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Abstract 

 Scientists have found that we may control the spin of electrons and utilize 

it in spintronics, which may provide the possibility to overcome the limitation in 

Moore’s law. Based on similar idea, valleytronics using valley degree of freedom 

has been proposed, and more recently pseudospintronics using pseudospin degree 

of freedom has also been proposed. Spintronic, valleytronic, and pseudospintronic 

devices are perfect candidates for quantum computers which are expected to be 

much faster than classical computers. On the other hand, elemental two-

dimensional materials are anticipated to play an important role in spintronics, 

valleytronics, and pseudospintronics. They are also called Dirac materials because 

their electrons behave like massless Dirac particles obeying Dirac equation instead 

of Schrodinger equation like the electrons in other materials. One common 

characteristic of elemental 2D materials is the possession of honeycomb lattice 

structure which results in the existence of two atoms in one unit cell, and gives rise 

to two sublattices, A and B. This two-sublattice system contributes to a new 

concept called pseudospin. 

 Silicene is single-layer silicon. It is a relatively new elemental two-

dimensional Dirac material. The main differences of silicene from graphene are 

the out-of-plane buckling and the larger spin-orbit interaction that allow the band 

gap in silicene to be tunable by electric field. The differences also cause silicene 

under a certain condition to behave as a topological insulator, a group of materials 

that have many exotic characteristics such as quantum spin Hall effect. Combining 

these properties with the accumulated knowledge in silicon industry makes 

silicene a material with great potential for spintronic and quantum computational 

applications. 

 The aim of this dissertation is to investigate the electronic transport 

properties of silicene for spintronics, and particularly explore the potential of 

silicene as a material for light sensitive devices. The dual ferromagnetic-gated 

silicene junction is used as the basic structure in our investigation which are 

separated into two parts. First, we study the electronic transport properties of the 
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structure to see the effects of electric field, magnetic exchange field configuration, 

and chemical potential on the spin-polarized, valley-polarized, and pseudospin-

polarized currents. The electric fields and magnetic exchange fields are applied to 

ferromagnetic gates, while chemical potentials are applied to ferromagnetic gates 

and the normal region between gates. Second, we investigate the effects of off-

resonant circularly polarized photo irradiation onto the normal region between 

gates under the influence of electric fields, magnetic exchange fields, and chemical 

potentials. 

 We discovered that magnetic exchange field configuration has a significant 

impact in the spin, valley, and pseudospin currents, and allows the device structure 

to behave as a pure spin polarizer, pure valley polarizer, or a pseudospin polarizer. 

The junction in our study exhibits perfect spin-valley polarization in certain 

exchange field configurations when chemical potential is applied. We also found 

that the peaks splitting effect on conductance is enhanced in all exchange field 

configurations when a middle gate bias is applied. We also predict that the 

pseudospin polarization can be linearly controlled by electric field from   to   when 

an appropriate middle gate bias is applied. This perfectly controllable pseudospin 

current in silicene was found only in dual ferromagnetic-gated junctions, and is not 

achievable with single ferromagnetic-gated junctions.  

 In the second part, it is found that all components of the polarized spin-

valley currents in all exchange field configurations are affected by the light 

irradiation, probably due to the photon dressing effect. It is interesting to see 

possibility of spin-valley filtering when appropriate electric fields are applied to 

anti-parallel junctions under the light irradiation, where we can select specific 

spin-valley polarization to be filtered. We discovered that by adjusting the distance 

between two ferromagnetic gates, the light frequency for the appearance of spin-

valley polarization peak can be controlled. Our investigation also revealed a 

possibility to control tunneling magnetoresistance (TMR) to become giant 

magnetoresistance (GMR) with appropriate application of electric fields and gate-

induced chemical potentials under a specific light frequency. It is found that TMR 

magnitude may change significantly at a specific light frequency when the strength 

of electric field or chemical potential reaches a certain level.  
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Chapter 1  

Introduction  

 Cannonlake, Intel's codename for the 10nm microprocessor, is expected to 

be released this year. However, it is considered very hard to go beyond that, even 

though the theoretical scaling limit is considered to be 3 nm [1-2]. After the first 

observation of Moore’s law by Gordon Moore in 1965 that the number of 

transistors in an integrated circuit will double every two years [3], now it seems to 

be more difficult and not economically desirable to further shrink the transistors in 

integrated circuits by early 2020s [4]. In the past years, scientists and engineers 

have worked hard to keep the Moore’s law by developing new device structures 

and materials. The current device structure of MOSFET is far away from the 

original one. While the concept of controlling the drain current with gate voltage 

stays the same, present MOSFETs use several non-planar structures such as fin 

field effect transistor (finFET), gate-all-around (GAA) MOSFET, and tri-gate 

transistor [5-7]. Another approach that scientists and engineers also utilize in 

support of scaling devices is using new materials. Silicon-on-insulator (SOI), 

silicon germanium (SiGe), strained silicon, and high-k dielectrics are among the 

technologies being used widely in current MOSFETs [8-10]. 

 At the same time, there is no doubt that electronic devices will be literally 

everywhere in the near future. The rise of artificial intelligence (AI) and internet of 

things (IoT), which is extended further into internet of everything (IoE), would 

materialize ubiquitous computing powered by many kinds of basic electronic 

devices from complementary metal–oxide–semiconductors (CMOS) to 

microelectromechanical systems (MEMS), and from laser diodes to photovoltaic 

cells. To achieve ubiquitous computing, the basic devices need to be small while 

being powerful enough at the same time. However, the dead end on the roadmap 

of miniaturization in the current semiconductor technologies causes tremendous 
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challenges, especially for the system that needs high computing power such as 

microprocessor. One possible solution is to move further into the realm of 

quantum mechanics. The rest of this introduction is organized as follows. In 

Section 1.1, we give an overview of spintronics as well as introduce the concept of 

valleytronics and pseudospintronics. Introduction of Dirac materials, which is the 

group of materials where graphene and silicene belong to, is provided in Section 

1.2. We give the overview of this dissertation in Section 1.3. 

 

1.1 From Electronics to Spintronics 

Richard Feynman has mentioned about manipulating and controlling things 

on a small scale in 1959. Since then, the concept of nanotechnology has not been 

developed only in physics, but also in other fields such as chemistry and biology. 

When the size of a system decreases into smaller than 100 nm, the system is 

dictated by quantum mechanics rather than Newtonian mechanics causing 

quantum effects to become significant. Looking deeper into quantum mechanics, 

scientists found that instead of controlling electronic charges, we can also control 

the spin of electrons. Applications of the concept in electronic devices result in a 

new field called spintronics, which provides the possibility of new types of devices, 

and eventually the possibility to overcome the challenge facing us by going 

beyond the Moore’s law. 

Electron is an elementary particle carrying negative elementary electric 

charge and intrinsic angular momentum called spin with a half-integer value. From 

the past, electronic industry has used the charge degree of freedom of electrons. In 

other words, we have focused on whether there are charges, ie electrons, or not to 

store information and control basic devices. On the other hand, electron’s spin 

degree of freedom is used to control spintronics devices. In spintronics, spin-up 

current is considered separately from spin-down current. Comparing with the 

conventional electronics, spintronics provides higher computing speed with lower 

power consumption [11].  

 Although quantum effects were investigated for electronic applications for 

a long time, we have still been in the realm of electronics using charge degree of 

freedom of electrons to store and process information. Quantum mechanics allows 
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us to go beyond electronics into the realm of spintronics, where spin degree of 

freedom of electrons is used. One major spintronic application is in the field of 

data storage. For many years, magnetic tunnel junctions (MTJ) made from metallic 

ferromagnetic materials have been used for read-heads of hard disk drives. 

Another widely used spintronic device is magnetoresistive random-access memory 

(MRAM). Figure 1-1 shows the schematic diagram of spin-dependent current and 

charge current. When electrons move, they causes flow of charge current. 

However, when those electrons are separated into two groups according to their 

polarized spin direction, we can separate the charge current into spin-up current 

and spin-down current.  

One obstacle for more applications of spintronic devices is the necessity of 

magnetic field to manipulate the spin direction. However, with the recent advance 

in spintronic devices made from semiconductor materials instead of magnetic 

materials, spintronics is expected to be utilized more wildly. This is because the 

spin-orbit interaction in semiconductor allows the manipulation of spin states 

solely via electric fields and removes the requirement of magnetic field [12]. 

Recently, new two-dimensional materials, such as stanene (Sn) and plumbene (Pb), 

have attracted attention due to their larger spin-orbit interaction. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Schematic diagram of charge current and spin-dependent current. 
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 Based on similar idea, valleytronics which uses valley degree of freedom 

was proposed, and more recently pseudospintronics which uses pseudospin degree 

of freedom was proposed. Valley is the local maximum of valence band or 

minimum of conduction band in semiconductor. In contrast to spin which exists in 

the real-space, valley exists in momentum-space, which sometimes is called 

reciprocal space or K-space. Another degree of freedom that has been exploited 

recently is pseudospin. Although with the name pseudospin, it has nothing to do 

with real spin. It is the degree of freedom unique to materials with honeycomb 

lattice such as graphene and silicene, where there are two sublattices in one unit 

cell. We will revisit valley degree of freedom and pseudospin of freedom in more 

details in Chapter 3. 

In short term, spintronics, valleytronics, and pseudospintronics are 

expected to increase the computing speed, which may be economically difficult 

with the traditional electronics. However, what attracts much attention to 

semiconductors-based spintronics and its relatives is the long-term ambitious goal 

to realize quantum computer. Spin, valley, and pseudospin degree of freedom are 

concepts from quantum mechanics. Therefore spintronic, valleytronic, and 

pseudospintronic devices are perfect candidates for quantum computing which 

uses quantum bits or qubits instead of bits in conventional electronics. With qubits 

and the superposition of them that allows multiple states at the same time, 

quantum computer is expected to be much faster than classical computers 

contributing to the advance of technology. 

  

1.2 Two-Dimensional Dirac Materials  

In this section, we briefly introduce a new class of materials which is 

expected to play important role in spintronics and valleytronics. They are called 

Dirac materials. Dirac materials are classified as a group of materials in which 

their electrons behave like massless Dirac particles obeying Dirac equation instead 

of Schrodinger equation like electrons in other materials [13]. It includes wide 

variety of materials, such as elemental two-dimensional materials, d-wave 

superconductor, superfluid materials, and topological insulators [14]. Dirac 

equation is relativistic wave equation, which is the quantum mechanics that takes 
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theory of special relativity into account. Dirac equation is normally used in particle 

physics where particles move in high energy close to the speed of light. By giving 

Fermi velocity as the effective speed of light in the materials, the wave equations 

of the materials would be in the form that obeys Dirac equation. Here, Fermi 

velocity is the electron’s velocity with which the electron when travel when it has 

Fermi energy. When the temperature is low, Fermi velocity can be used as an 

approximation of electrons’ velocity in the materials. 

Another common characteristic of Dirac materials, despite being hugely 

different materials, is the existence of Dirac cone and Dirac point in the band 

structure. Figure 1-2 shows the schematic diagram of Dirac cone and Dirac point. 

The name of Dirac cone comes from the linear shape of the band structure around 

Dirac point. The unique shape of Dirac cone gives rise to very high carrier 

mobility and many novel phenomena, such as fractional quantum Hall effect 

(FQHE) and Klein tunneling [15]. 

Some Dirac materials are two-dimensional, while some are three-

dimensional materials. Among wide variety of Dirac materials, elemental two-

dimensional Dirac materials, such as graphene and silicene attract particularly 

much attention. The reason is because they have crystalline structure and have 

high potential for spintronic applications, unlike their exotic counterparts such as 

d-wave superconductor and superfluid materials. 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Schematic diagram of Dirac cone and Dirac point in Dirac materials. 
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1.2.1 Elemental Two-Dimensional Dirac 

Materials 

 One milestone in spintronics is the isolation of graphene from graphite in 

2004. With high electron mobility, long spin lifetime, and long spin diffusion 

length in room temperature, graphene is a good candidate for spintronics. Since 

Dirac cone has been observed in graphene, it is considered Dirac material. 

Moreover, the experimental discovery of graphene opened up a new era for 

discovery of other elemental two-dimensional (2D) materials.  

Currently, the research in two-dimensional materials or single-layer 

materials has intensified, and many of them have been discovered. There are wide 

varieties of two-dimensional materials, for instance, elemental materials, 

compound materials, and organic materials. Dirac cones cannot be observed in 

most 2D materials, which can be explained with Neumann–Wigner theorem [15], 

and the intriguing phenomena unique to Dirac materials cannot be expected. 

Therefore elemental 2D materials, which is a group of single-layer elemental 

materials, has attracted much attention due to the observation of Dirac cone in 

graphene. Along with graphene and silicene, there are other materials that possess 

similar unique characteristics. This group of materials includes graphene (C), 

silicene (Si), germanene (Ge), stanene (Sn), borophene (B), phosphorene (P), 

plumbene (Pb), with more materials under investigation [15-20]. 

 One common characteristic of elemental 2D materials is the honeycomb 

lattice structure. This hexagonal lattice was once considered to be the source of 

Dirac cone, but it is uncovered recently that the cause of Dirac cone might be 

mirror symmetries of the materials [21]. However, the honeycomb lattice structure 

results in existence of two atoms in one unit cell, and gives rise to two sublattices, 

A and B. These two sublattices contribute to a new concept called pseudospin 

which will be described in Chapter 3. 

 

1.2.2 From Graphene to Silicene   

Among elemental two-dimensional Dirac materials, graphene was the first 

in the world being discovered in 2004. The discovery has led to Nobel Prize in 

Physics 2010. It has caused excitement around the world not only in science 
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community but also in business community, since it was considered to 

revolutionize many industries, for example, battery, solar cells, pressure sensors, 

and supercapacitor [22-24]. There are also many proposals to use graphene for 

spintronic applications, such as spin transistor, spin valve, and spin filter [25-27]. 

The applications of graphene expand beyond electronics to other area such as 

mechanical engineering due to the thin and strong properties of single-layer carbon 

atoms [28]. However, with the discovery of other elemental 2D materials, 

graphene has become less attractive as a candidate for high-speed electronics and 

spintronics. 

There is no doubt that graphene has contributed to the advance of 

technologies in many area and possesses properties to be exploited more in the 

future. However, it is considered that graphene may not an ideal material for 

spintronic applications due to the absence of bandgap. Although there were 

successful efforts to open and tune the band gap in graphene [29-31], the processes 

are not simple comparing to other candidate such as silicene where the band gap 

can be tuned by electric field. In addition to the existence of band gap which is 

tunable by electric field, there are other reasons that make silicene shine out 

among graphene and other elemental 2D materials in the post bulk-silicon era.  

One reason is that silicene has longer spin diffusion time and larger spin-

orbit coupling than graphene [32]. Spin-orbit coupling is an interaction between 

the electron’s spin with the magnetic field generated by the orbiting electron 

around the nucleus. It is well known that spin-orbit coupling results in shifts of 

energy level and causes the splitting of spectral line, a phenomenon known as the 

Zeeman effect. In relation to spintronics, spin-orbit coupling allows manipulation 

of electron spin in the absence of magnetic field, and expand the scope of 

spintronic applications [33]. This makes semiconductor materials with big spin-

orbit coupling desirable for spintronics. The presence of large spin-orbit 

interaction also give rise to the coupling of spin-valley and lead silicene to be a 

candidate for these growing fields of spin-valleytronics [34]. Another reason is the 

amount of knowledge and knowhow accumulated in the silicon-dominated 

semiconductor industry. The successful synthesis of silicene recently also play 

important role to make silicene a promising candidate for spintronic applications 

in the future [35].   
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1.3 Dissertation Overview 

  In recent years, the number of experimental and theoretical reports on 

carrier transport in silicene has been increased rapidly. While there have already 

been few studies in the fundamentals of photo-irradiation effect on silicene, in this 

dissertation, our original study focuses on the photo-irradiation effect combining 

with impact of electric field and magnetic exchange field on unexplored dual 

ferromagnetic-gated silicene junction. We particularly aim at achieving useful 

applications in spintronics. In the first half of this dissertation, we explain the 

fundamentals of silicene and elemental two-dimensional Dirac materials in general. 

We also introduce some parts of quantum mechanics and other theories related to 

this study. The second half of this dissertation discuss our proposed device 

structure, as well as the impact of photo-irradiation, electric field, and exchange 

field on the carrier transport in the device structure. 

 In Chapter 2, we explain the electronic properties of silicene as well as 

review the current development in silicene research, since the goal of this study is 

to understand the electronic transport of silicene and find the potential for device 

applications in the future. Silicene is a newly found two-dimensional material, 

where its electrons are governed by quantum mechanics. Therefore, there are 

many interesting phenomena unusual in three-dimensional materials. The research 

area in silicene can be categorized into experimental, theoretical, and simulation. 

Our research presented in this dissertation is theoretical study using tight-binding 

model. Therefore in Chapter 3, we introduce theory and concepts used in the 

electronic transport analysis in this study. First, we explain tight-binding model for 

silicene. It is a powerful and widely used model to analyze electronic transport in 

condensed matter. Next we introduce the concept of spin, valley, and pseudospin, 

which are the core concepts being used in our study. Particularly, valley and 

pseudospin are relatively new concept but have high potential for device 

applications in the post bulk-silicon era. We also explain magnetic exchange field, 

another relatively new concept, but very critical for controlling spin and valley in 

silicene. Cramer’s rule which is a useful theorem for solving matrix equation is 

also explained in this chapter along with the computer environment being used in 

our analysis.  



9 

 

 In Chapter 4, we investigate the carrier transport in our proposed dual 

ferromagnetic-gated silicene junction. We discover that it is possible to control the 

device to behave as pure spin polarizer, valley polarizer and pseudospin polarizer 

by changing the exchange field configuration. After that, we investigate the effects 

of photo-irradiation in dual ferromagnetic-gated silicene junction in Chapter 5. 

The results show clear impact of photo-irradiation on spin polarization, valley 

polarization, and tunnel magnetoresistance. In Chapter 6, we investigate the 

characteristics of spin-valleytronic photo-sensing silicene device under the photo-

irradiation. The study provides an evidence of spin-valley filtering by adjusting 

electric field and exchange field configuration. Finally, Chapter 7 summarizes this 

dissertation and briefly discuss the future work. 
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Chapter 2  

Silicene 

  The isolation of graphene has inspired many scientists to discover other 

two-dimensional (2D) materials. Among the newly discovered artificial elemental 

2D materials, silicene (Si) is considered to be the most promising candidate for the 

post-bulk-silicon-era electronics, spintronics, valleytronics and quantum 

computing applications. One reason is the properties of silicene, and another 

reason is the accumulation of silicon-related technology and knowhow in 

semiconductor industry [36, 37].  

This chapter cover the fundamentals of silicene and the research in silicene 

before the presentation of our proposed our silicene-based device in Chapter 4. In 

this chapter, we describe the crystal structure of silicene as well as the overview of 

basic theory for silicene in Section 2.1. We especially explain the electronics 

properties of silicene, of which arises from spin-orbit coupling, and could be 

considered as a topological insulator material in Section 2.2. Finally, we review 

the silicene research in Section 2.3. 

 

2.1 Introduction of Silicene 

 Silicene is a Dirac material with honeycomb lattice structure like graphene, 

but has larger spin-orbit coupling. Therefore, it recently attracted much attention 

as a promising candidate for spintronic applications. Silicene is two-dimensional 

silicon with stable out-of-plane bucklings, which arises from mixing between sp2 

and sp3 hybridization [38]. In graphene, each carbon atom has σ bonds with the 

adjacent three carbon atoms via sp2 hybridization, and each hexagonal ring has one 

 bond orienting out of plane. The stability of the planar structure in graphene 
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occurs because of the short distance between adjacent carbon atoms, while  

orbitals are responsible for the many exciting electronic properties.  

On the other hand, silicon atoms have larger atomic radii and prefer sp3 

hybridization as found in the diamond structure of bulk silicon, rather than sp2 

hybridization. Therefore, it has mixing of sp2 and sp3 hybridization in the planar 

structure with buckling for stability [39, 40]. Figure 2-1 shows the image of lattice 

structure of silicene with both three-dimensional view and side view. It indicates 

that sublattice-A and sublattice-B are displaced in the out-of-plane direction, and 

each of them locates on different plane. Figure 2-2 depicts the unit cell of silicene 

lattice, where there are two atoms in one unit cell resulting in two sublattices, A 

and B. 

 

 

 

 

 

 

 

 

 

  (a)      (b) 

Figure 2-1: Lattice structure of silicene (a) Three-dimensional view. (b) Side view. 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Top view of the unit cell of silicene lattice with two sublattices. 
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 Honeycomb lattice has two sublattices in one unit cell, because it is not a 

Bravais lattice and two neighboring sites in the lattice are not equivalent. Bravais 

lattice is a lattice structure that looks exactly the same from any lattice point. The 

position vector r of a lattice point can be described by primitive translational 

vectors as 

 r = n1a1 + n2a2 + n3a3,       (2.1) 

  

where n1, n2, and n3 are any integers. When a is nearest-neighbor distance, the 

primitive translational vector a1, a2, a3,can be described as  

 a1 = )(
2

1
zyxa


 , a2 = )(
2

1
zyxa


 , a3 = )(
2

1
zyxa


 . (2.2) 

 However, the lattice points at sublattice-A and sublattice-B are not exactly 

the same as illustrated in Figure 2-3. The sublattice-A in one unit cell has its 

nearest-neighbor atoms in northwest, northeast, and south, while the sublattice-B 

has its nearest-neighbor atoms in north, southwest, and southeast. Therefore, 

honeycomb lattice can be viewed as a triangular or hexagonal Bravais lattice with 

a two-atom basis, where basis is one or group of atoms repeated at each lattice 

point. The three vectors that connect an atom at sublattice-A with its nearest-

neighbor atoms can be described as  

 A1 = )3(
2

1
yxa


 , A2 = )3(
2

1
yxa


 , A3 = )(ya


 .  (2.3) 

 

 

 

 

 

 

 

 

Figure 2-3: Difference between sublattice-A (in blue) and sublattice-B (in red). 
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One obstacle to the applications of silicene is the availability of free-

standing silicene. Currently, it is considered impossible for free-standing silicene 

to exist due to the strong electron correlation in silicon-based nanostructures [41]. 

However, there are many studies reported successful synthesis of monolayer 

silicene and multilayer silicene on many kinds of substrates, which will be 

introduced in more details in Section 2.3. It was also found that the characteristics 

of silicene layer are sensitive to the substrate. This surface sensitivity of silicene is 

due to mixed sp2 and sp3 hybridization [42]. The buckling height of the silicene 

layer is also sensitive to substrates. The result from first-principle calculations 

shows that the honeycomb structure of free-standing silicene would be stable with 

low-buckled structure with buckling height at 0.44 Å [43]. It was also reported that 

the buckling height of the silicene layer might be affected by the substrates that it 

is synthesized on [44]. Therefore, substrates play important role on the properties 

of synthesized silicene layer, since the buckling height is a crucial factor for the 

electronic transport in silicene. 

 

2.2 Electronics Properties of Silicene 

Silicene has atomic structure akin to graphene, but with out-of-plane 

buckling. Therefore, some properties of silicene are different from those in 

graphene, a relatively well understood predecessor. Two main characteristics 

differing silicene from graphene are the large spin-orbit coupling and the buckled 

structure. In this section, we will explain the electronics properties of silicene, 

which is critical for electronic and spintronic applications, in relation to the spin-

orbit coupling and buckle structure. Topological insulator is also another crucial 

concept for silicene [45], and we would like to introduce here. 

Topological insulators (TI) are a group of exotic matters with a lot of 

interesting properties. They are materials that can be characterized by an insulating 

band gap inside the bulk of the materials, and gapless band structure on the edge or 

surface. This makes topological insulators behave as insulators internally, but 

behave as conductors on the surface. This state of matter could be realized with the 

combination of spin-orbit interactions and time-reversal symmetry [46]. 

Topological insulators are highly expected as materials to realize quantum 
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computation based on spintronics. The concept of topological insulators have 

emerged from the discovery that spin-orbit coupling can lead to topological 

insulating electronic phases [47]. It is another class of materials that has been 

investigated actively recently for the spintronic applications and quantum 

computation due to their special properties on the surface states. The state of two-

dimensional topological insulator is quantum spin Hall state which is a 

phenomenon related to family of Hall effects [48].  

Quantum spin Hall effect (QSHE) is closely related to quantum Hall effect 

(QHE) [49, 50]. Quantum Hall effect is a quantum-mechanical version of the Hall 

effect, where Hall conductance is quantized. It occurs in two-dimensional 

materials under strong magnetic field resulting in one-dimensional current channel 

on the edge flowing in one direction as illustrated in Figure 2-4(a). There is no 

spin-dependent current in QHE. On the other hand, quantum spin Hall effect, 

which is a state representing topological insulator, is similar to quantum Hall 

effect. However, magnetic field is not required. Moreover, the spin-dependent 

currents flow in opposite direction due to spin-orbit coupling. Realization of 

quantum spin Hall effect requires a coupling between the spin and the orbital 

motion of electrons. The main mechanism of this requirement is band inversion, in 

which the conduction band and valence band is inverted by spin-orbit coupling 

[51]. Hence, not all materials that possess spin-orbit coupling could be topological 

insulator and show quantum spin Hall effect, since the inversion of conduction 

band and valence band cannot occur in all materials. Figure 2-4(b) shows the 

schematic diagram of QSHE, where the spin-up current flows in counterclockwise 

direction and the spin-down current flows in clockwise direction.   

Quantum spin Hall effect is quite different from another phenomenon 

related to Hall effect, which is called spin Hall effect (SHE). Spin Hall effect is the 

phenomenon that has already been applied widely in spintronics [52, 53]. Spin 

Hall effect can be described as a phenomenon that the electron’s spin with 

opposite sign would accumulate on the opposite side of the conductor as the result 

of spin-orbit coupling. This is because spin-orbit coupling causes interaction 

between the spin and the charge of electrons. As the result, the charge current may 

induce accumulation of electron spins and gives rise to spin current in the absence 

of magnetic field.  
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   (a)     (b) 

Figure 2-4 Schematic diagram of (a) quantum Hall effect (QHE), (b) quantum 

spin Hall effect (QSHE). 

 

Silicene along with other novel 2D materials, especially stanene and 

plumbene, have relatively large band gap opening and spin-orbital coupling strong 

enough to maintain robust quantum spin Hall states at high temperature, which 

makes them topological insulators. Interestingly, silicene can become both a 

semiconductor and a topological insulator with appropriate control of external 

electric field [54]. The spin-orbit coupling also provides an energy gap to the Dirac 

point. The abovementioned desirable characteristics are difficult to achieve in 

graphene due to the small ionic radius of carbon. The large spin-orbit coupling is 

the result of large ionic radius and the buckled structure, which makes silicene to 

behave as a two-dimensional topological insulator [55]. The strong spin-orbital 

coupling also gives rise to the spin-valley coupling, which may lead to the 

integration of spintronics and valleytronics [56, 57]. The concept of valley, the 

local maximum of valence band or minimum of conduction band in semiconductor, 

would be explained in more details in Chapter 3. 

In addition to stronger spin-orbit coupling, another main characteristic of 

silicene that is different from graphene is the out-of-plane buckling. Buckled 

structure allows the band gap of silicene to be manipulated by electric field [58, 

59]. It also causes tunable spin-valley coupled band structure giving rise to 

topological phase transition, an intriguing transport phenomenon [60]. Topological 

phase transition is the transition from one topological phase to another phase, for 

example, from topological insulator to band insulator. Silicene is rich in term of 

topological phases such as quantum spin Hall state, quantum anomalous Hall state, 

Magnetic field 
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quantum Hall effect state, fractional quantum Hall effect state, and band insulator. 

When the electric field and exchange field are controlled appropriately, it is 

possible to realize these phases and achieve the topological phase transition [54, 

58]. Exchange field could be approximately considered as a magnetic field. The 

more detailed explanation of exchange field would be provided in Chapter 3.  

 

2.3 Trends in Silicene Research 

Silicene has many interesting properties with the great potential for 

applications in spintronics and quantum computation. Hence, it is one of the most 

active research area with fierce competition in recent years. One of the unique 

trends in silicene research is the extensive use of computational modelling method, 

in addition to theoretical and experimental research. The reason is the 

computational cost that has decreased dramatically, and the increasing accuracy of 

density functional theory (DFT). In this section, we review the progress on silicene 

research in general, and focus particularly on the area that is related to our study in 

electronic transport, spin-valley polarization, and photo irradiation effect. 

Silicene has relatively stronger spin-orbit coupling than graphene which 

gives rise to the spin-valley coupling [61]. There have been many theoretical and 

computational studies in spin-valley transport in silicene junctions, which helps 

the progress in this area. The topics of study are, for instance, the mechanism of 

magnetism that opens different spin-dependent band gaps at k and k’ points and 

results in spin and valley polarized transports [61], the conditions of electric field 

for the fully valley and spin polarized transports [62], ballistic transport through 

silicene ferromagnetic junctions under the presence of magnetic exchange field 

and normal electric field [63], as well as the transmission probability and valley 

conductance in relation to the electric field and magnetic exchange field [64]. 

There is also study on spin thermoelectric properties of zigzag silicene 

nanoribbons doped with cobalt atoms [65]. 

Another research area that has been very active is electronic transport of 

spintronic and valleytronic devices based on silicene, such as spin filter and spin-

valley filter [66-68], spin-polarized transport in a dual-gated silicene system where 

there is no exchange field [69], and using electric field and exchange field to tune 
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the plasmonic response of the electron gas [70], where plasmon is a quantum of 

electron density oscillation. In addition to spin current and valley current, there is 

pseudospin current in silicene, which is the current that flows in either A or B 

sublattice-Atomic structure. It was suggested that the pseudospin currents could be 

used for pseudospintronics. Recently, double ferromagnetic-gated silicene junction 

was proposed to control pseudospin current along with pure spin-valley current in 

silicene giving a possibility for pseudospintronics [71]. The recent study on field-

effect transistors operating at room temperature made from silicene [37] is 

particularly considered to be a great achievement in devices development area. 

The effects of photo irradiation on silicene have also been investigated. It 

was discovered that photo irradiation has effects on the band structure of silicene, 

where circularly polarized light is used to open a gap at the Dirac point [72]. By 

irradiation of circularly polarized light under electric field, the topological class of 

silicene could be changed from quantum spin Hall insulator to other phase [73]. 

Another study found that the photo-irradiation helps realizing a topological 

superconductor when s-wave superconductivity proximity coupling is applied to 

silicene [74]. It is also reported that spin polarization and valley polarization in 

silicene are related to the intensity of the irradiated off-resonant circularly 

polarized light as well as electric field, and the polarization can be inverted by 

reversing the direction of electric field or the circular polarization of the light [75]. 

It was also discovered that spin-valley polarizations and tunneling 

magnetoresistance in a ferromagnetic-normal-ferromagnetic junction can be 

significantly enhanced by off-resonant circularly polarized light without the 

presence of electric field or magnetic field [76].  There is also a study in effective 

photo-induced band structure manipulation with intense terahertz irradiation 

beyond the off-resonant condition [77].  

In other research area, there is interesting development in hydrogenation, a 

chemical reaction to add hydrogen atoms to the material. The fully hydrogenated 

silicene is called silicane. It was investigated through density functional theory that 

the energy band gap of silicene might be altered by hydrogenation, and give 

silicane a potential in optical applications [78]. Furthermore, it was suggested that 

silicane could be used as substrate for silicene to make high-speed field effect 
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transistor [79]. On the other hand, half-hydrogenated silicene was suggested to be 

a method to introduce magnetism and generate band gap in silicene [80].  

In the area of synthesis, experimental groups have succeeded in synthesis 

of multilayer silicene using both epitaxial growth and non-epitaxial growth after 

theoretically proposal, in addition to synthesis of monolayer silicene on Ag, ZrB2, 

and Ir substrates, [81-83]. Besides the synthesis, there is another interesting 

research area on the modification of silicene sheet through strain. There is one 

study on the self-doping phenomenon induced by strain in silicene sheet using 

first-principle calculations. It was reported that the silicene nanosheet behaves as 

n-type doped silicene under compressive strain, while behaves as p-type doped 

silicene under tensile strain [84].  

Although many studies have been done on various aspects of silicene, more 

analysis and investigation must be done to have better understanding in the 

properties of this 2D material for being used in real-world applications. 
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Chapter 3  

Theory and Methodology 

The research in silicene has been done actively in recent years, and we 

have reviewed parts of them in Chapter 2. Silicene research can be categorized 

into experimental, theoretical, and computational studies. Our investigation is in 

the category of a theoretical study using tight-binding model, and then 

Mathematica is used to help solving the equation. It is easy to become confused 

between the theoretical and computational study, especially when a computer 

program such as Mathematica is used to assist the calculation. Hence, we give the 

overview of methodology in theoretical study and compare it to that in 

computational study in Section 3.1. We also introduce Mathematica and the 

overview of computer algebra system in this section. Section 3.2 explains the 

tight-binding model and the Hamiltonian obtained from the model, which is the 

core of theoretical study. We introduce the basic theory of spin, valley, and 

pseudospin, which are important concepts being used in our investigation, in 

Section 3.3. In Section 3.4, magnetic exchange field which is another crucial 

concept being used throughout this study is explained. Section 3.5 give the 

overview of the Cramer’s rule, an important mathematical theorem we use to solve 

the matrix equation before running Mathematica to find the numerical values of 

the coefficients. 

 

3.1 Introduction 

In this section, we give the overview of theoretical methodology being 

used to analyze electronic transport in silicene. We particularly differentiate the 

theoretical study from computational study, since it is easy for them to cause 

confusion. In general, theoretical study uses mathematical model and abstractions 
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to explain and predict the phenomena, while experimental study uses tools and 

equipment to synthesize, fabricate, and measure the physical objects. In our study, 

tight-binding model and quantum mechanics are used extensively as the tool in 

theoretical analysis. With the prevalent of affordable computing power and good 

symbolic computation software such as Mathematica, we can use computer 

programs as a tool to help solving the problem theoretically.  

Symbolic computation is different from numerical computation which is 

more familiar in engineering. The key in symbolic computation is the computer 

algebra system which is a type of software that uses mathematical expression 

containing variables without knowing the values, and does the computation by 

using those variables as symbols [85]. In symbolic computation, great efforts are 

put on the exact computation by using smart mathematical algorithm and 

simplifier for mathematic formula. Some examples of computer algebra system are 

Mathematica, Maple, and Mathcad. On the other hand, numerical computation or 

numerical analysis uses numerical approximation approach to solve problems 

while accepting reasonable errors [86]. Examples of widely used numerical 

analysis software are Matlab and GNU Octave. 

The easy access to computing power also gives rise to another 

methodology called computational study, or computer simulation. It uses 

mathematical model to imitate the behavior of the system in computer [87]. 

Computer simulation has been very helpful for experimental studies when the cost 

of the experiment is high, for example, in semiconductor device fabrication and 

aerospace development. In recent years, computer simulation has also been used 

extensively in other fields of study, such as physics, material science, chemistry, 

biology, economics, and social science. There are many methods being used for 

computer simulation. In the field of physics and material science, density 

functional theory (DFT) is a very successful method that uses quantum mechanics 

to solve problems in quantum many-body systems with large number of 

interacting particles [88]. It calculates the electronic structures, particularly the 

ground states of the materials. Although density functional theory cannot provide 

absolute accuracy since it uses many approximations, it could provide good 

prediction for properties of the materials. The results from density functional 
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theory were considered inaccurate in the past, but the situation has been improved 

with the refinement of approximations being used.  

Other successful simulation methods include semiempirical method and 

Monte Carlo method [89]. Both theoretical study and computational study may use 

computation, but the tools they use and the expected output from them are 

different. In theoretical study, tight-binding model is a widely used tool to analyze 

the electronic structures of the materials. Other popular quantum mechanical tools 

in theoretical study include nearly-free electron model, where electrons can move 

almost freely through the lattices. We introduce the tight-binding model in the next 

section. 

 

3.2 Tight-Binding Hamiltonian 

 Tight-binding model is a widely used fully-quantum-mechanical-approach 

to analyze the electronic band structure of the materials. It is an approximation to 

obtain the Hamiltonian, which is the total energy of the system and is necessary to 

analyze a system. Tight-binding model uses one electron approximation, where 

each electron is tightly-bound to the belonged nuclei. One electron approximation 

does not take account of the interaction with other electrons and external potentials, 

but instead it uses superposition of wave functions of isolated atoms to obtain the 

total wave function of the system [90, 91].  

 In a system with N atoms, the time-independent Schrodinger equation of a 

single electron can be expressed as  

)()( rErH


 ,    (3.1)  

where H is Hamiltonian, E is the excited energy, )(r


 is the atomic wave function, 

and r is the interatomic distance. To solve the eigenvalue problem in Equation 3.1, 

the Hamiltonian matrix elements between atomic orbitals at different interatomic 

distances are required. In general, Hamiltonian can be described by 

)(
2

1 2 rVH


 ,    (3.2) 



22 

 

where )(rV


is the potential energy. A typical approximation in tight-binding model 

is to assume that electrons can hop only to the nearest-neighbor atom, but we 

might also need the next-nearest-neighbor hopping terms to describe the system in 

some cases. The transfer integral which determine the rate of electrons moving 

from one site to another is called hopping integral in tight-binding model, and it is 

related to the distance between atoms.  

 In silicene, the tight-binding Hamiltonian can be well described with 
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where the creation operator 


ic creates an electron with spin polarization  at the 

atomic site i of the lattice structure, ji,  ranges for all over the nearest-neighbor 

atoms, and ji,  ranges for all over the next-nearest-neighbor atoms [34]. The 

first term of Equation 3.3 indicates the nearest-neighbor hopping with the hopping 

energy t = 1.6 eV, while the second term represents the effective spin-orbit 

coupling with SO = 3.9 meV. The next-nearest-neighbor hopping parameter is 

1ij   when the hopping direction is counterclockwise, and 1ij   when the 

hopping direction is clockwise in relation to the z axis. The third term represents 

Rashba spin-orbit interaction 2R = 0.7 meV, where 1t i

z   for sublattice-A and 

1t i

z   for sublattice-B at the atomic site i. The notation ijijij ddd /ˆ   represents 

the connection between two atomic sites i and j in the same sublattice.  

At the low energy near Dirac point, at which electrons obey the Dirac 

equation resulting in many exotic phenomena, the effective Hamiltonian can be 

described with Dirac theory as  

)()( 2

0

yxxyzRzzSOyyxxF kkakkvH    , (3.4) 

where Fv is the Fermi velocity, silicene lattice constance a = 3.86 Å, 

zyx  ,,


 is Pauli spin-operator for sublattice pseudospin, zyx  ,,


 is 
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Pauli spin-operator for real spin,   = 1 denotes valley k, and   = -1 denotes valley 

k’, and zyx kkkk ,,


is wavevector [34].   

There are four main external potentials that can be used to control the band 

gap: electric field, photo irradiation, magnetic exchange field, and chemical 

potential. Taking into account all of the potentials, then the Dirac Hamiltonian can 

be described with 

zzzzzz MMlEHH   

0 ,   (3.5) 

where l is the distance between sublattice, zE  is the external electric field,   

represents the applied photo irradiation, M = MA – MB is the applied magnetic 

exchange field where MA is the exchange field on sublattice-A and MB is the 

exchange field on sublattice-B, respectively. M is the mean of applied magnetic 

exchange field, and   is chemical potential [34]. We use effective Hamiltonian 

based on Equation 3.5 in our investigation. 

We can calculate the band structure of silicene by using tight-binding 

model. Since the real crystal is three-dimensional, the real band structure that we 

consider should be three-dimensional, too. However, it is more common to look at 

the two-dimensional band structure of the lattice structure to grasp information, 

because it is easier to produce and the information is sufficient in most cases. 

Figure 3-1 shows the two-dimensional band structure diagram of silicene obtained 

from tight-binding model [92]. Dashed lines show the result from tight-binding 

method, while the solid lines are the results from ab initio calculations. The band 

structure exhibits linear dispersion or Dirac cone at point K in the reciprocal space. 

The Fermi velocity Fv  is estimated to be around 106 m/s [43] which is comparable 

to the value obtained from first-principles calculation, and is similar to graphene. 

However, the band gap estimated from tight-binding model is 7.9 meV, which is 

different from the more accurate value of 1.55 meV obtained from density 

functional theory [55].  
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Figure 3-1: Band structure of silicene from tight-binding model [92]. 

 

3.3 Spin, Valley and Pseudospin 

 Spin is one of intrinsic degree of freedom of electrons along with charge, 

and is a pure quantum mechanical concept. Using spin degree of freedom allows 

us to expand the technology beyond electronics into spintronics. In this section, we 

explain the concept of spin degree of freedom, as well as the valley and 

pseudospin degree of freedom which attract attention recently. 

 Although elementary particles and atomic nuclei also have spins, we focus 

on electron’s spin in this section. Electron’s spin is an intrinsic angular momentum 

of electrons, which is unrelated to the spinning motion misled by the terminology 

‘spin’. Electrons have half-integer (1/2) spin making it to be categorized as 

fermions. The quantum state of electron’s spin can be described by a spinor, a two-

component complex-valued vector. The observable of the spin can be expressed 

with spin operators (Sx, Sy, Sz), which can be described by 2×2 complex matrices 

called Pauli matrices. In quantum mechanics, states are described as vectors in a 

vector space, and the observables which are the things that we measure are 

described by operators [93]. The three spin operators are  
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where the operator Sx, Sy, and Sz affects a measurement of the spin in the x, y, and z 

direction, respectively. The notations σx, σy, and σz are Pauli matrices, and can be 

summarized as  
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There are two eigenvalues of the operator Sz : 2/1  and 2/1 , where the spin up 

and spin down are described respectively by eigenspinors as 

0
2

1
zs , 1

2

1
zs .   (3.8)  

 Another degree of freedom that has attracted attention recently due to its 

potential for applications in quantum computation is valley degree of freedom. The 

valley degree of freedom is based on two sets of inequivalent and degenerate Dirac 

points at k and k’. Valley degree of freedom could lead to valleytronics which is 

expected as a pathway towards quantum computation. Valley is the local 

maximum of valence band or minimum of conduction band in semiconductor, 

which exists in reciprocal space.  

Interestingly, the reciprocal lattice of honeycomb lattice is also a 

honeycomb lattice. Figure 3-2 shows the band structure of graphene at low energy 

to describe the concept of valley. The hexagonal shape indicates the first Brillouin 

zone. The notations k and k’ indicate two sets of inequivalent valleys, which arises 

from the opposite sign of Berry curvature [94, 95]. The Berry curvature Ω(k) can 

be described as 

)()()( kuikuk kk   ,    (3.9)  

where )(ku is the periodic part of the Bloch function.  
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Figure 3-2: Band structure of graphene at low energy to show the concept of valley. 

The concept of Berry curvature is closely related to Berry phase or 

geometric phase [96, 97]. Berry phase is a phase difference occurred in a system 

with cyclic adiabatic process, which is a gradually changing process that the 

probability density so that can be modified. The terminology of ‘geometric phase’ 

comes from the fact that the phase difference is the difference of tangent along the 

path taken by a particle along the curvature.    

More recently, pseudospin degree of freedom in graphene and silicene has 

been investigated. It is sometimes called lattice pseudospin or sublattice 

pseudospin to avoid confusion with Anderson’s pseudospin in superconductor 

model. The terminology of pseudospin comes from the fact that an electron in 

honeycomb lattice has a probability to be in either sublattice-A or sublattice-B, 

and it can be described mathematically with Pauli matrices like spin. Therefore, 

the pseudospin in two-dimensional materials indicates sublattices rather than the 

real spin of electrons [98]. The two pseudospin states ΨA and ΨB can be expressed 

as the wave-state components of the electron wave function Ψ in 2D honeycomb 

lattice structure as follows: 
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Using the Pauli spin matrices, the pseudospin operator S


 can be defined as  
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where τx, τy, and τz are Pauli spin matrices, and ax, ay, az are unit vectors in x, y, and 

z direction, respectively. Although the terminology is similar, spin and pseudospin 

are quite different. Spin is a quantized intrinsic angular momentum of an electron, 

while pseudospin can be considered as a sublattice index of an electron. Therefore, 

pseudospin polarized current may be considered as sublattice-dependent current. 

 

3.4 Magnetic Exchange Field 

 There have been reports on the effects of magnetic exchange field, or 

exchange field, in silicene [63, 99]. In this section, we explain the concept of 

magnetic exchange field. When electronic wavefunctions of neighboring electrons 

overlap, the electrons’ spin displays quantum mechanical interaction, which causes 

energy splitting between spin-up electrons and spin-down electrons. The spin 

interaction is called exchange interaction or exchange coupling, and the energy 

splitting is called exchange splitting or exchange energy. When the exchange 

interaction occurs between a magnetic atom and the neighboring atoms, it causes 

the whole material to become a magnetic material.  

One method to produce magnetic exchange field in elemental 2D materials 

is by using proximity effects, where the deposition of ferromagnetic insulators on 

graphene induces exchange splitting ∆ of about 5 meV [100]. The investigation 

also shows that the exchange splitting ∆ caused by external magnetic field B can 

be approximately calculated as 2108.5/  B  meV/T. Therefore, there is no 

difference between exchange field and external magnetic field in macroscopic 

view; however, the mechanism and interactions are different in microscopic view. 

In addition to the theoretical proposal, magnetic exchange field has been 

realized experimentally by deposition of ferromagnetic insulator EuO onto 

graphene [101]. They reported a successful growth of high-quality crystalline EuO 

on single-layer graphene with reactive molecular beam epitaxy. This experimental 

success paves a way towards spintronic and valleytronic devices. 

 



28 

 

3.5 Cramer’s Rule 

 Cramer's rule is an important mathematical theorem being use to solve the 

linear equations for one variable without the necessity to handle the whole linear 

system [102].  In our study, the matrix equations from wave equations need to be 

solved to calculate the transmission coefficient, which would be used to obtain the 

conductance of the device. Therefore, we introduce Cramer's rule in this section. 

 When we have a linear system of equations as follows: 
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Then we can use matrices to represent the abovementioned equations as 
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Then we find the determinant D of the coefficient matrix 
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case, the determinant D = 15. Next, we substitute the first column of coefficient 

matrix with answer column, and calculate the determinant Dx of the matrix. Then 

we repeat the process with the second and third column to obtain determinant Dy 

and Dz, of which can be expressed as 
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Then the answer can be obtained with  

,215/30/  DDx x  ,115/15/  DDy y  .115/15/  DDz z  
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Chapter 4  

Carrier Transport in Dual 

Ferromagnetic-Gated Silicene 

Junction 

 From Chapter 1 to Chapter 3, we have explained the necessity of transition 

from electronics to spintronics, and provided the overview of newly found group 

of materials called elemental 2D materials which attracted great attention due to 

many exotic properties. We have focused on silicene in particular, and explained 

its properties. We have also described the relatively unfamiliar concepts that are 

relevant to our research, such as spin, valley, pseudospin, and magnetic exchange 

field. In this chapter, we proposed a dual ferromagnetic-gated silicene junction and 

investigate the electronic transport in this junction. 

 

4.1 Introduction 

 One of the major milestones in silicene research is to control the spin-

polarized current for spintronic applications. In the past few years, researchers 

have discovered that the spin current can be controlled by external electric field 

and magnetic exchange field. There are few studies on the control of spin and 

valley transport by electric field and exchange field in ferromagnetic junctions [62, 

63]. One study reported oscillation of spin and valley currents with the length of 

the ferromagnetic barrier, and found fully polarized spin and valley currents when 

electric field of 10 meV is applied at the ferromagnetic barrier. The other study has 

investigated charge and spin transport in single and double ferromagnetic junctions 

when electric field is applied to the ferromagnetic barriers in a certain 

configuration of exchange field. The study has focused on the single ferromagnetic 
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junction, and predicted that the charge conductance as a function of barrier width 

may change from oscillatory to a monotonical when electric field goes beyond a 

critical value. They also predicted nearly perfect spin polarization when electric 

field and exchange field are above certain levels. In addition, they briefly showed 

the correlation between charge and spin currents with exchange field in double 

ferromagnetic junctions. 

 In our study presented in this chapter, we focus on the double 

ferromagnetic barrier structure, and systematically study the effects of electric 

field and exchange field on spin polarized current, valley polarized current, and 

pseudospin polarized current. We also introduce the idea of changing the 

configuration of exchange field to see the impact on electronic transport in the 

device structure.  

 

4.2 Device Models  

4.2.1 The Basic Device Structure   

 The proposed structure has two ferromagnetic barriers on top of silicene 

layer, with metallic gates above the barriers. The ferromagnetic barriers, FM1 and 

FM2, are L apart from each other with length d for each barrier. The silicene under 

the barriers are induced into ferromagnetism by a pair of ferromagnetic insulators 

EuO on both sides of the silicene sheet. The ferromagnetic insulators also generate 

exchange splitting by proximity coupling [100, 101]. Since silicene sheet has the 

buckling structure, it has a perpendicular distance between sublattice-A and 

sublattice-B of 0.46 Å [103]. Therefore different exchange fields can be separately 

induced into sublattice-A at the top and sublattice-B at the bottom. They are 

designated as h1A and h1B at FM1, while at FM2 they are designated as h2A and h2B, 

respectively.  

In this proposed structure, external electric fields are applied 

perpendicularly at the ferromagnetic regions. The chemical potential µ is induced 

by the top and the bottom gates with the same tunable potential µ/e, where it is the 

change of energy when electrons are added or removed from the system. Chemical 

potential is known as Fermi energy at the temperature of zero Kelvin, and the total 
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chemical potential in semiconductor is known as Fermi level. The chemical 

potential can be provided by doping the silicene, but we use external potential to 

adjust the value in our proposed structure. Figure 4-1 shows the schematic model 

of proposed structure NM1/FM1/NM2/FM2/NM3, where NMs stand for normal 

regions and FMs stand for ferromagnetic regions. 

Tight-binding Hamiltonians has been described in Chapter 3 by Kane-Mele 

model based on the behavior of non-interacting electrons in NM1, NM2 and NM3 

layers [47]. Then the low-energy effective Hamiltonians is used to analyze 

electronic transport in sublattice-A and sublattice-B under the influence of the 

electric field, chemical potential, and exchange energy [66]. In this analysis, we 

consider that the effect of Rashba interaction is very small comparing with the 

other terms at low energy [34, 62]. Therefore, the wave equation with excited 

energy E can be described 

    EH ,      (4.1) 

where )1(1   represents valley index )'(kk  and )1(1   represents spin 

)( , respectively [34, 62, 66]. 























,

,

B

A
 is the spin-valley dependent 

lattice-pseudospinnor field, where ,A  is the electronic wave functions at 

sublattice-A and ,B  is the electronic wave functions at sublattice-B, 

respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Schematic model of proposed structure NM1/FM1/NM2/FM2/NM3. 
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In the normal regions (NMs) where there is no either electric field or 

exchange field, the low-energy effective Hamiltonian can be described as  

  zyyxxF ppvH    )( ,    (4.2) 

where 
x

ipx



 ˆ , 

y
ipy



 ˆ . The notations x , y , z are elements of Pauli spin-

operators used to represent pseudospin. The Fermi velocity in the low-energy 

region near the Dirac point is 5105.5 Fv m/s [55]. The notation SO   

represents spin-valley-dependent energy gap in NMs regions, where SO = 3.9 

meV is effective spin-orbit coupling [104].  

On the other hand, the low-energy Hamiltonian in ferromagnetic region 

FM1 under the effects of electric field, exchange field, and chemical potential can 

be described as  

  11 σzησyyxxFησ μτΔ)τηpτ(pvH  ,    (4.3) 

where 11 MESO    is spin-valley dependent energy gap, 

zE eDE  is the energy gap due to electric field, 2/)( 111 BAM hh   is the 

energy gap induced by exchange field. The spin-dependent chemical potential is 

defined as 11 Mu  , where 2/)( 111 BAM hhu  , since the chemical potential 

in the barrier is spin-dependent relating to the exchange field.   

Then the Hamiltonian in ferromagnetic region FM2 can be described in the 

same manner as 

22)(    zyyxxF ppvH ,   (4.4) 

where 22 MESO   , 2/)( 222 BAM hh  , 22 Mu  , and 

2/)( 222 BAM hhu  . 
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 Solving the Hamiltonian in Equation (4.1) yields the following eigenvalues 

and wave functions in each region, where the spin-valley currents flow in the x-

direction [66].  

Eigenvalues: 

  22)()( pvE F ,    (4.5) 

where p is momentum, the sign )(  represents the band energy of electron and 

hole, respectively. 
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Then the wave vectors in x-direction of electron in NMs and FMs regions are 

described by  
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 , (4.8) 

where θ is the incident angle of electrons at the NM1/FM1 junction, 1 is the 

incident angle at FM1/NM2 junction,   is the incident angle at NM2/FM2 

junction, and 2  is the incident angle at FM2/NM3 junction. These incident angles 

can be calculated via the conservation component in the y-direction as given by 
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.  (4.9)     

Therefore, the coefficients r , a , b , g , f , p , q , t  can be 

calculated by using the following boundary conditions. 

)0()0( 11 FMNM  , )()( 21 dd NMFM  , 

)()( 22 LdLd FMNM  , )2()2( 32 LdLd NMFM  , (4.10)                                                     

where r and t represent reflection and transmission coefficients, respectively. 

Using the wave functions in Equation (4.6) and the boundary conditions in 

Equation (4.10), we can construct a matrix equation as follows: 
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The above matrix equation can be solved to find t by using Cramer’s rule 

explained in Chapter 3 with the help of Mathematica. Then the transmission 

probability amplitude T could be calculated with the formula 

2||/  tJJT int  , where tJ is the current density of transmitted electrons and 

inJ  is the current density of injected electrons, respectively. With the transmission 

probability amplitude T , the spin-valley conductance at the temperature of zero 

Kelvin in ballistic regime can be calculated by using the standard Landauer’s 

formalism and integrating the whole incident angles [105, 106] as 


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.   (4.11)  

The notation )(
4

0

2

0 EN
h

e
G  represents unit conductance, ||)(0 E

v

W
EN

F
 is 

the density of state in the transport channel of electrons in silicene when the spin-

orbit interaction effect is excluded. W is the width of silicene sheet, h represents 

Planck’s constant, and 22)( SO

F

E
v

W
EN 


 is the density of state in the 

transport channel of electrons in normal silicene junction.  

From Equation (4.10), the total conductance TG  could be calculated with 

the summation of all spin-valley conductances as 

' 'T k k k kG G G G G       ,      (4.12) 
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where 1  represents k, 1  represents 'k , 1  represents spin ↑, and 

1  represents spin ↓. Furthermore, the spin polarization (SP) and valley 

polarization (VP) can be defined as 

 100
)()(

(%) '' 
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G

GGGG
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 100
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kkkk

G

GGGG
VP .    (4.13) 

Unlike SP and VP, the sublattice pseudospin polarization (PP) is more 

difficult to define intuitively. Therefore, we use quantum mechanics to define 

sublattice pseudospin polarization. The expectation value of sublattice-pseudospin 

[107, 108] is defined by quantum mechanics as 


 ss

̂
,        (4.14) 
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,

B

A
is the normalized wave function of electrons. Then the 

sublattice pseudospin operator may be defined as 
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ˆ
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.       (4.15) 

Therefore, the expectation value is described as  
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where ˆ
xya is a unit vector in xy-plane and ˆ

za  is a unit vector in z-direction. When 

SOE  , the expectation value can be approximated as  

  zas ˆ
2





 .       (4.17) 
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With the limit SOE  , we can separate electrons in silicene into two sublattice-

pseudospin groups as 

 zkk
ass ˆ

2'





 ,      (4.18) 

which represents the state of sublattice-B or sublattice-pseudospin down  , and 

 zkk
ass ˆ

2'





,      (4.19) 

which represents the state of sublattice-A or sublattice-pseudospin up  . In 

summary the state of sublattice-pseudospin down   is the states of k  and 

'k , while the state of sublattice-pseudospin up   is the states of k  and 

'k .  

Therefore, the sublattice pseudospin polarization (PP) in silicene can be 

considered as a polarization that occurs when SOE  , where it can be defined as 

[71] 
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The notation
k k

G G G
  

   is conductance of electrons with sublattice 

pseudospin up, and 
k k

G G G
  

  is conductance of electrons with sublattice 

pseudospin down, respectively. 

 

4.2.2 The Basic Structure with a Middle Gate 

 To further analyze the impact of interplay between electric fields and 

exchange field configurations on the spin-valley polarized currents in the proposed 

dual ferromagnetic-gated silicene junctions, another gate potential U/e is also 

applied to the silicene in NM2 region. The modified device structure is shown in 

Figure 4-2. The low-energy effective Hamiltonian of this structure is almost the 
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same as in the structure without gate potential U/e shown in Figure 4-1, except the 

change in the parameters of Equation (4.7) which becomes 
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Figure 4-2: Schematic model of proposed structure with additional gate potential 

U/e at NM2 region.   

 

In addition, the wave vectors in x-direction of electrons in NMs and FMs 

regions in Equation (4.8) becomes 
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while the other formulas stay the same as in the case of the structure without a gate 

on NM2 region. 
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4.3 Results and Discussion 

 We show the analysis results and discuss the results in this section. The 

dimension of the device structure is set to be gate width d = 25 nm, and the gap 

between gate L = 25 nm. The excited energy of electrons is designated to be E = 4 

meV. The four configurations of magnetic exchange fields used in our analysis are 

illustrated in Figure 4-3, where the exchange field magnitude is h = 5 meV. 

Throughout this analysis, we set the parameter d, L, E, and h to be fixed at the 

same values. 

 

 

 

 

 

 

       (a)          (b) 

 

 

          (c)           (d) 

Figure 4-3: Configurations of magnetic exchange fields, where → represents h, 

and ←  represents – h. (a) configuration No.1, (b) configuration No.2, (c) 

configuration No.3, (d) configuration No.4. 

 

 The reason that we designated the excited energy to be E = 4 meV is 

because we would like to investigate the electronic transport occurring at the 

bottom of the energy band. In that system, the low-energy Hamiltonian could be 

realized because of the SOE  . At the low energy region, many intriguing 

phenomena occur due to the fact that the electrons in that region obey Dirac 

equation, and this is the focus area of our investigation. One interesting 

phenomenon is that the effect of spin-valley dependent energy gap in the barriers 
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is strong in the system of SOE  [66]. In our analysis, we particularly look at the 

conductance of electrons and the polarization of the spin currents, valley currents 

as well as sublattice pseudospin currents. We systematically analyze the impact of 

exchange field configurations, external electric field, and middle gate bias on the 

behavior of electronic transport. Figure 4-4 shows the normalized conductance of 

each spin-valley current component as a function of external electric field zE , 

where e is elementary charge and D is the perpendicular distance between 

sublattice-A and sublattice-B. In this case, the chemical potential is set to be µ = 0 

meV without middle gate bias. 
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   (c)      (d)   

Figure 4-4: Conductance as the function of electric field with chemical potential µ 

= 0 meV in exchange field configuration (a) No.1, (b) No.2, (c) No.3, and (d) No.4. 

 

Figure 4-4(a) exhibits perfect spin polarization of almost 100% at 

heDEz   meV in exchange field configuration No.1. Pure spin current can be 

controlled to flip between spin up and spin down by reversing the direction of 
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electric field. On the other hand, the Figure exhibits valley polarization at 

0zeDE  meV, where 



kk

GG  and 



'' kk

GG . On the contrary, Figure 4-4(b) 

exhibits perfect valley polarization of almost 100% at heDEz   meV in 

exchange field configuration No.2, while exhibits spin polarization at 0zeDE  

meV, where 



'kk

GG  and 



'kk

GG . Figure 4-4(c) and Figure 4-4 (d) exhibit 

similar characteristics with both spin polarization and valley polarization disappear 

in exchange field configuration No.3 and No.4. They show sublattice pseudospin 

polarization near 0zeDE .  
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   (c)      (d)   

Figure 4-5: Conductance as the function of electric field with chemical potential µ 

= 2.0 meV in exchange fields configuration (a) No.1, (b) No.2, (c) No.3, and (d) 

No.4.  

Figure 4-5(a) and (b) show similar characteristics of perfect spin-valley 

polarization in exchange field configuration No.1 and No.2. The result is similar to 

what was reported in a single ferromagnetic gated silicene junction [66]. The 

distance between peaks may be adjusted by varying chemical potential µ. Figure 

No.3 
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4-5(c) and (d) exhibit sublattice pseudospin polarization similar to that in Figure 4-

4(c) and (d) with wider splitting. The peaks splitting can be enhanced even further 

in all exchange field configurations by applying middle gate bias as illustrated in 

Figure 4-6. This result is meaningful for applications in perfect spin-valley 

filtering and sublattice pseudospin filtering devices. The study results also indicate 

that the device structure with exchange field configuration No.1 and No.2 may 

function as a spin polarizer and a valley polarizer, respectively. On the other hand, 

the device structure with exchange field configuration No.3 and No. 4 may work 

as a sublattice pseudospin polarizer. 
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   (c)      (d) 

Figure 4-6: Conductance as the function of electric field with chemical potential µ 

= 2.0 meV and middle gate bias U = 100 meV in exchange fields configuration (a) 

No.1, (b) No.2, (c) No.3, and (d) No.4. 

 

Figure 4-7 illustrates effects of middle gate bias U on the spin and valley 

polarization in exchange field configuration No.1 and No. 2. When the external 

electric field Ez = 0 meV and chemical potential µ = 0 meV, the structure exhibits 

pure valley polarization in configuration No.1 and exhibits pure spin polarization 
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in configuration No. 2 as shown in Figure 4-4(a) and (b). It was found that the pure 

valley polarization, where only 0VP   while 0LSPSP  , can be controlled to 

switch from %100  to almost %100  by increasing the middle gate bias U in 

configuration No. 1 as illustrated in Figure 4-7(a). On the other hand, Figure 4-

7(b) depicts the control of pure spin polarization, where only 0SP   and 

0LSPVP  , to switch from %100  to almost %100  by increasing the middle 

gate bias U in configuration No. 2. Figure 4-8(a) and (b) show similar 

characteristics control of spin polarization and valley polarization by chemical 

potential µ when the external electric field Ez = 0 meV and middle gate bias U = 0 

meV in configuration No.1 and No.2, respectively. The oscillation of valley 

polarization and spin polarization in Figure 4-7 and Figure 4-8 is due to the 

quantum interference of electrons in the barriers, where the period of oscillation 

may decrease as the barrier thickness increases. 
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   (a)      (b) 

Figure 4-7: Spin polarization (SP), valley polarization (VP), and pseusospin 

polarization (PP) as the function of middle gate bias U with the external electric 

field Ez=0 meV and chemical potential µ = 0 meV in configuration (a) No.1, (b) 

No.2. 
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Figure 4-8: Spin polarization (SP), valley polarization (VP), and pseusospin 

polarization (PP) as the function of chemical potential µ with the external electric 

field Ez=0 meV and middle gate bias U = 0 meV in configuration (a) No.1, (b) 

No.2. 

 

 From Figure 4-4 to Figure 4-6, we have seen that the device structure with 

exchange field configuration No.3 and No.4 behave as a sublattice pseudospin 

polarizer. Our investigation results show in Figure 4-9 that the pseudospin 

polarization can be controlled to switch from almost %100  to almost %100  by 

increasing the external electric field ZeDE . Particularly when the middle gate bias 

U = 100 meV, the pseudospin polarization fully switch from %100  to %100  

linearly in both exchange field configurations. The spin polarization and valley 

polarization are 0 % under this condition, which indicates pure pseudospin 

polarization. The results show a promising characteristic for applications in 

silicene-based pseudospintronics.  

The abovementioned results are discussed here. The conductance of the 

junction is determined by the transmission probability amplitude as seen in 

Equation (4.11). This might be intuitively understood as high conductance occurs 

when the transmission probability is high. On the other hand, the transmission 

probability is determined by how well electrons can transport through the barriers, 

which depends on the positions of conduction bands and the width of the band gap 

[66].  
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Figure 4-9:  Lattice-pseudospin polarization as the function of electric field with 

chemical potential µ = 2.5 meV and varied middle gate U = 0, 50, 100 meV in 

exchange fields configuration (a) No.1, (b) No.2.  

 

In general, the width of the band gap at the ferromagnetic barrier without 

light irradiation is determined by spin-valley dependent energy gap 

MESO    of which each spin-valley component is different 

among each other. For instance, the index of k  is 1 , 1 . In the same 

manner, the index of  'k  is 1  , 1 , k  is 1  , 1 , and 'k  is 

1  , 1 . Therefore, the spin-valley dependent energy gap for each current 

component is 

MESOk



, 

MESOk


'
,  

MESOk



,  

MESOk


'
.     (4.23) 

 On the other hand, the width of the band gap at the normal region NMs 

with light irradiation is determined by spin-valley dependent energy gap 

  SO . The interplay between electric field induced energy gap E , 
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exchange field induced energy gap M , and spin-orbit coupling SO  causes 

changes on the band gap, which in turn affects the transmission probability 

amplitude of each spin-valley component in different way. In addition, the spin-

dependent chemical potential Mu   and the middle gate potential U/e also 

affect the low-energy Hamiltonian and wave functions as illustrated in Equation 

(4.4), (4.6), (4.7), (4.8), (4.9), (4.21), and (4.22). 

It is also worth noting here that the magnitudes of normalized conductance 

illustrated from Figure 4-4 to Figure 4-6 are less than 0.03, which is a very small 

number. The reason of small conductance magnitude is due to the exciting energy 

level that we use in this theoretical analysis. From Equation (4.10), when the 

excited energy E = 4 meV approaches SO  = 3.9 meV, which is in the energy 

range we are interested in, so that fewer density of states are available in transport 

channel. 

 

4.4  Conclusions 

In this section we have investigated the electronic transport properties in 

dual ferromagnetic-gated silicene junction under the influences of external electric 

field, magnetic exchange field, chemical potential, and optional middle gate bias. 

The magnetic exchange fields, which are induced into two ferromagnetic regions 

by proximity effects, are arranged into four configurations to see the effects on the 

electronic transport properties in the device structure. The numerical analysis 

results show that, in the absence of chemical potential , the junction might 

behave as either pure spin polarizer or pure valley polarizer depending on the 

direction of exchange fields No.1 or No.2. Interestingly, when the exchange field 

configuration is arranged to No.3 and No.4, the pure and perfect spin-valley 

polarization characteristics are broken to yield a pure sublattice pseudospin 

polarization. On the other hand, the junction exhibits perfect spin-valley 

polarization in exchange field configuration No.1 and No.2, while the distance 

between peaks is widened in configuration No.3 and No.4, when chemical 

potential µ is applied. The results depict similar characteristics as in the single 

ferromagnetic-gated junctions. We also found that the peaks splitting effect is 
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enhanced in all exchange field configurations, when a middle gate bias U is 

applied.  

The pseudospin polarization can be controlled by electric field. In 

particular, it can be linearly controlled from %100  to %100  when an 

appropriate middle gate bias U is applied. In other words, the polarized currents in 

the junction with exchange field configuration No.3 and No.4 can be controlled to 

flow only in sublattice-A or sublattice-B when PP= %100  or %100 , 

respectively. This perfectly controllable sublattice pseudospin current in silicene 

was found only in dual ferromagnetic-gated junctions, and is not achievable in 

single ferromagnetic-gated junctions.  
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Chapter 5  

Photo-Irradiation Effects  

 We have investigated the electronic transport properties in a dual 

ferromagnetic-gated silicene junction in Chapter 4. The analysis results show that 

in the absence of chemical potential , the junction might behave as either pure 

spin polarizer, pure valley polarizer, or pure sublattice pseudospin polarization 

depending on the exchange field configuration. On the other hand, the junction 

might exhibit perfect spin-valley polarization or just widen the distance between 

peaks depending on the exchange field configuration, when chemical potential is 

applied. In this section we investigate the electronic transport properties of the 

same device structure when circularly polarized photo irradiation is applied to the 

NM2 region, while there are electric fields and chemical potentials applied to the 

gates. We also look at the tunnel magnetoresistance (TMR) characteristics. Tunnel 

magnetoresistance is an interesting phenomenon which is widely applied to many 

types of devices such as read heads of hard disk drive, magnetoresistive random-

access memory (MRAM), and sensing applications. 

 

5.1 Introduction 

 Photo-induced effect is one topic that attracts attention in silicene research 

due to the similar study in graphene, where circularly polarized light is used to 

open a gap at the Dirac point [72]. In silicene, there is a study reported that the 

topological class of silicene could be changed from quantum spin-Hall insulator 

(QSHI) to other phase which has different properties by irradiation of circularly 

polarized light under the influence of electric field [73]. It is reported that off-

resonant circularly polarized light irradiation on silicene has effects on the band 

structure due to photon dressing effect. In this scheme, spin-valley polarization 
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depends on the intensity of light, and electric field. The spin-valley polarization 

can also be inverted by reversing the direction of electric field or the circular 

polarization of the light [75]. It was discovered that spin-valley polarizations and 

tunnel magnetoresistance in a ferromagnetic-normal-ferromagnetic junction can be 

significantly enhanced by photo irradiation on one of ferromagnetic gates without 

influence of electric field or magnetic field [76]. There is also a study in effective 

photo-induced band structure manipulation with intense terahertz irradiation 

beyond the off-resonant condition [77]. However, there has been no investigation 

on the impact of the photo irradiation to the normal region between gates in a dual 

ferromagnetic-gated silicene junction with electric field and exchange field at two 

ferromagnetic gates.  

    

5.2 Circularly Polarized Light and Photon 

Dressing  

According to the electromagnetic theory, light is an electromagnetic wave 

in which a magnetic field intertwines with an electric field in the same space. The 

electric field vectors in the electromagnetic wave lie in a plane perpendicular to 

that of the magnetic field vectors as well as perpendicular to the direction of the 

wave propagation. However, there is no specific plane of the electric field vectors 

and magnetic field vectors. The plane may also change over the time, and this is 

called unpolarized light or nature light. 

 On the other hand, the light which has the plane of the electric field vectors 

and magnetic field vectors fixed is called linear polarized light. Another kind of 

polarized light is called circularly polarized light, of which the plane of the electric 

field vectors and magnetic field vectors rotates [109]. The circularly polarized 

light can be either right-handed (clockwise) or left-handed (counterclockwise) 

depending on the direction of rotation. In other words, circularly polarized light is 

the light that has a constant magnitude of electric field while rotating at a steady 

rate in a plane perpendicular to the direction of the light as illustrated in Figure 5-1. 

The polarized light is not necessary a special characteristic of visible light. Other 

electromagnetic waves, such as x-rays and radio wave, may also be polarized. 
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Figure 5-1: Illustration of circularly polarized light [110]. 

  

Photon dressing is the interaction between photons and electrons in 

nanoscale, which causes a new phase of electronic structure [111]. The interaction 

results in quasiparticles of combined photons and electrons with a distinct Floquet-

Bloch band structure [112]. When light with off-resonant frequency is irradiated to 

a matter, the light energy would not be absorbed by electronic states of the matter. 

The photon energy instead dresses the electronic states via virtual photon 

processes. Because electronic states are affected or dressed by the photon, we call 

this interaction photon dressing, which gives rise to new electronic states with 

different properties. 

 

5.3 Device Models 

The device being used in our investigation has the same structure as that in 

Section 4 without middle gate as shown in Figure 5-2. Controllable perpendicular 

electric fields ZE are applied to both ferromagnetic barriers with the same 

magnitude. Since the effect of spin-valley dependent energy gap in the barriers is 

strong when the excited energy SOE  . This scheme results in resonant 

conductance peaks as a spin-valley filter [66]. Therefore we focus on this regime 

to investigate spin-valley filtering effect induced by frequency of polarized photon. 

E 

B 
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Circularly polarized light ))cos(),(sin()( 0 ttAtA  is irradiated to the NM2 

region between ferromagnetic gates, where   is light frequency, A(t) is time-

dependent vector potential of photon, and 0A is light magnitude. The off-resonant 

light frequency used in our investigation is the frequency region where the 

electronic band structures are changed by virtual photon absorption processes in 

which there is no direct electrons excitation. In the -band tight-binding model, 

this scheme can be achieved when  ≫ t0, where t0 is the nearest hopping 

energy. The lowest frequency   that satisfies this condition can be obtained from 

the bandwidth where 3t0 = 4.8 eV = 1015 Hz [73]. In this study, we investigate two 

magnetic exchange field configurations: parallel junction (P) which is the 

configuration No. 2 in Chapter 4 where 52211  BABA hhhh meV, and anti-

parallel junction (AP) which is a new configuration where 

52211  BABA hhhh  meV. 

Tight-binding model is used to define low-energy effective Hamiltonians, 

which are used to describe the electronic transport in this investigation in the same 

manner as in Chapter 4. The Hamiltonians for the ferromagnetic regions FM1 and 

FM2 are defined respectively as 

11)(    zyyxxF ppvH  

22)(    zyyxxF ppvH ,   (5.1) 

 

 

 

 

 

 

 

 

 

Figure 5-2: Schematic model of proposed structure NM1/FM1/NM2/FM2/NM3 

with light irradiation. 
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The notations k and k' valley is represented with 1  and 1 , while 

spin ↑ and ↓ is represented with 1  and 1 , respectively. Spin-valley 

dependent energy gaps are 11 MESO   and 

22 MESO   , where  electric field-induced energy gap is 

zE eDE , and the exchange field-induced energy gaps are 
2

)( 11
1

BA
M

hh 
 , 

2

)( 22
2

BA
M

hh 
 . The spin-dependent chemical potentials could be defined with 

11 Mu   and 22 Mu  ,where 2/)( 111 BAM hhu   and 

2/)( 222 BAM hhu  , respectively. 

The Hamiltonian in normal region NM2 with photo irradiation can be 

described as   

zyyxxF ppvH    )( ,    (5.2) 

where Spin-valley dependent energy gap is   SO , and 

 /)( 2

FVe . We use /0aeA  which is a dimensionless number to 

characterize the light intensity with e represents the elementary charge, A0 

represents the magnitude of light wave, and a represents the lattice constant of 

silicene [72, 76]. The value of  is generally less than 1 for the intensity from light 

sources in the frequency range of our interest [73].  

In the normal regions NM1 and NM3, where there is neither photo 

irradiation nor external electric field, the spin-valley dependent energy gap is 

SO  3 . Therefore, the Hamiltonian in these two regions could be defined 

as 

zsoyyxxF ppvH   )( .    (5.3) 

Solving the Hamiltonians, when the spin-valley currents flow in the x-

direction, yields the wave function in each region as follows: 
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Then the wave vectors in x-direction of electron in NMs and FMs regions are 

described by  
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where θ is the incident angle of electrons at the NM1/FM1 junction, 1 is the 

incident angle at FM1/NM2 junction,   is the incident angle at NM2/FM2 

junction, and 2  is the incident angle at FM2/NM3 junction. These incident angles 

can be calculated via the conservation component in the y-direction as given by 
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Therefore, the coefficients r , a , b , g , f , p , q , t  can be 

calculated by using the following boundary conditions. 
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where r and t represent reflection and transmission coefficients, respectively. 

Using the wave functions in Equation (5.4) and the boundary conditions in 

Equation (5.8), we can construct a matrix equation as follows: 
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By using Cramer’s rule and Mathematica tool, we can calculate the spin-

valley conductance at the temperature of zero Kelvin in ballistic regime as 

explained in Chapter 4. In addition to spin polarization (SP) and valley 

polarization (VP) as defined in Equation (4.12), we also look at tunneling 

magnetoresistance (TMR) which can be defined as 

100(%) 



P

APP

G

GG
TMR ,     (5.9)  

where PG  and APG  are respectively the total conductance in parallel (P) and anti-

parallel (AP) junctions, when the total conductance can be expressed as 




'' kkkkT GGGGG . 
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5.4 Results and Discussion 

 The analysis results are shown and discussed in this section. The dimension 

of the device structure is d = 25 nm, L = 25 nm, electrons excited energy is E = 4 

meV, and chemical potential is µ = 2.5 meV throughout this numerical analysis. 

The reason that we select the excited energy to be E = 4 meV is explained in 

Chapter 4.  

In this chapter, we focus on the spin polarization, valley polarization, and 

tunnel magnetoresistance. Therefore, we utilize exchange field configuration No. 2 

in Chapter 4 as the parallel junction (P) and a new anti-parallel junction (AP) to 

see the impact of light irradiation. The parallel and anti-parallel junctions are 

illustrated in Figure 5-3. 

Spin-valley polarization is investigated as shown in Figure 5-4 which 

illustrates normalized conductance in P junction. Figure 5-4(a) is the result when 

there is no light irradiation, in which it depicts complete spin-valley polarization. 

This characteristic of perfect spin-valley polarization is useful for applications in 

spin-valley filtering devices. Figure 5-4(b) shows the junction under the same 

condition except that there is irradiation of 2000 THz light. The numerical analysis 

results indicate that the perfect spin-valley polarization is affected when electric 

field is nonzero. When there is no electric field, both Figure 5-4(a) and (b) show 

pure spin polarization. Although spin-valley polarization can still be noticed, 

meaningful applications from this results might be difficult considering the broad 

characteristics of 
k

G  and 
'k

G . 

 

 

 

 

 

 

           (a)        (b) 

Figure 5-3: Configurations of magnetic exchange fields, where → represents h, 

and ← represents –h. (a) Parallel junction, (b) Anti-parallel junction. 
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   (a)          (b) 

Figure 5-4: Conductance in P junction when (a) there is no light irradiation, (b) 

there is irradiation of 2000 THz light. 

 

 Spin polarization (SP) with increasing external electric field Ez at the 

ferromagnetic gates when there is no light irradiation on P junction and AP 

junction is shown in Figure 5-5(a) and Figure 5-5(b), respectively. The comparison 

of the two figures illustrates the impact of exchange field configuration on the spin 

polarization. Figure 5-5(a) shows full switching from %100  to %100  at near 0 

meV in AP junction, while Figure 5-5(b) shows relatively modest spin polarization 

in P junction.  

In the case of light irradiation with frequency of 1000 THz, 1500 THz and 

2000 THz, the spin polarization characteristics in P junction and AP junction are 

shown in Figure 5-5(c) and Figure 5-5(d), respectively. Comparisons of Figure 5-

5(c) to Figure 5-5(a) and Figure 5-5(d) to Figure 5-5(b) clearly depict the effect of 

light irradiation in both exchange field configurations, where the light frequency 

also play significant role. The results show that the range of spin polarization is 

significantly enhanced in P junction as seen in Figure 5-5(c). Particularly when the 

light frequency of 1000 THz is applied, the spin polarization switches from 

%100  to %100  in the negative electric field region, and from %100  to 

%100  in the positive electric field region. On the other hand, Figure 5-5(d) 

shows oscillation of spin polarization when the electric field is increased. 

Particularly in the case that the applied light frequency is 2000 THz, the oscillation 

is clear. 
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   (c)           (d) 

Figure 5-5: Spin polarization when there is no light irradiation in (a) P junction, 

(b) AP junction, and when there is light irradiation of 1000 THz, 1500 THz, and 

2000 THz in (c) P junction, (d) AP junction. 

 

 Valley polarization (VP) characteristics are shown in Figure 5-6. Similarly 

to the case of spin polarization, Figure 5-6(a) and (b) are the cases of no light 

irradiation to P junction and AP junction, where the exchange field configuration 

affects the characteristics of valley polarization. However, in the opposite to spin 

polarization in Figure 5-5 where the full switching occurred in AP junction, the 

valley polarization shows full switching from %100  to %100  near the electric 

field of 0 meV in P junction as shown in Figure 5-6(a). Figure 5-6(c) and (d) is 

valley polarization when the light with frequency of 1000 THz, 1500 THz and 

2000 THz is irradiated to P junction and AP junction, respectively. It is interesting 

that both junctions show very similar characteristics. Neither exchange field nor 

light frequency has significant impact on the valley polarization characteristics, 

which show sharp full switching from %100  to %100 , especially in P junction. 

The results depict potentials for applications in valleytronics. 
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   (c)           (d) 

Figure 5-6: Valley polarization when there is no light irradiation in (a) P junction, 

(b) AP junction, and when there is light irradiation of 1000 THz, 1500 THz, and 

2000 THz in (c) P junction, (d) AP junction. 

 

 We also investigate the impact of photo irradiation on the tunnel 

magnetoresistance (TMR) characteristics as shown in Figure 5-7(b) where light 

with frequency of 1000 THz, 1500 THz and 2000 THz are irradiated. Comparing it 

to Figure 5-7(a) where there is no light irradiation, it shows that the amplitudes of 

TMR increase significantly with photo irradiation. The changes of electron 

transport characteristics as seen in SP, VP, and TMR from Figure 5-3 to Figure 5-7 

are considered to be the results of photon dressing effect due to circularly 

polarized photo irradiation. With the photon dressing effect, the band structure and 

change electronic properties of the materials might be modified as explained in 

Section 5.2. 
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   (a)           (b) 

Figure 5-7: Tunnel magnetoresistance when there is (a) no light, (b) light 

irradiation. 

 

5.5  Conclusions 

In this chapter we have studied the photo effects on the spin-valley 

transport in our proposed dual ferromagnetic gate silicene-based device structure. 

It is found that all components of the polarized spin-valley currents 

(  'k,'k,k,k ) in both P and AP junctions are affected by the light irradiation. 

This might be due to photon dressing effect, which is modification of the band 

structure and change electronic properties from the application of light on silicene. 

We found that the range of spin polarization (SP) is enhanced in P junction, and 

shows oscillation of SP in AP junction. Valley polarization (VP) is affected in 

different way from spin polarization. Both P junction and AP junction show 

similar characteristics with photo irradiation, and either exchange field 

configuration or light frequency has no significant impact on valley polarization. It 

was also discovered that photo irradiation has strong impact on tunnel 

magnetoresistances (TMR) causing the amplitude to increase significantly. We 

further investigate the light irradiation effect in Chapter 6 towards device 

applications. 
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Chapter 6  

Spin-Valleytronic Photo-Sensing 

Device 

In Chapter 5 we have investigated the electronic transport properties of 

dual ferromagnetic-gated silicene-based device structure when circularly polarized 

photo irradiation is applied to the NM2 region between the ferromagnetic gates 

under the influence of electric fields, chemical potentials, and magnetic exchange 

fields. The objective is to understand basic characteristics of proposed device 

structure under light irradiation. In this chapter, we further our investigation by 

adding more exchange field configurations with the objective to find the optimized 

conditions of the proposed structure for applications in spin-valleytronic photo-

sensing devices. We particularly look at the conductance, in addition to spin 

polarization, valley polarization, and tunnel magnetoresistance as investigated in 

Chapter 5.  

 

6.1 Device Models 

 The device structure used in our investigation in this chapter is almost the 

same as in Chapter 5 including the device parameters d and L as illustrated in 

Figure 6-1. There are two differences in the conditions and device structure used in 

this chapter and that in Chapter 5. The first difference is the existence of one more 

anti-parallel junction (AP) added into magnetic exchange field configurations as 

shown in Figure 6-2. The Figure 6-2(a) shows parallel junction, Figure 6-2(b) 

shows anti-parallel junction No.1 (AP-1) which is the anti-parallel junction (AP) in 

Chapter 5, and Figure 6-2(c) illustrates anti-parallel junction No.2 (AP-2) which is 

a newly added exchange field configuration in this chapter.  The objective of this 

additional exchange field configuration is to identify the optimized condition for 
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filtering effect for specific spin-valley component as seen for k current 

component in Figure 5-5(b). Another difference is additional electric field to NM2 

region as depicted in Figure 6-1, where the electric field on ferromagnetic gates is 

labeled as 1zE  and the electric field on NM2 region is labeled as 2zE .  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: Schematic model of proposed structure NM1/FM1/NM2/FM2/NM3 

with light irradiation and additional electric field 2zE  on NM2 region. 

 

 

 

 

 

 

   (a)          (b) 

 

 

 

 

              (c) 

Figure 6-2: Configurations of magnetic exchange fields, where → represents h, 

and ← represents –h. (a) Parallel junction, (b) anti-parallel junction No.1 (AP-1), 

(c) anti-parallel junction No.2 (AP-2). 
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Tight-binding model is used to define low-energy effective Hamiltonians 

in the same manner as in Chapter 5. The Hamiltonians for the ferromagnetic 

regions FM1 and FM2 are defined as 

11)(    zyyxxF ppvH  

22)(    zyyxxF ppvH ,   (6.1) 

respectively. The notations η and σ respectively represent valley and spin. Spin-

valley dependent energy gaps are 111 MESO    and 

212 MESO   , where  electric field-induced energy gap is 

11 zE eDE , and the exchange field-induced energy gaps are 
2

)( 11
1

BA
M

hh 
 , 

2

)( 22
2

BA
M

hh 
 .  The spin-dependent chemical potentials could be defined with 

11 Mu   and 22 Mu  , where 
2

11
1

BA
M

hh
u


  and 

2

22
2

BA
M

hh
u


 . 

The Hamiltonian in normal region NM2 with photo irradiation can be 

described as   

zyyxxF ppvH    )( ,    (6.2) 

where Spin-valley dependent energy gap is   2ESO . The 

notations 22 zE eDE  and  /)( 2

FVe , respectively. We use /0aeA  

which is a dimensionless number to characterize the light intensity with e 

represents the elementary charge, A0 represents the magnitude of light wave, and a 

represents the lattice constant of silicene. The value of  is generally less than 1 

for the intensity from light sources in the frequency range of our interest.  

In the normal regions NM1 and NM3, where there is neither photo 

irradiation nor external electric field, the spin-valley dependent energy gap is 

SO  3 . Therefore, the Hamiltonian in these two regions could be defined 

as 

zsoyyxxF ppvH   )( .    (6.3) 
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Solving the Hamiltonians, when the spin-valley currents flow in the x-

direction, yields the wave function in each region as follows: 
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Then the wave vectors in x-direction of electron in NMs and FMs regions 

are described by  
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where   is the incident angle of electrons at the NM1/FM1 junction, 1 is the 

incident angle at FM1/NM2 junction,   is the incident angle at NM2/FM2 

junction, and 2  is the incident angle at FM2/NM3 junction.  

These incident angles can be calculated via the conservation component in 

the y-direction as given by 
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Therefore, the coefficients r , a , b , g , f , p , q , t  can be 

calculated by using the following boundary conditions. 
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)()( 22 LdLd FMNM  , )2()2( 32 LdLd NMFM  , (6.8)     

where r and t represent reflection and transmission coefficients, respectively. 

Using the wave functions in Equation (6.4) and the boundary conditions in 

Equation (6.8), we can construct a matrix equation as follows: 
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By using Cramer’s rule and Mathematica tool, we can calculate the spin-

valley conductance at the temperature of zero Kelvin in ballistic regime as already 

explained in Chapter 4.  
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6.2 Results and discussion 

 The normalized conductance when the frequency of circularly polarized 

light increases and there is no electric field ( 1zE = 2zE = 0 meV) is shown in Figure 

6-3. The Figure 6-3(a) depicts pure spin polarization in parallel junction which 

coincides with the result shown in the Figure 4-4(b) in Chapter 4 and Figure 5-4(a), 

(b) in Chapter 5 at zE = 0 meV, where the exchange field configuration is the same. 

It is interesting to see that the conductance shows pure spin-valley polarization 

where 



'' kkkk

GGGG  under increasing light frequency in anti-parallel 

junctions as illustrated in Figure 6-3(b) and (c).  
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Figure 6-3: Normalized conductance when the light frequency increases with no 

electric fields ( 1zE = 2zE = 0 meV) and µ=2.5 meV in (a) P junction, (b) AP-1 

junction, and (c) AP-2 junction. 
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 When external electric field 1ZE is applied to ferromagnetic barriers (FM1 

and FM2) and another external electric field 2ZE  is applied to normal region NM2 

along with circularly polarized light, the device structure exhibits interesting 

characteristics as shown in Figure 6-4.  When 1ZE = 2ZE = 4  meV, sharp k  

peak appears near the frequency of 2,000 terahertz in AP-1 configuration, and 

sharp k  peak appears near the similar frequency in AP-2 configuration as 

indicated in Figure 6-4(a) and Figure 6-4(b), respectively. In the similar manner, 

when 1ZE = 2ZE = 4  meV, 'k  and 'k  peaks appear near 2000 terahertz in AP-

1 and AP-2 configurations as depicted in Figure 6-4(c) and Figure 6-4(d), 

respectively.  
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Figure 6-4: Normalized conductance when the light frequency increases in anti-

parallel junctions where µ = 2.5 meV, when 1ZE = 2ZE = 4  meV in (a) AP-1 

junction, (b) AP-2 junction, and when 1ZE = 2ZE = 4  meV in (c) AP-1 junction 

(d) AP-2 junction. 
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The comparison of Figure 6-3(b) and Figure 6-4(a) illustrates the 

suppression of 'k  component by positive electric field, while the comparison of 

Figure 6-3(c) and Figure 6-4(d) illustrates the suppression of k  component by 

negative electric field. This is considered to be the results of filtering effects from 

the ferromagnetic barriers with the application of external electric field. In other 

words, we can select the spin-valley component to be filtered by properly 

manipulating the direction of electric fields 1ZE  and 2ZE as well as the exchange 

fields configuration at the barriers. It indicates that our proposed dual-barrier 

silicene-based structure might behave as a filter for specific spin-valley 

polarization. 

 It was discovered that tunneling magnetoresistance (TMR) is also 

controllable by electric fields and chemical potential under photo irradiation as 

illustrated in Figure 6-5. The Equation (5.9) in Chapter 5 is used to define TMR, 

where the AP-1 configuration is used to represent APG . Figure 6-5(a) exhibits the 

dependency of TMR on electric fields where ZE = 1ZE = 2ZE and the irradiated light 

frequency. It shows that the minimum value of TMR becomes lower and the 

minimum point shifts toward lower light frequency, as the electric fields 1ZE  and 

2ZE  increase. Particularly when the electric fields are 6 meV, the minimum of 

TMR is lower than %200,2  which is a significant increase from %73  when 

the electric fields are 4 meV. This huge TMR at 6 meV indicates giant 

magnetoresistance (GMR) due to the low total resistance in P junction ( PG ) but 

high total resistance in AP junction ( APG ).  

Figure 6-5(b) also shows similar correlation of TMR with gate-induced 

chemical potential , where higher chemical potential results in lower minimum 

point of TMR at lower frequency. It is interesting to see the similar result to Figure 

6-5(a) that GMR also shows up here. The minimum value of TMR increases 

significantly from %19  when µ = 5.0 meV to around %570  when µ = 7.5 

meV. The TMR characteristics in Figure 6-5 indicate that the external electric 

fields and chemical potential may have a significant impact on electron scattering 

at a certain light frequency, when the strength of electric fields and chemical 

potential reaches a certain level. 

 



68 

 

-2000

-1000

0

0 2000 4000 6000 8000 10000

E
Z
 = 6 meV

E
Z
 = 4 meV

E
Z
 = 2 meV

E
Z
 = 0 meV

 (Terahertz)

T
M

R
 (

%
)

 

-600

-400

-200

0

0 2000 4000 6000 8000 10000

 = 7.5 meV
 = 5.0 meV
 = 2.5 meV
 = 0.0 meV

 (Terahertz)

T
M

R
 (

%
)

 

   (a)      (b) 

Figure 6-5: Tunneling magnetoresistnace when the light frequency increases in 

AP-1 junctions where ZE = 1ZE = 2ZE  under the conditions that (a) µ = 2.5 meV 

and ZE is varied from 0 to 6 meV, (b) ZE = 0 meV and µ is varied from 0 to 7.5 

meV. 

 

 From Figure 6-3, we see that Figure 6-3(a) exhibits pure spin polarization 

in P junction, while Figure 6-3(b) exhibits pure spin-valley polarization in AP-1 

junction when there is no electric fields. Therefore, we examine the spin 

polarization (SP) in P junction and valley polarization (VP) in AP-1 junction as a 

function of light frequency with varying chemical potential µ when there is no 

electric field. The spin polarization and valley polarization characteristics are 

shown in Figure 6-6(a) and Figure 6-6(b), respectively. This control of SP and VP 

characteristics with chemical potential is mainly due to the quantum interference 

of electrons in ferromagnetic gates. Another interesting result is that both SP and 

VP exhibit almost exactly the same characteristics in µ = 0 meV and µ = 2.5 meV 

as depicted in Figure 6-6(a) and Figure 6-6(b), respectively. However, when the 

chemical potential µ increases to 5.0 meV and 7.5 meV, SP shows less 

dependency on light frequency, while VP stays almost unchanged. 

We have discussed the possibility to apply this device structure as a filter 

for specific spin-valley polarization in Figure 6-4. Particularly, Figure 6-4(a) 

indicates the condition for k  filtering, where positive electric fields ( 1ZE = 2ZE = 

4  meV) and chemical potential µ = 2.5 meV are applied to AP-1 junction. 

Therefore, we further the investigation to see the impact of the distance L between 

ferromagnetic gates on the spin-valley polarization in AP-1 junction with the 

objective to have better understanding for future applications. 
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   (a)      (b) 

Figure 6-6: When the light frequency increases without electric field ( 1zE = 2zE = 0 

meV) and µ is varied from 0 to 7.5 meV, (a) spin polarization in P junctions, and 

(b) valley polarization in AP-1 junctions. 

 

 The Figure 6-7(a) shows k  current characteristics under the same 

conditions as in Figure 6-4(a) with varied value of distance L. The shifting of k  

current peaks toward higher light frequency indicates that the filtering effect on 

k comes from resonance, where the smaller L causes resonance to occur at lower 

light frequency and vice versa.  

Figure 6-7(b) shows each component of the spin-valley polarized current 

when distance L = 50 nm. Comparison of Figure 6-7(b) to Figure 6-4(a) where L = 

25 nm shows that only k  is affected by the change of L. That confirms our 

understanding that the distance L affects only filtered spin-valley current, while 

other spin-valley components are almost unchanged. In addition to the spin-valley 

polarized current, total conductance is also an important parameter from practical 

point of view.  

Figure 6-7(c) shows the total conductance combining all spin-valley 

currents with varied distance L between the ferromagnetic gates FM1 and FM2. 

The total conductance characteristics have maximum point at a certain light 

frequency representing the possibility of applications in polarized-photon 

frequency filter. This is because total conductance is normally used in the real-

world applications. Furthermore, the results indicate that the light frequency which 

yields the maximum conductance might be controlled by the distance between 

barriers. 
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   (c)   

Figure 6-7: Effects of the distance L between ferromagnetic gates in AP-1 junction. 

(a) Conductance component k  current with varied L. (b) Conductance of each 

spin-valley component when L = 50nm. (c) Total conductance of all spin-valley 

components with varied L.  

 

 It is worth to add a discussion here about the internal interaction among 

magnetic exchange field components. From Chapter 4 to Chapter 6 we use 

multiple magnetic exchange field configurations, in which there are two 

components for each ferromagnetic gate totaling four components in the structure. 

Since the thickness of stable low-buckling silicene is estimated to be 0.46 Å, this 

extremely small distance may allow the interaction between magnetic fields from 

magnetic insulator h1A and h1B on FM1, and between magnetic fields from 

magnetic insulator h2A and h2B on FM2. However, the tight-binding model utilized 

in our study does not include this internal interaction for the simplicity of the 

model and analysis. 
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 The validity and accuracy of the results from tight-binding model being 

used in our analysis is discussed here before we go to the conclusion in the next 

section. Although it is impossible to directly compare the theoretical results from 

this study with the results from experiments due to the technical challenges facing 

the realization of free-standing silicene, it is possible to make clear statement 

regarding the validity and accuracy of our work. First, tight-binding is a widely 

used fully-quantum-mechanical approach as introduced in more details in Section 

3.2. One reason behind its popularity is its simplicity and efficiency [113-115]. 

The accuracy of this tight-binding approximation has increased over the time with 

improvement, such as the inclusion of total-energy calculations and density 

functional approach [116, 117]. In this dissertation we use the standard tight-

binding model which expands the eigenstates of Hamiltonians. In term of the 

accuracy of tight-binding approximation for work in elemental 2D materials such 

as graphene and silicene, there have been results discussing this issue and showing 

the effectiveness of this method [104, 118, 119].  

 

 

6.3  Conclusions 

 We have investigated the spin-valley transport in dual ferromagnetic-gate 

silicene-based junctions under circularly polarized light irradiation. When there is 

no electric field and the exchange energy configuration is parallel, the spin-valley 

conductance shows pure spin polarization similar to the case of no light irradiation. 

It is interesting to see that the device structure shows spin-valley filtering 

characteristics when electric fields 1ZE  and 2ZE  are applied to anti-parallel 

junctions. In this case, we can select specific spin-valley polarization to be filtered 

by providing appropriate conditions, such as the direction of electric fields and 

exchange field configuration.  

We also discovered that by adjusting the distance L between two 

ferromagnetic gates, the light frequency for the appearance of spin-valley 

polarization peak can be controlled. Our investigation revealed a possibility to 

control tunneling magnetoresistance (TMR) with electric fields and gate-induced 

chemical potentials under the photo-irradiation regime. It is found that TMR 
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magnitude may change significantly at a specific light frequency when the strength 

of electric field or chemical potential reaches a certain level. The TMR can be 

categorized as GMR, when TMR is %200,2  at electric fields of 6 meV, and 

%570  at chemical potential of 7.5 meV. We also successfully demonstrate the 

control of SP and VP over the increasing light frequency by adjusting chemical 

potentials µ.  
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Chapter 7  

Conclusions and Future Work 

 

7.1 Summary of This Dissertation 

 In this dissertation, we have explained the motivation behind investigation 

of electronic transportation in silicene, and reviewed the research activities on this 

attractive material. There have been many studies on the effect of electric field, 

exchange field, and photo irradiation on silicene. However, none of them has 

investigated the effect on double-ferromagnetic barrier structure, which is the main 

scope of this dissertation. The work in this dissertation is theoretical approach 

using tight-binding model to obtain the effective Hamiltonian of the device 

structure. Then Mathematica, widely used symbolic computation software, was 

used to helping solving the equation to get conductance, which is used to analyze 

the spin-polarized, valley-polarized, and pseudospin-polarized currents as well as 

the tunnel magnetoresistance of the device. 

 In Chapter 4 we predict that the proposed device structure can be switched 

from a pure spin-polarizer to a pure valley-polarizer. It also demonstrates perfect 

control of spin-valley currents by adjusting the configuration of exchange fields. It 

is also found that specific exchange field configurations might destroy spin-valley 

filtering polarization and instead yield pure sublattice pseudospin polarization, 

where the polarized current flows solely in either sublattice-A or sublattice-B. This 

pseudospin polarized current can be achieved only in dual ferromagnetic-gated 

junctions, and is not achievable in single ferromagnetic-gated junctions.  

 In Chapter 5 and Chapter 6, we investigated the effect of circularly 

polarized light illumination on the same device structure under the influence of 

electric field and exchange field. The results show the possibility of spin-valley 

filtering which can be achieved at the off-resonant frequency region with 
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appropriate controls of electric fields and exchange fields. The analysis also 

suggests the possibility to control tunneling magnetoresistance (TMR) to become 

giant magnetoresistance (GMR) by adjusting electric fields or chemical potentials. 

With the research results presented in this dissertation, one potential application is 

photo-sensing devices using spin-polarized current and valley-polarized current. 

We expect this dissertation to make contributions to the further development in the 

field of spintronics, valleytronics, and pseudospintronics. 

 

7.2 Future Work 

 Our proposed silicene-based double-ferromagnetic barrier structure shows 

the potential to control spin-polarized current, valley-polarized current, 

pseudospin-polarized current, and the tunnel magnetoresistance under the 

influence of external electric field, magnetic exchange field, and photo irradiation. 

However, there is more work to be done to control the unique properties of 

silicene in order to utilize this two-dimensional material towards spintronics and 

related topics, since there is only one known silicene-based device experimentally 

demonstrated [37], while few ideas are proposed theoretically [120, 121].  

 One area is the interplay between the photon and the band structure of 

silicene. In Chapter 6 we discovered that the external electric fields and chemical 

potential may have a significant impact on electron scattering at a certain light 

frequency, when the strength of electric fields and chemical potential reaches a 

certain level. The mechanism of this characteristics may need further investigation. 

Furthermore, we predict that both SP and VP behave in the almost exactly same 

manner when the chemical potential is µ = 0 meV and µ = 2.5 meV. However, SP 

shows less dependency on light frequency and VP stays almost unchanged when µ 

increases to 5.0 meV and 7.5 meV. Further investigations may be required to 

reveal the mechanism. 

Another area that more investigation is necessary is in the realization of 

silicene devices. One challenge facing this goal is the instability of the pristine 

silicene layer in the air atmosphere [122]. Therefore, the interaction with 

substrates and the quality of silicene layer grown on substrates play important 

roles on the properties of silicene layer and silicene devices. Currently, the 



75 

 

properties of silicene grown on some substrates, such as Ag(111), ZrB2, and Ir 

have been investigated, but we still need to look further to find other substrates 

and growth method that can provide silicene layers with higher quality and lower 

cost [123]. In addition, there are other properties of silicene that has not been 

thoroughly investigated, such as multi-layer silicene, thermal effects, strain effects, 

and doping effects [124-127]. More investigations on the applications of these 

effects are necessary in these research areas. Another area that requires further 

investigation is the properties of silicene as a topological insulator, and other 

topological phases [128-130]. The development in spintronics, quantum computers 

and many new technologies might benefit from the exotic properties of topological 

insulator. 

 Regarding the methodology of research, computational methods have 

gained the popularity, and the community has become larger in silicene and two-

dimensional materials research. One reason is the availability of inexpensive and 

more powerful computers, as well as smarter software and more accurate models 

[131, 132]. Another reason is the improved perception towards computational 

science due to its proved track record. Currently, density functional theory is 

considered to be among the most reliable methods for condensed matter research 

with plenty of software, such as Vienna Ab initio Simulation Package (VASP), 

Quantum Espresso, CASTEP, and SIESTA. Therefore, computational methods 

could be a tool to help us have better understanding in silicene and other two-

dimensional materials, in addition to theoretical analysis. Using both 

computational and theoretical methods will allow us to be more nimble and move 

faster in other two-dimensional materials research. 
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