after ESWT (Figure 3A). The ratio of Ki67-positive cells to all cells is shown in Figure
254	3B. This ratio did not change at any of the observation time points in the normal group
255	(55.4% and 53.6%, respectively). The positive cell ratio in the ESWT+ group was
256	significantly increased at 2 weeks (p=0.022). This ratio was significantly higher in the
257	ESWT+ group than in the ESWT- group at 2 weeks ($p=0.027$) and 4 weeks ($p=0.002$).

Figure 3. (A) Immunostaining with anti-Ki67 antibody of the medial meniscus posterior

260	segment in the normal, extracorporeal shockwave therapy (ESWT)-, and ESWT+
261	groups at 4 weeks after ESWT. (B) Comparison of the ratios of Ki67-positive cells to
262	all cells at 2 and 4 weeks after ESWT. Data are expressed as the mean \pm standard
263	deviation. P values were obtained with a Kruskal-Wallis test and post hoc test with a
264	Dunn-Bonferroni analysis. *P<0.05 (n=5 per group). Bar=100µm
265	

- 266 The expression of collagen type 2 in the ESWT+ group at 4 weeks was higher
- 267 than that in the ESWT– group in all areas of the meniscus (Figure 4).

Figure 4. Immunostaining with anti-collagen type 2 antibody of the medial meniscus

270 posterior segment in the normal, extracorporeal shockwave therapy (ESWT)-, and

271 ESWT+ groups at 4 weeks after ESWT. Bar=100μm

273	Gene Expression Analysis
274	The mRNA expression of CTGF/CCN2, SOX9, VEGF-α, Acan, Col1a2, and Col2a1
275	was examined at 24 h and 4 weeks after ESWT by real-time PCR (Figure 5).
276	The mRNA expression at 24 h after ESWT may reflect the early effects of ESWT on the
277	degenerated medial meniscus. The mRNA expression of CTGF/CCN2 was significantly
278	higher in the normal group than in the ESWT- group at 24 h after ESWT (p=0.003)
279	(Figure 5A). Additionally, there was no significant difference between the ESWT+ and
280	normal groups at the same time point (Figure 5A). The mRNA expression of Col2a1
281	was significantly higher in the normal group than in the ESWT- group at 24 h after
282	ESWT (p=0.049). Additionally, there was no significant difference between the ESWT+
283	and ESWT- groups at the same time point (Figure 5A).
284	The mRNA expression of CTGF/CCN2 in the normal group was significantly
285	higher than that in the ESWT- group at 4 weeks after ESWT (Figure 5 B). The mRNA
286	expression of Col2a1 in the ESWT+ group was significantly higher than that in the
287	ESWT– group at 4 weeks after ESWT ($p=0.009$) (Figure 5B). In the three groups, the
288	mRNA expression of SOX9, VEGF-a, Acan, and Colla2 did not differ significantly at
289	any time point (Figure 5).

Figure 5. The mRNA levels of Connective tissue growth factor/CCN family member 2 (CTGF/CCN2), SRY (sex determining region Y)-box 9 (SOX9), vascular endothelial growth factor α (VEGF- α), aggrecan (Acan), collagen type 1 alpha 2 (Col1a2), and collagen type 2 alpha 1 (Col2a1) were evaluated by real-time polymerase chain reaction

295	at (A) 24 h and (B) 4 weeks after extracorporeal shockwave therapy (ESWT). The
296	expression of these genes was normalized to the expression of glyceraldehyde 3-
297	phosphate dehydrogenase. The ordinate indicates the relative ratio to the normal group.
298	Data are expressed as the mean \pm standard deviation. P values were obtained with a
299	Kruskal–Wallis test and post hoc test with a Dunn-Bonferroni analysis. $P<0.05$ (n=5)
300	per group).
301	

000	D .	•
2112	11001	ICCION
303	- 121501	1991011

304	The critical	finding of the	present study	v is that ESW	Г can delay d	egenerative ch	langes in
-----	--------------	----------------	---------------	---------------	---------------	----------------	-----------

- 305 the ACLT model rat meniscus. ESWT significantly suppressed degenerative changes in
- 306 the meniscus, as evaluated by the histological scoring system. This effect may be due to
- 307 the upregulation of CTGF/CCN2 and Col2a1. The moderate stimulation of meniscus
- 308 cells by ESWT might have activated cartilage repair factors in meniscus cells. As a
- 309 result, ESWT may promote intrinsic meniscal repair and suppress degenerative changes.

311 Degenerative change in the meniscus after ACLT

In this study, the degeneration of the medial meniscus was more evident at 4 weeks

313 post-ACLT in comparison to the normal meniscus. In addition, meniscal

314 histopathological scores increased over time. The ACLT model of knee osteoarthritis

- 315 has long been used in animal studies, including rat studies. ACLT does not directly
- 316 damage the meniscus, but degenerative histological changes in the medial meniscus are
- 317 observed in the subsequent follow-up period^{8,15}. Anterior and rotational instability of
- the knee joint after ACL injury increases the mechanical load on the medial meniscus,
- resulting in meniscus damage^{10,24,27}. Similarly, in menisci from rat knees, degenerative
- 320 changes in the posterior medial meniscus progress after ACLT alone. Specifically,

321	degenerative meniscus scoring was significantly higher in the posterior medial meniscus
322	at 4 weeks after ACLT, and degenerative histological changes were observed as a
323	result ¹⁵ . In addition, in a study using a rat model of knee osteoarthritis induced by a
324	single injury to the ACL, slight fibrillatory changes on the surface of the medial
325	meniscus were observed three weeks postoperatively ³ . Therefore, our results suggest
326	that ACLT increased the mechanical load on the medial meniscus, which could not be
327	completely repaired by the potential healing ability of the meniscus, and that the
328	degeneration progressed over time.
329	In the present study, the mRNA expression of Col2a1 and CTGF/CCN2 was
330	decreased in the posterior medial meniscus during degeneration after ACLT. Previous
331	studies reported that a decrease in collagen type 2 has been identified in the process of
332	cartilage degeneration after an anterior cruciate ligament injury, and this condition is
333	known to induce osteoarthritis of the knee ²⁰ . Collagen type 2 plays a critical role in the
334	meniscus and is downregulated in the degenerated meniscus in a mouse with ACLT-
335	induced meniscus degeneration ³⁵ . In chondrocytes, CTGF/CCN2 is involved in the
336	regulation of collagen type 2, expression of aggrecan, and cell proliferation, and its
337	expression is upregulated by moderate mechanical loading ^{7,9,21} . However, the
338	expression of CTGF/CCN2 is downregulated in chondrocytes and fibroblasts under

339	excessive constant cyclic loading ^{14,18} . Furthermore, the expression of CTGF/CCN2 is
340	suppressed in osteoarthritis-induced meniscus cells ²⁶ . The expression of CTGF/CCN2
341	and Col2a1 in the medial meniscus after ACLT in this study may have been suppressed
342	by the excessive mechanical loading on the meniscus provided by anterior tibial
343	instability. The decreased expression of Col2a1 during the process of medial meniscus
344	degeneration in this study may indicate a catabolic effect, similar to that of articular
345	cartilage degeneration in knee osteoarthritis.
346	
347	The effects of ESWT on the degenerated meniscus
348	In this study, ESWT suppressed the progression of ACLT-induced meniscus
349	degeneration. The meniscal degeneration score in the ESWT+ group was significantly
350	lower than that in the ESWT- group at 4 weeks and 12 weeks. In addition, in the
351	present study, we observed upregulation of CTGF/CCN2 at 24 h after ESWT and
352	increased the CTGF/CCN2-positive cell ratio at 2 and 4 weeks after ESWT. A previous
353	study revealed that ESWT promotes the healing of meniscus tears by stimulating the
354	proliferation of meniscus cells and the expression of genes, including CTGF/CCN2,
355	SOX9, aggrecan, and Col2a1 ¹¹ . Meniscus grafts with CTGF/CCN2 and TGF- β
356	regenerated the knee meniscus, enabled functional knee recovery, and synthesized zone-

357	specific collagen types 1 and 2 ¹⁷ . The overexpression of CTGF/CCN2 in articular
358	cartilage alleviates degenerative changes by promoting the synthesis proteoglycan and
359	the proliferation chondrocytes ¹³ . In addition, ESWT has a chondroprotective effect and
360	inhibits the progression of knee osteoarthritis induced by ACLT in rats ^{30,34} . Our results
361	may demonstrate that CTGF/CCN2 was activated in the degenerated meniscus similarly
362	to in the process of promoting the healing of meniscus injury by ESWT effects that
363	activate intrinsic repair factors. These effects might be factors that suppress the
364	progression of histological degenerative changes.
365	In this study, the expression of Col2a1 was upregulated after ESWT for 4 weeks.
366	In addition, immunostaining of anti-collagen type 2 showed stronger stainability in the
367	ESWT+ group than in the ESWT- group. In this study, meniscus cell proliferation was
368	observed after ESWT. Collagen type 2 forms a fibrous network in the tissue and
369	provides tensile strength to the meniscus ^{11,16} . In a study using cultured tenocytes, ESWT
370	promoted cell proliferation and collagen synthesis ²⁸ . The protective effect of ESWT on
371	articular cartilage is derived from activating chondrocytes and increasing the expression
372	of collagen type 2^{30} . In addition, even when ESWT was applied after the onset of knee
373	osteoarthritis, a delay in osteoarthritic changes was demonstrated ³⁴ . Another study
374	reported that ESWT increases the expression of SOX9 in the meniscus ¹¹ ; however, in

375	the present study, we did not observe a significant increase in the SOX9 expression after
376	ESWT. This may be influenced by differences in the response of the meniscus cells
377	during the injury repair process and the process of degeneration. In the present study,
378	ESWT increased the number of CTGF/CCN2-positive cells, promoted cell proliferation,
379	and suppressed degenerative changes in the degenerated meniscus. Our results
380	demonstrated that ESWT has protective effects on the degenerated meniscus that are
381	similar to the protective effects on articular cartilage. The onset of this effect may be
382	related to the activation of endogenous cartilage repair factors in meniscus cells, but
383	detailed research is needed to clarify this process.
384	
385	The present study was associated with some limitations. First, the present study
386	used a rat model. The load on the knee joints is 25% in rats, whereas it is 50% in
387	humans. In addition, because of the difference in anatomy and composition (e,g.,
388	menisci ossification) between the rat and human meniscus, the effects of ESWT on
389	humans and large animals may be different. Second, the present study did not reveal
390	what happened after 12 weeks post-ESWT. To investigate the long-term effects of
391	ESWT on the degenerated meniscus, a longer follow-up period is needed. Third, we
392	did not evaluate the articular cartilage. The effects of ESWT on degenerative changes

393	in the cartilage were not clarified in this study. However, several studies ^{29,32,33} have
394	revealed these effects, so we focused on the effects on the meniscus. Fourth, the
395	present study only analyzed the effect of a single ESWT session; thus, the optimal
396	number of sessions for the therapeutic effect is unclear. Fifth, the degenerative changes
397	of this study reflect post-traumatic osteoarthritis induced by ACLT and not primary
398	osteoarthritis. However, ACLT does not directly damage the meniscus and
399	degenerative changes can be observed. Sixth, there was no sham surgery group in this
400	study. We tried to focus on the effects of ESWT. Seventh, the mechanical properties
401	and inflammatory effects were not evaluated in this study. Eighth, not all cells were
402	counted when determining the number of meniscal cells, rather the percentage of
403	meniscal cells in the frame was used. Ninth, all of the rats included in this study were
404	male.
405	
406	Conclusion
407	ESWT suppressed the progression of meniscus degeneration in a rat model of meniscus
408	degeneration after ACLT. Immunostaining and real-time PCR revealed that ESWT
409	increased the expression of CTGF/CCN2 in the degenerated meniscus. Additionally,
410	ESWT increased the number of Ki67-positive cells. ESWT promotes the expression of

- 411 mRNA in collagen type 2. These results indicated that ESWT can be an option for the
- 412 treatment of degenerated meniscal tissue in a rat model.
- 413

Reference

415	1.	Appleton CT, Pitelka V, Henry J, Beier F. Global analyses of gene expression in
416		early experimental osteoarthritis. Arthritis Rheum. 2007;56(6):1854-1868.
417	2.	Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg.
418		2015;24(Pt B):143-146.
419	3.	Endo J, Sasho T, Akagi R, et al. Comparative Analysis of Gene Expression
420		between Cartilage and Menisci in Early-Phase Osteoarthritis of the Knee-An
421		Animal Model Study. J Knee Surg. 2018;31(7):664-669.
422	4.	Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without
423		surgery and the development of radiographic osteoarthritis among middle-aged
424		and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheum.
425		2009;60(3):831-839.
426	5.	Englund M, Roemer FW, Hayashi D, Crema MD, Guermazi A. Meniscus
427		pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol.
428		2012;8(7):412-419.
429	6.	Fithian DC, Kelly MA, Mow VC. Material properties and structure-function
430		relationships in the menisci. Clin Orthop Relat Res. 1990(252):19-31.
431	7.	Furumatsu T, Matsumoto E, Kanazawa T, et al. Tensile strain increases

432		expression of CCN2 and COL2A1 by activating TGF- β -Smad2/3 pathway in
433		chondrocytic cells. J Biomech. 2013;46(9):1508-1515.
434	8.	Gerwin N, Bendele AM, Glasson S, Carlson CS. The OARSI histopathology
435		initiative - recommendations for histological assessments of osteoarthritis in the
436		rat. Osteoarthritis Cartilage. 2010;18 Suppl 3:S24-34.
437	9.	Giusti V, Scotlandi K. CCN proteins in the musculoskeletal system: current
438		understanding and challenges in physiology and pathology. J Cell Commun
439		Signal. 2021;15(4):545-566.
440	10.	Guess TM, Razu S. Loading of the medial meniscus in the ACL deficient knee:
441		A multibody computational study. Med Eng Phys. 2017;41:26-34.
442	11.	Hashimoto S, Ichinose T, Ohsawa T, Koibuchi N, Chikuda H. Extracorporeal
443		Shockwave Therapy Accelerates the Healing of a Meniscal Tear in the Avascular
444		Region in a Rat Model. Am J Sports Med. 2019;47(12):2937-2944.
445	12.	Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-
446		1759.
447	13.	Itoh S, Hattori T, Tomita N, et al. CCN family member 2/connective tissue
448		growth factor (CCN2/CTGF) has anti-aging effects that protect articular
449		cartilage from age-related degenerative changes. PLoS One. 2013;8(8):e71156.

450	14.	Kanazawa Y, Nomura J, Yoshimoto S, et al. Cyclical cell stretching of skin-
451		derived fibroblasts downregulates connective tissue growth factor (CTGF)
452		production. Connect Tissue Res. 2009;50(5):323-329.
453	15.	Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. The Natural History of
454		Medial Meniscal Tears in the ACL Deficient and ACL Reconstructed Rat Knee.
455		Cartilage. 2021;13(2_suppl):1570S-1582S.
456	16.	Kawanishi Y, Nakasa T, Shoji T, et al. Intra-articular injection of synthetic
457		microRNA-210 accelerates avascular meniscal healing in rat medial meniscal
458		injured model. Arthritis Res Ther. 2014;16(6):488.
459	17.	Lee CH, Rodeo SA, Fortier LA, et al. Protein-releasing polymeric scaffolds
460		induce fibrochondrocytic differentiation of endogenous cells for knee meniscus
461		regeneration in sheep. Sci Transl Med. 2014;6(266):266ra171.
462	18.	Madej W, van Caam A, Davidson EN, et al. Ageing is associated with reduction
463		of mechanically-induced activation of Smad2/3P signaling in articular cartilage.
464		Osteoarthritis Cartilage. 2016;24(1):146-157.
465	19.	Messner K, Gao J. The menisci of the knee joint. Anatomical and functional
466		characteristics, and a rationale for clinical treatment. J Anat. 1998;193 (Pt
467		2):161-178.

468	20.	Nelson F, Billinghurst RC, Pidoux I, et al. Early post-traumatic osteoarthritis-
469		like changes in human articular cartilage following rupture of the anterior
470		cruciate ligament. Osteoarthritis Cartilage. 2006;14(2):114-119.
471	21.	Nishida T, Kawaki H, Baxter RM, et al. CCN2 (Connective Tissue Growth
472		Factor) is essential for extracellular matrix production and integrin signaling in
473		chondrocytes. J Cell Commun Signal. 2007;1(1):45-58.
474	22.	Pauli C, Grogan SP, Patil S, et al. Macroscopic and histopathologic analysis of
475		human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage.
476		2011;19(9):1132-1141.
477	23.	Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC. Material
478		properties of the normal medial bovine meniscus. J Orthop Res. 1989;7(6):771-
479		782.
480	24.	Sakamoto Y, Tsukada H, Sasaki S, et al. Effects of the tibial tunnel position on
481		knee joint stability and meniscal contact pressure after double-bundle anterior
482		cruciate ligament reconstruction. J Orthop Sci. 2020;25(6):1040-1046.
483	25.	Simplicio CL, Purita J, Murrell W, et al. Extracorporeal shock wave therapy
484		mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma.
485		2020;11(Suppl 3):S309-S318.

486	26.	Stone AV, Loeser RF, Vanderman KS, et al. Pro-inflammatory stimulation of
487		meniscus cells increases production of matrix metalloproteinases and additional
488		catabolic factors involved in osteoarthritis pathogenesis. Osteoarthritis
489		Cartilage. 2014;22(2):264-274.
490	27.	Venkataraman S, Ethiraj P, Shanthappa AH, Vellingiri K. Association of
491		Meniscus Injuries in Patients With Anterior Cruciate Ligament Injuries. Cureus.
492		2022;14(6):e25878.
493	28.	Vetrano M, d'Alessandro F, Torrisi MR, et al. Extracorporeal shock wave therapy
494		promotes cell proliferation and collagen synthesis of primary cultured human
495		tenocytes. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2159-2168.
496	29.	Wang CJ, Cheng JH, Chou WY, et al. Changes of articular cartilage and
497		subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the
498		knee. Int J Med Sci. 2017;14(3):213-223.
499	30.	Wang CJ, Hsu SL, Weng LH, Sun YC, Wang FS. Extracorporeal shockwave
500		therapy shows a number of treatment related chondroprotective effect in
501		osteoarthritis of the knee in rats. BMC Musculoskelet Disord. 2013;14:44.
502	31.	Wang CJ, Sun YC, Siu KK, Wu CT. Extracorporeal shockwave therapy shows
503		site-specific effects in osteoarthritis of the knee in rats. J Surg Res.

504 2013;183(2):612-619.

505	32.	Wang CJ, Sun YC, Wong T, et al. Extracorporeal shockwave therapy shows
506		time-dependent chondroprotective effects in osteoarthritis of the knee in rats. J
507		Surg Res. 2012;178(1):196-205.
508	33.	Wang CJ, Weng LH, Ko JY, et al. Extracorporeal shockwave therapy shows
509		chondroprotective effects in osteoarthritic rat knee. Arch Orthop Trauma Surg.
510		2011;131(8):1153-1158.
511	34.	Wang CJ, Weng LH, Ko JY, et al. Extracorporeal shockwave shows regression
512		of osteoarthritis of the knee in rats. J Surg Res. 2011;171(2):601-608.
513	35.	Xie J, Zhang D, Lin Y, Yuan Q, Zhou X. Anterior Cruciate Ligament
514		Transection-Induced Cellular and Extracellular Events in Menisci: Implications
515		for Osteoarthritis. Am J Sports Med. 2018;46(5):1185-1198.
516		