
KERNEL MATRIX COMPLETION

Rachelle Alvarez Rivero

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Kato Laboratory

Domain of Electronics and Informatics, Mathematics and Physics

Graduate School of Science and Technology

Gunma University

August 2018



c© 2018

Rachelle Alvarez Rivero

ALL RIGHTS RESERVED



iii

“It always seems impossible until it’s done.”

Nelson Mandela





v

GUNMA UNIVERSITY

Abstract

KERNEL MATRIX COMPLETION

Rachelle Alvarez Rivero

In this study, in order to improve the accuracy of machine learning, methodologies for

completing multiple incomplete data representations have been developed. In data

analysis including pattern recognition and clustering, each data object is not lim-

ited to a single representation. In many applications, several measurement methods

are available to objects to be analyzed, yielding multiple data representations. For

example, in the task of function prediction of proteins in cells, each protein can be

represented with its amino acid sequence, cubic structure, interactions with other

proteins, and expression data. Each data representation provides useful information

for function prediction. Proteins that have homology in their amino acid sequences

are likely to have same functions in cells. The cubic structures of proteins determine

functions. Many function mechanisms in cells depend on multiple interacted proteins.

Proteins with same functions express the same conditions in cells. Thus, each of these

representations is informative for function prediction. Research reports have shown

that analysis accuracy is improved by combining multiple data representations. How-

ever, an issue in data analysis based on multiple data representations is that data

examples lacking any representation cannot be included in machine learning. In this

thesis, several new methods for completing incomplete data are presented. To assess

the effectiveness of the new data completion methods, experiments on real-world data

are carried out. The results are then reported.
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Chapter 1

Introduction

With the constant development of new technology, many new types of data in the

field of biotechnology have become available. However, many of these biological data

are expensive and are still difficult to obtain. Hence, optimal utilization of such data

is of utmost importance to researchers in this field. Since biological data poses several

challenges to computational biology such as high dimensionality, heterogeneous rep-

resentation, and the need to combine or integrate such heterogeneous representations,

active development of learning algorithms that can deal with these difficult aspects

of the data have become imperative.

Kernel methods, especially support vector machines (SVMs), provided a major

leap in the advancement of computational biology as powerful mechanisms in the

analysis, processing, and handling of many data types. Kernel methods rely on the

use of positive semidefinite functions called kernels, and, together with the feature

space view by Boser et al. [9], led to new algorithm designs. Kernels, being identical

to a dot product in a (usually) higher dimensional space (or feature space), addressed

the problem of high dimensionality in the data; and through this implicit embedding

of the data in a feature space, linear methods can be used for learning tasks such

as classification and regression. Kernels also work with non-vectorial data, providing

standardized solutions in handling structured and complex data types, common in

biological data. Finally, the success of constructing kernels that are specifically de-

signed to various biological data, and the ability to combine different kernels made it

possible to learn from integrated heterogeneous data.

A collection of recent trends in kernel methods has been compiled in [44]. From

kernel design, to learning from heterogeneous data and advanced application of kernels

and SVMs, these researches have proven that advancement in computational biology

had really come a long way, and will continue to be as the need to extract knowledge

from data becomes increasingly valuable.
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Figure 1.1: Thesis contributions.

The MKMC algorithm presented in this thesis introduces a model
matrix that serves as a single representation of the empirical data.
Here, the model matrix has no restriction, thereby requiring large de-
grees of freedom in parameter estimation. In order to have control of
model flexibility, variants of the MKMC model are introduced: the
PCA-MKMC and FA-MKMC. Here, the model matrices are restricted
through the use of an `× q matrix and a diagonal matrix; and by ad-
justing the value of q, the number of degrees of freedom is controlled.

1.1 Thesis Outline and Contributions

The studies in this thesis rely on the use of kernel methods; the main contribution is

to provide solutions to the incomplete-data problem common to biological researches.

As obtaining high quality biological data is expensive and time-consuming, many

researchers lean towards the use of machine learning methods, such as the ones pre-

sented in this thesis, due to their convenience and practicality.

After providing basic familiarity with binary classification, SVM, and kernel

methods in Chapter 2, the primary contributions of this thesis are listed as follows:

• Chapter 3 presents a novel kernel-based method of mutually inferring the miss-

ing entries in kernel matrices corresponding to a set of different but relevant

data sources. The method employs Kullback-Leibler divergences between the

kernel matrices through a model kernel matrix, and aims at minimizing these

divergences when inferring the missing entries. Minimization is done via an

iterative EM algorithm, which results to completion of the kernel matrices and

a means of combining them for further application. Such application is the task

of classifying yeast proteins as either membrane or non-membrane, through a

learned SVM classifier.
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• Chapter 4 extends the model presented in Chapter 3 by allowing control of the

flexibility of the model kernel matrix. As the model kernel matrix in the previous

chapter is full covariance, the risk of overfitting is present, that is, a classifier

trained on this matrix can classify a training set very well, but cannot generalize

a new data properly. Through suitable adjustments of model flexibility, the

risk of overfitting (and underfitting) can be avoided. The parametric models

introduced in this chapter are based on probabilistic latent variable models,

such as the probabilistic PCA and factor analysis models. These methods are

applied to the task of protein functional classification in yeast to demonstrate

effectiveness with regards to classification performance.

An overview of these contributions is illustrated in Fig. 1.1. Here, the differences in

the structure of the model matrices of the introduced algorithms are shown. Finally,

Chapter 5 concludes and summarizes the overall contributions of this thesis.

The works in this thesis have contributed to a journal publication and a research

paper under review in the Institute of Electronics, Information and Communication

Engineers (IEICE) Transactions on Information & Systems [41, 40].
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Chapter 2

Preliminaries

This chapter covers some concepts that are essential in the development of this the-

sis. Readers may refer to [47, 8, 10, 15, 22, 37, 45] for in-depth discussions and as

supplementary materials about machine learning, kernel methods, and other relevant

topics. Also for quick reference, an appendix of formulas and identities and a page

for nomenclature have been provided.

2.1 Learning from Features

Sometimes synonymously referred to as machine learning, pattern recognition or pat-

tern analysis is a field of study that aims at detecting patterns and regularities in a

given set of data, the ultimate goal of which is to be able to make correct predictions

about a new data point coming from the same source. To discover the underlying

patterns in the data, learning methodologies are used. Supervised learning is a type of

learning methodology wherein a given set of data with their corresponding labels, the

underlying relationship between the input (data) and the output (labels) is learned, so

that when a new data point arrives, it will be correctly assigned a label. These labels

can be nominal, in which case the learning task is called multi-class classification. In

the case where the label or output is real, the learning task is called regression. On

the other hand, in an unsupervised learning, there are no associated labels or outputs

to the data, and the learning task is to identify patterns that are innate in the data

set, and group the data accordingly from the identified patterns. In this way, the

data points are clustered, and the learning task is called clustering.

In order for machine learning algorithms to operate and statistical analysis to be

applied, numerical representation of objects is required. These measurable properties

of the data are called features, and are conveniently expressed as vectors. For instance,

a blue pixel can be represented by its RGB (0,114,178), or by its CMYK (100,50,0,0)1.

1RGB (red, green, blue) and CMYK (cyan, magenta, yellow, black or “key”) are the standard
colors used by designers; the former is typically used for web pages while the latter is for printed
materials.
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Figure 2.1: The optimal separating hyperplane.

SVM finds the hyperplane (the line with equation 〈w,x〉+ b = 0 and
normal vector w) that optimally separates the two classes. Here, the
data points on the left side of the optimal hyperplane belong to the
negative class y = −1, while those on the right side belong to the
positive class y = +1. Each margin has width 1/‖w‖, and the shaded

points on the dashed lines are the support vectors.

A protein, on the other hand, may have a feature vector (1,1,0,1,0,0), where 1 implies

interaction with another protein in the data set, while 0 implies no interaction. Such

feature vectors are employed by machine learning algorithms to exploit knowledge

from a sample data in order to infer solutions to certain tasks.

The focus of the succeeding discussions will be on the learning methodology

employed in this thesis—the two-class classification or simply, binary classification in

supervised learning. This classification problem can be formally described as follows:

consider the training data D consisting of ` input-output pairs

D = {(xi, yi) |xi ∈ Rn, yi ∈ {1,−1}}`i=1 .

The input vectors xi are usually called features, while the output yi is sometimes

called the target. From the training set D, a learning algorithm tries to learn a

decision function f : xi 7→ yi so that when given a new data point x, f can predict

an output y for that data.

2.1.1 Support Vector Machine

A learning algorithm that solves the classification task described above is support

vector machine (SVM) [9, 14, 52], the intuition of which is shown in Fig. 2.1. In this

case, a hyperplane

〈w,x〉+ b = 0, (2.1)
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where w ∈ Rn is a vector normal to the plane and b ∈ R, separates the positive

training data from the negative ones through the decision function

f(x) = sign (〈w,x〉+ b) . (2.2)

Here, f assigns x to the positive group (y = 1) if z = 〈w,x〉 + b > 0, and to the

negative group (y = −1) if z < 0. In this setting, the data points are assumed to

be correctly classified by the linear classifier, i. e., yi (〈w,xi〉+ b) > 0 for all i ∈ N`.
Among the many hyperplanes possible, SVM finds the optimal hyperplane

〈w0,x〉+ b0 = 0, (2.3)

in which the distance of the closest data point to the decision boundary (called mar-

gin) is maximal. In this way, the risk of overfitting is minimized and better gener-

alization can be obtained. To proceed with the optimization process, consider the

perpendicular distance of any point xi from the hyperplane:

yi (〈w,xi〉+ b)

‖w‖
. (2.4)

Then the maximum margin is the solution of the maximization problem

argmax
w,b

{
1

‖w‖
min
i

[yi (〈w,xi〉+ b)]

}
. (2.5)

By setting

yi (〈w,xi〉+ b) = 1 (2.6)

for the points closest to the hyperplane, then all the data points satisfy

yi (〈w,xi〉+ b) ≥ 1, for all i = 1, . . . , `. (2.7)

The complex problem (2.5) then takes the equivalent form

argmin
w,b

1

2
‖w‖2 , (2.8)

subject to the constraint (2.7). This optimization problem can now be easily solved

by constructing the Lagrangian

L (w, b,α) =
1

2
‖w‖2 −

∑̀
i=1

αi [yi (〈w,xi〉+ b)− 1] , (2.9)

and finding the saddle point, where (2.9) is minimized with respect to w and b, and

maximized with respect to

αi ≥ 0, for all i = 1, . . . , `. (2.10)
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Minimization of (2.9) with respect to w and b yields

w =
∑̀
i=1

αiyixi, and (2.11)

∑̀
i=1

αiyi = 0, (2.12)

respectively. Using (2.11) and (2.12), the dual form of (2.9) is obtained:

W (α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyj 〈xi,xj〉 , (2.13)

and is then maximized with respect to α subject to the constraints (2.10) and (2.12).

The vector w in (2.11) is then optimal when specified by the optimal solution α0 =(
α0
1, . . . , α

0
`

)
:

w0 =
∑̀
i=1

α0
i yixi, (2.14)

and for chosen b0 that maximizes the margin, the optimal hyperplane in (2.3) can

then be written as ∑̀
i=1

α0
i yi 〈xi,x〉+ b0 = 0. (2.15)

In constrained optimization problems, the optimal solution is required to satisfy the

Karush-Kuhn-Tucker (KKT) conditions (2.10), (2.7), and

α0
i [yi (〈w0,xi〉+ b0)− 1] = 0. (2.16)

It follows that for nonzero α0
i ,

yi (〈w0,xi〉+ b0) = 1, (2.17)

which are precisely the vectors xi on the margin. Since these are the only vectors

that matter for nonzero α0
i in the summation for w0 in (2.14), these vectors are

appropriately called the support vectors. The decision function (2.2) can now be

rewritten in terms of the support vectors

f(x) = sign

(∑
i∈S

α0
i yi 〈xi,x〉+ b0

)
, (2.18)

where the indices of the support vectors are denoted by S.2 It is noteworthy to

mention that in the dual form (2.13) of the Lagrangian that had to be maximized,

the information from the training data enters the equation only through the inner

2The parameter b0 can also be obtained in terms of the support vectors; the solution can be found
in [8].
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Figure 2.2: Embedding of data points into a feature space.

In the input space X , no linear classifier could be found to separate
the two classes (blue and orange). However, when the data points
were mapped into a higher dimensional space F , a linear classifier was

found.

product. Likewise, once the classifier has been trained, a new point x can be classified

by (2.18) only through the inner product of x with the support vectors, which makes

SVM very efficient to use. The SVM algorithm was originally developed by Vapnik

and Chervonenkis in 1963, and gained popularity when Boser, Guyon, and Vapnik

extended SVM to nonlinear classifiers in 1992, where kernel trick was applied.

2.2 Kernel Methods

For data sets with more complex pattern, a linear classifier may not be found in the

original input space X . In such cases, the data is said to be non-linearly separable in

X . However, when these data points are mapped to a higher-dimensional space F ,

referred to as feature space, a linear classifier can be found, as in the case in Fig. 2.2.

Situations like these require learning algorithms to change the representation of the

data through some user-specified nonlinear mapping function φ : X → F , and is

permissible to do so since changing the data’s representation or coordinates does not

change the underlying patterns or regularities in the data [47].

A class of pattern recognition algorithms, the kernel methods, maps the data into

a higher-dimensional space where the patterns can be easily detected. This efficient

mapping of the data in the feature space is done via a kernel function, formally defined

as follows:

Definition 2.2.1 (Kernel). A kernel is a function κ such that for all x, z ∈ X
satisfies

κ (x, z) = 〈φ(x), φ(z)〉 ,

where φ is a mapping from an input space X to an (inner product) feature space F

φ : x 7→ φ(x) ∈ F .
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Simply put, a kernel function takes the inner product of two data images under

an embedding φ.

2.2.1 The Kernel Trick

Popularly termed as kernel trick, one can conveniently replace any inner product of

two data images appearing in a learning algorithm, by a valid kernel function. To see

this, suppose a linear classifier is being constructed in a feature space F for the data

images under a mapping φ : x 7→ φ(x) ∈ F . By kernel trick, the dual form in (2.13)

can be rewritten as

W (α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyj 〈φ (xi) , φ (xj)〉 (2.19)

=
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyjκ (xi,xj) , (2.20)

while the decision function in (2.18) can be expressed as

f(x) = sign

(∑
i∈S

α0
i yi 〈φ (xi) , φ (x)〉+ b0

)

= sign

(∑
i∈S

α0
i yiκ (xi,x) + b0

)
, (2.21)

which corresponds to the optimal hyperplane separating the data images in the feature

space.

Observe that through kernels, one does not have to explicitly compute the coor-

dinates of the data in its new representation; rather, one has just be able to evaluate

the corresponding kernel.

As an illustration, given the input data X = (x1, . . . ,x`)
> ∈ R`×n, the SVM

algorithm considered in the previous section operates only through the inner product

of the input:

G =


〈x1,x1〉 〈x1,x2〉 · · · 〈x1,x`〉
〈x2,x1〉 〈x2,x2〉 · · · 〈x2,x`〉

...
...

. . .
...

〈x`,x1〉 〈x`,x2〉 · · · 〈x`,x`〉

 = XX>, (2.22)

which is called the Gram matrix3 of X. Note that since all the data information

needed in the algorithm is contained in this matrix, the original data can be discarded.

3The matrix is named after the Danish actuary and mathematician Jorgen P. Gram (1850–1916).
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This is highly desirable especially when the number of objects ` is much smaller than

the dimension n, which is usually the case.

Now, when the data points are mapped under φ, the information needed in (2.19)

is

K =


〈φ(x1), φ(x1)〉 〈φ(x1), φ(x2)〉 · · · 〈φ(x1), φ(x`)〉
〈φ(x2), φ(x1)〉 〈φ(x2), φ(x2)〉 · · · 〈φ(x2), φ(x`)〉

...
...

. . .
...

〈φ(x`), φ(x1)〉 〈φ(x`), φ(x2)〉 · · · 〈φ(x`), φ(x`)〉



=


κ(x1,x1) κ(x1,x2) · · · κ(x1,x`)

κ(x2,x1) κ(x2,x2) · · · κ(x2,x`)
...

...
. . .

...

κ(x`,x1) κ(x`,x2) · · · κ(x`,x`)

 , (2.23)

which is called the kernel matrix. It can be observed that the entries of the kernel

matrix can be obtained in only one operation, i. e., through a kernel function, instead

of mapping the data and then computing the inner product. As a result, the mapping

φ can be left implicit. Moreover, since the kernel is operating on pairs of data points,

it can be viewed as a similarity measure between those two points, and hence the

kernel matrix represents some generalized similarity measure between input vectors.

It was mentioned earlier that a valid kernel is needed in order to exploit the

kernel trick. Fortunately, there is no need to construct the mapping explicitly to

test whether or not a function constitutes a valid kernel—a necessary and sufficient

condition is that for all the possible choices of the (training) data, the kernel matrix

must be positive semidefinite4, as stated in Mercer’s Theorem:

Theorem 2.2.1 (Mercer’s Theorem). A symmetric function κ (xi,xj) can be ex-

pressed as an inner product

κ (xi,xj) = 〈φ(xi), φ(xj)〉

for some φ if and only if the kernel matrix (2.23) is positive semidefinite for any

xi,xj ∈ Rn, for i, j = 1, . . . , `.

This theorem serves as a powerful tool that allows us to handle kernels without

caring how the mapping φ nor the corresponding feature space look like. As long as the

necessary condition for kernel matrices–the positive semidefiniteness–is maintained, a

valid kernel is guaranteed, as well as the existence of its corresponding feature space.

As a matrix containing the kernel values for every pair of data points, the kernel

matrix (as well as the Gram matrix) is positive semidefinite, and the proof is rather

4A matrix A ∈ Rn×n is positive semidefinite if for all α ∈ Rn,α>Aα ≥ 0.
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straightforward. Indeed, letting Ki,j = κ (xi,xj) = 〈φ(xi), φ(xj)〉 be the i, j-th entry

of kernel matrix K, and for any α ∈ Rn,

α>Kα =
∑̀
i,j=1

αiαjKij =
∑̀
i,j=1

αiαj 〈φ(xi), φ(xj)〉

=

〈∑̀
i=1

αiφ(xi),
∑̀
j=1

αjφ(xj)

〉

=

∥∥∥∥∥∑̀
i=1

αiφ(xi)

∥∥∥∥∥
2

≥ 0.

2.2.2 Constructing Kernels

Given the characterizations for valid kernels, one can now create functions derived

from simpler kernels without explicitly constructing the feature space. Provided that

the new function created is positive semidefinite, the function is a valid kernel, and

the feature space where the inner product is computed by this new function exists.

The following proposition shows the closure property of kernels under some op-

erations, i. e., when one or more kernels undergo with such operations, the positive

semidefinite property of kernels is preserved [47]:

Proposition 2.2.1 (Closure properties). Let κ1 and κ2 be kernels over X × X ,

X ⊆ Rn, a ∈ R+, f(·) a real-valued function on X , φ : X 7→ F with κ3 a kernel over

F × F , and B a symmetric positive semidefinite n × n matrix. Then the following

functions are kernels:

(i) κ(x, z) = κ1(x, z) + κ2(x, z);

(ii) κ(x, z) = aκ1(x, z);

(iii) κ(x, z) = κ1(x, z)κ2(x, z);

(iv) κ(x, z) = f(x)f(z);

(v) κ(x, z) = κ3 (φ(x), φ(z));

(vi) κ(x, z) = x>Bz.

The proofs for (i) and (ii) can be shown by utilizing Mercer’s theorem, where

it is only necessary to show that the induced kernel matrix is positive semidefi-

nite. Indeed, given kernel matrices K1 and K2 obtained by restricting κ1 and κ2

to {x1, . . . ,x`|xi ∈ Rn}, and given any α ∈ R`,
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(i) 0 ≤ α>K1α+α>K2α = α> (K1 +K2)α; and

(ii) 0 ≤ aα>K1α = α>aK1α.

Since K1 +K2 and aK1 are positive semidefinite, κ1 + κ2 and aκ1 are kernels.

Given the above closure property for kernels, more complex kernels derived from

simple kernels can also be constructed, as follows:

(i) κ(x, z) = p (κ1(x, z)), for a polynomial function p with positive coefficients;

(ii) κ(x, z) = exp (κ1(x, z));

(iii) κ(x, z) = exp
(
−‖x− z‖2 /

(
2σ2
))

, for σ ∈ R+.

The kernel function in (iii) is also known as the Gaussian radial basis kernel, one

of the most widely-used type of kernel function. Other most recognized kernels in

practice are the linear kernel κ(x, z) = 〈x, z〉, and the polynomial kernel κ(x, z) =

〈x, z〉d + c, c ∈ R, d ∈ N.

2.3 Summary

Kernel methods make it possible to detect nonlinear patterns in the data by con-

structing a feature space through a nonlinear map, and then searching for linear

patterns in that space. Through the use of valid kernel functions, very efficient com-

putations can be made since kernels are operated using the input data and hence,

explicit computation of the mapping is no more needed.

Characterization of valid kernels allows one to use the kernel trick on any learning

algorithms that employs the inner product of input data, either in the original input

space or in the higher-dimensional feature space. Moreover, a valid kernel assures

the existence of a feature space where its corresponding inner product is defined.

Since different embeddings of the data correspond to different kernels, a kernel can

be constructed in a way that it captures the similarity between data points in the

intended application. By evaluating the kernel on all pairs of data points, a symmetric

positive semidefinite matrix containing some notion of similarity between the data

points is produced. A kernel matrix, thus, can be viewed as a representation of

some generalized similarity measure of the data. Given these kernels corresponding

to different embeddings of the data, and given that simple algebraic combinations

of valid kernels induce another valid kernel, different representations of the data can

then be integrated, paving the way for kernel approach to data fusion.
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Chapter 3

Mutual Kernel Matrix

Completion

From the discussions about kernel methods in the previous chapter, it can now be

demonstrated how kernel methods can be utilized in the analysis of data, especially

in the field of biology, where an object can be described in more than one way. For

example, a bacterium can be represented by several marker sequences [51], while a

protein can be described through its 3-D structure or its gene expression and amino

acid sequences [30]. Learning from different descriptions or partial views of an ob-

ject is commonly referred to as multiview learning [50], and several studies [7, 13]

employed multiview learning to solve some clustering tasks. The availability of such

information provided us with different views of the data, and the question of how to

unify these different views to provide a complete description of the data arose. An

impediment, however, in unifying these complementary information about a certain

biological data, is that the descriptions come in a diverse format, as illustrated in

Fig. 3.1. For instance, 3-dimensional structures of proteins are shown in diagrams,

while protein-protein interactions are best represented as graphs, where nodes rep-

resent proteins and adjacent nodes means there is an interaction between the two

proteins; gene expressions are represented as heat maps, and protein sequences as

a 20-symbol alphabet string, to name a few. Lanckriet et al. [30] demonstrated how

these partial information in diverse formats can be unified through the use of kernel

methods. In their work, each partial information of the data are transformed into

a common format–as kernel matrices–whose entries are generalized similarity rela-

tionships among data points, defined by kernel functions. Through kernel methods,

different notions of similarity in the data are captured. For example, if two genes are

close to one another or are very similar, then the amino acid sequences of their pro-

tein products would be very similar. Likewise, their gene expression measurements

would be similar. The similarity measurements in the space derived from amino

acid sequences is quite different from those in the space derived from gene expres-

sion measurements. Thus, through different embeddings of the data (corresponding

to different kernels), the different notions of similarity are captured. Now that the
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Figure 3.1: Different representations of a protein.

(a) 3-D structure of a protein;1(b) Protein-protein interaction network,
best represented as a graph; (c) A protein sequence as a 20-symbol

alphabet string.

heterogeneity of the data representations is addressed through kernel methods, the

different views of the data can now be integrated or combined.

Simultaneous use of multiple kernel matrices for learning, also referred to as

multiple kernel learning, has been proven to be beneficial in the analysis of data.

Some real-world applications of multiple kernel learning include: classifying mines

and clutter using 4-view land mine detection data [56], and web page clustering task

[50]; but multiple kernel learning is mostly applied to biology-related tasks such as

prediction of psychopathological disorders and of drug sensitivity in breast cancer cell

lines [6]; protein classification tasks [27, 31, 30, 32]; and inference of protein networks

[26], among others. Lanckriet et al. [30] have shown in their work that integrating

different representations of a genome leads to better protein classification, as opposed

to using a single genome representation alone. While [30] used semidefinite program-

ming (SDP) techniques to optimally combine the multiple kernel representations, a

more recent approach by Gönen [21] uses a fully conjugate Bayesian formulation that

allows a large number of kernels to be combined efficiently.

Since high quality data are expensive and acquiring them requires extensive work,

it is usually the case that only a handful of good information can be obtained. In some

situations, obtaining noisy or erroneous data is inevitable. Hence, the kernel matrices

derived from such incomplete data will have missing entries corresponding to the

unavailable samples. Such kernel matrices are called incomplete. Incomplete kernel

matrices cannot be combined directly, and cannot be given to machine learning. Since

there are far fewer missing entries in a kernel matrix than the data matrix where it is

derived from, it is therefore more advantageous (in addition to the fact that machine

learning methods like support vector machines (SVMs) work with kernel matrices)

to infer the missing entries of the kernel matrix, than those of the data matrix [29].

To address this incomplete kernel matrix problem, many completion techniques have

been introduced. An early work by Tsuda et al. [51] utilized a complete auxiliary

1David E. Volk, Ribbonr Diagram of a Protein (USA in citizendium, 2007)
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Figure 3.2: Problem settings.2

(a) A single auxiliary complete matrix is used to complete a single
incomplete matrix; (b) Multiple auxiliary complete matrices are used
to complete a single incomplete matrix; (c) A single auxiliary complete
matrix is used to complete multiple incomplete matrices; (d) This
study introduces a complete model matrix M and involves repetition
of two steps: first, M is fitted to the current empirical matrices; then,

the missing entries are inferred from the fitted model matrix M .

kernel matrix to infer the missing entries of a single incomplete kernel matrix, as

shown in Fig. 3.2 (a). Subsequent completion techniques take advantage of multiview

learning, where multiple complete auxiliary kernel matrices are used to complete an

incomplete kernel matrix, such as in the work of Kato et al. [26], Fig. 3.2 (b).

However, the aforementioned kernel matrix completion techniques assume an

ideal setting in which many data sources are completely available, while in real-

world setting this is not always the case—there will be instances when all that can be

acquired are data representations with some lacking information. This situation gives

rise to multiple kernel matrix completion problem. Recently, Trivedi et al. proposed

a multiple kernel matrix completion technique that uses kernel canonical correlation

analysis, but with the assumption that at least one kernel matrix must be complete

[50], as shown in Fig. 3.2 (c).

In this chapter, a novel algorithm that solves the multiple kernel matrix comple-

tion problem is introduced, in a setting where it is possible that all of the empirical

kernel matrices have missing entries, as shown in Fig. 3.2 (d). We call our proposed

model the Mutual Kernel Matrix Completion (MKMC) model. As the name implies,

the method completes all the incomplete kernel matrices mutually or simultaneously.

Here, a model kernel matrix M fitted to the incomplete kernel matrices is introduced.

2The figures are adapted from [41, 40].
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Then, the missing entries of the kernel matrices are inferred from the fitted model

matrix M . The model matrix is in turn updated by fitting it to the completed kernel

matrices. The updated model matrix is then used to further improve the estimates

for the kernel matrix completion, and the cycle continues. In theory, we introduce an

objective function that takes the sum of the Kullback-Leibler (KL) divergences from

the empirical kernel matrices to the model matrix. This objective function is then

minimized via Expectation-Maximization (EM) algorithm. Interestingly enough, the

optimal solutions given by MKMC for the E-step and M-step are in closed forms and

hence, the kernel completion problem can be solved efficiently.

3.1 Related Works

A recent work that is similar to our problem setting is [6], where the kernel matrices

need not be complete a priori. The completion techniques, however, are different. In

[6], an incomplete kernel matrix is expressed as a convex combination of the other

kernel matrices through the use of learned reconstruction weights. On the other

hand, following [55, 26, 51], our work relates the kernel matrices to the covariance of

zero-mean Gaussians, allowing us to use the EM algorithm to minimize the objective

function [1]. Moreover, to assess the distances between the kernel matrices to fit a

parametric model, [6] employs the Euclidean metric and in doing so, the positive-

definiteness of the resulting kernel matrices is not assured. Our work follows that

of [51], where KL-divergence and in turn, LogDet divergence [33, 16] is employed,

keeping the positive-definiteness of the kernel matrices [40].

In this chapter, the problem setting for this study is first described. Then, the

proposed algorithm, the MKMC method, will be presented, followed by a discus-

sion of MKMC algorithm in a statistical framework. The efficacy of the method is

then demonstrated through experiments, and the chapter is capped off with some

derivations not shown in the main discussion.

3.2 Problem Setting

Suppose that in the analysis of ` objects, K relevant data sources are available. Let

the corresponding `× ` symmetric kernel matrices derived from these data sources be

denoted as Q(1), . . . ,Q(K), whose entries are the relationships among the ` objects

in the corresponding data sources. Suppose also that some information about the

objects at hand are not available, leading to kernel matrices with missing entries in

rows and columns, as depicted in Fig. 3.2 (d). When the rows and columns of Q(k)

are rearranged such that the information is available for the first nk < ` objects and
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unavailable for the remaining mk := `− nk objects, the result is a block matrix

Q
(k)
vh,vh =

(
Q

(k)
v,v Q

(k)
v,h

Q
(k)
h,v Q

(k)
h,h

)
, (3.1)

where the submatrix Q
(k)
v,v ∈ Snk

++ have visible entries; while the nk ×mk submatrix

Q
(k)
v,h, mk×nk submatrix Q

(k)
h,v =

(
Q

(k)
v,h

)>
, and mk×mk submatrix Q

(k)
h,h have entries

that are yet to be inferred.

The proposed MKMC algorithm mutually completes the kernel matrices by infer-

ring the missing entries in Q
(1)
v,h, . . . ,Q

(K)
v,h and Q

(1)
h,h, . . . ,Q

(K)
h,h , through the available

information from Q
(1)
v,v, . . . ,Q

(K)
v,v . After inference of the missing entries, the rows and

columns of Q
(k)
vh,vh are reordered back to Q(k).

3.3 Mutual Kernel Matrix Completion

Method

3.3.1 The Objective Function

To formulate the objective function, the distance between two matrices must first be

specified so as to fit a parametric model. In this study, the Kullback-Leibler (KL)

divergence, defined as the distance between two probability distributions [2], is used:

KL (q, p) =

∫
q(x) log

q(x)

p(x)
dx, (3.2)

where q is called the empirical distribution, p is the model distribution, and x is an

`-dimensional random variate.

Now, consider a positive definite matrix M and associate it to the model distri-

bution

p := N (0,M) (3.3)

as the covariance of a zero-mean Gaussian. Similarly, let the kernel matricesQ(1), . . . ,Q(K)

be associated to the covariance of zero-mean Gaussian distributions as follows:

q1 := N
(
0,Q(1)

)
, . . . , qK := N

(
0,Q(K)

)
. (3.4)

Doing so, the KL divergence of the model matrix M from Q(k) can be obtained as

KL
(
Q(k),M

)
=

1

2

[
logdetM − logdetQ(k) + Tr

(
M−1Q(k)

)
− `
]
, (3.5)

where the size of matrices M and Q(k) is `× `.
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Now that the distance between two matrices has been determined, the objective

function can now be formulated. The objective function is taken as the sum of the

KL divergences:

J(H,M) :=

K∑
k=1

KL
(
Q(k),M

)
, (3.6)

where

H :=
{
Q

(k)
v,h,Q

(k)
h,h

}K
k=1

(3.7)

denotes the set of submatrices with missing entries, and M is the model matrix.

The objective function can also be taken as a sum of LogDet divergences, where

the LogDet divergence is defined as

LogDet
(
Q(k),M

)
:=

1

2

[
logdetM − logdetQ(k) +

〈
M−1,Q(k) −M

〉]
.

Indeed, from (3.6) and (3.5):

J(H,M) =
K

2
logdetM − 1

2

K∑
k=1

logdetQ(k) +
1

2

K∑
k=1

Tr
(
M−1Q(k)

)
− K`

2

=
K

2
logdetM − 1

2

K∑
k=1

logdetQ(k) +
1

2

K∑
k=1

Tr
(
M−1Q(k) − I`

)
=

K

2
logdetM − 1

2

K∑
k=1

logdetQ(k) +
1

2

K∑
k=1

〈
M−1,Q(k) −M

〉
=

K∑
k=1

LogDet
(
Q(k),M

)
. (3.8)

An advantage of using LogDet divergence is its automatic enforcement of positive-

definiteness to the resulting kernel matrices [33, 16]. Having introduced the model

matrix M and the objective function J , MKMC algorithm infers the missing entries

by minimizing J with respect to H and M , so that the kernel matrices
{
Q(k)

}K
k=1

are as close to each other as possible through M .

3.3.2 MKMC Algorithm

The MKMC algorithm minimizes the objective function (3.6) by iteratively doing the

following steps:

1. Imputation step. Fix the model matrix M and minimize J with respect to H:

H := argmin
H

J(H,M); and (3.9)
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Algorithm 1 MKMC Algorithm.

Input: Incomplete kernel matrices Q(1), . . . ,Q(K).
Output: Completed kernel matrices Q(1), . . . ,Q(K).

1: begin

2: Initialize
{
Q(k)

}K
k=1

by imputing zeros in the missing entries;

3: Initialize the model matrix as M := 1
K

∑K
k=1Q

(k);
4: repeat
5: for all k ∈ {1, . . . ,K} do

6: Reorder and partition Q(k) as Q
(k)
vh,vh;

7: Reorder and partition M as M
(k)
vh,vh;

8: Q
(k)
v,h := Q

(k)
v,v

(
M

(k)
v,v

)−1
M

(k)
v,h ;

9: Q
(k)
h,h := M

(k)
h,h −M

(k)
h,v

(
M (k)

v,v

)−1
M

(k)
v,h

+M
(k)
h,v

(
M (k)

v,v

)−1
Q(k)
v,v

(
M (k)

v,v

)−1
M

(k)
v,h ;

10: end for
11: Update M as M := 1

K

∑K
k=1Q

(k).
12: until convergence
13: end.

2. Model update step. Minimize J with respect M while H is held fixed:

M := argmin
M

J(H,M). (3.10)

These steps correspond to the E-step and M-step of the EM algorithm, the details

of which will be discussed in the next section. Iteratively doing these steps decreases

the objective function monotonically.

As mentioned earlier, the optimal solutions for the E- and M-steps of MKMC

algorithm are given in closed forms. The closed form solutions are:

Q
(k)
v,h := Q(k)

v,v

(
M (k)

v,v

)−1
M

(k)
v,h ; (3.11)

Q
(k)
h,h := M

(k)
h,h −M

(k)
h,v

(
M (k)

v,v

)−1
M

(k)
v,h

+M
(k)
h,v

(
M (k)

v,v

)−1
Q(k)
v,v

(
M (k)

v,v

)−1
M

(k)
v,h (3.12)

for the imputation step, and

M :=
1

K

K∑
k=1

Q(k) (3.13)

for the model update step. Observe that the model update, which resulted from

minimizing J with respect to M , is simply the average of the updated kernel matrices

(proof in Sect. 3.7.3). Meanwhile, the values inferred for the submatrices Q
(k)
v,h and

Q
(k)
h,h are in terms of the available values from the submatrix Q

(k)
v,v, and of those in the
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submatrices of the reordered and partitioned M :

M
(k)
vh,vh =

(
M

(k)
v,v M

(k)
v,h

M
(k)
h,v M

(k)
h,h

)
, (3.14)

where the sizes of the submatrices of M
(k)
vh,vh are same as those of the k-th reordered

kernel matrix Q
(k)
vh,vh. The MKMC algorithm can now be outlined as in Alg. 1.

3.4 MKMC Algorithm in a Statistical

Framework

This section shows how the MKMC algorithm infers the missing entries in a vectorial

data through a probabilistic approach. As mentioned in the previous section, MKMC

algorithm minimizes the objective function by repeating two steps: one that minimizes

the objective function with respect to the unobserved values in the vectorial data;

and one that minimizes the objective function with respect to the model parameter.

In theory, MKMC algorithm introduces a model parameter and finds its best fit to a

probabilistic model by maximizing the model parameter’s likelihood. It then shows

that the steps involved in the MKMC algorithm comprise the E-step and M-step

in the EM algorithm. In this section, the connection between the MKMC and EM

algorithms will be established after revisiting some details about the EM algorithm.

3.4.1 An Overview of the EM Algorithm

The EM algorithm finds the maximum likelihood solutions for probabilistic models

having latent (or unobserved) variables [8, 34, 17]. The algorithm works by first

computing the expectation of the log-likelihood of the current parameter estimates

(the Expectation or E-step), then finding the parameter values that maximize the

expectation found in the E-step (the Maximization or M-step). These steps are

repeated alternately to find the best fit for the parameters.

To begin with, consider a model parameter Θ of a probabilistic model p (V |Θ)

from observed data V . The log-likelihood of the model parameter Θ given the ob-

served data V is

L (Θ;V ) := log p (V |Θ) . (3.15)

Taking the expectation of (3.15) under an empirical distribution q (V ), the following

generalized form can now be considered [1]:

L (Θ; q) := Eq(V ) [log p (V |Θ)] . (3.16)
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This function can now be maximized with respect to Θ by alternately repeating the

E- and M-steps.

However, the unobserved data H must also be taken into account, comprising

the complete data (V ,H). The joint distribution of the complete data is in the

exponential family [53, 19], and its log-likelihood function takes the form

log p (V ,H|Θ) = 〈S (V ,H) ,G (Θ)〉 −A (Θ) , (3.17)

for some vector-valued or matrix-valued functions A (·), G(·), and S(·).

Since our knowledge about the unobserved data depends only on the posterior

distribution of H, the complete-data log-likelihood cannot be used. The posterior

distribution ofH, denoted by p
(
H|V ,Θ(t−1)), by the way, can simply be interpreted

as the probability obtained after data V has been observed. Hence, the expected

value of the complete-data log-likelihood under the posterior distribution of H is

used instead:

Ep(H|V ,Θ(t−1))Eq(V )

[
log p

(
V ,H|Θ(t−1)

)]
, (3.18)

which corresponds to the E-step of EM algorithm. Maximizing (3.18) gives rise to a

new parameter estimate Θ(t), which on the other hand corresponds to the M-step.

Going back to the joint distribution of V and H, an important property of

exponential family distribution is that the maximum likelihood estimator depends

on the data only through S (V ,H), hence termed as the sufficient statistics of the

distribution [8]. Thus, in the E-step of the t-th iteration, the expectation in (3.18) is

computed as

S(t) := Et−1 [S (V ,H)] , (3.19)

where Et−1 := Ep(H|V ,Θ(t−1))Eq(V ), for simplicity. Moving on to the M-step, the

computed expected value, denoted by Q (Θ), is maximized to obtain the model pa-

rameter update Θ(t):

Θ(t) = argmax
Θ

Q (Θ) , (3.20)

where the Q-function is defined as

Q (Θ) := Et−1 [log p (V ,H|Θ)]

=
〈
S(t),G (Θ)

〉
−A (Θ) . (3.21)

Meanwhile, the convergence of the EM algorithm is ensured from the following

property:

Proposition 3.4.1. The EM algorithm produces a nondecreasing series of the log-

likelihood:

L
(
Θ(t−1); q

)
≤ L

(
Θ(t); q

)
, for t ∈ N.
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Proof. For any unobserved data H and p (H|V ,Θ) > 0, the following holds:

log p (V |Θ) = log p (V ,H|Θ)− log p (H|V ,Θ) . (3.22)

Then, taking the expectation of both sides under q(V ) and p
(
H|V ,Θ(t−1)), Eq. (3.22)

becomes

L (Θ; q) = Q (Θ)− Et−1 [log p (H|V ,Θ)] . (3.23)

Since Q
(
Θ(t−1)) ≤ Q (Θ(t)

)
from the update rule in M-step, and it follows di-

rectly from the nonnegativity of the KL divergence that Et−1
[
log p

(
H|V ,Θ(t−1))] ≥

Et−1
[
log p

(
H|V ,Θ(t)

)]
[8], the following inequality is obtained:

L
(
Θ(t−1); q

)
= Q

(
Θ(t−1)

)
− Et−1

[
log p

(
H|V ,Θ(t−1)

)]
≤ Q

(
Θ(t)

)
− Et−1

[
log p

(
H|V ,Θ(t)

)]
= L

(
Θ(t); q

)
. (3.24)

It has been shown that for every complete iteration of the EM algorithm, the

log-likelihood of the model parameter increases monotonically.

3.4.2 MKMC Algorithm is an EM Algorithm

The previous discussion has shown how EM algorithm fits a model parameter to a

model distribution. The expectation of the log-likelihood function under a posterior

distribution of the unobserved data is computed in the E-step, then the obtained

expectation function is maximized in the M-step. In this section, the connection

between MKMC algorithm and EM algorithm will be established.

First off, let the vectors x1, . . . ,xK ∈ R` represent the complete data, where

each entry of xk is a row or column in Q(k). Also, let the subvectors vk ∈ Rnk and

hk ∈ Rmk of xk correspond to the observed and unobserved data in the k-th kernel

matrix, respectively. Finally, let V := (v1, . . . ,vk) and H := (h1, . . . ,hk). From

here, the empirical and model distributions can now be discussed.

From (3.4), the empirical distribution of the observed data vk can be expressed

as

qk (vk) = N
(
vk|0,Q(k)

v,v

)
, (3.25)

so accordingly, q (V ) can be written as a product of Gaussians:

q (V ) =
K∏
k=1

N
(
vk|0,Q(k)

v,v

)
, (3.26)
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and the second moment of q (V ) is thus given by

Eq(V )

[
vkv

>
k

]
= Q(k)

v,v. (3.27)

Following the description from (3.3), the model distribution of the complete data

is given by

p (V ,H|M) =
K∏
k=1

N (xk|0,M) , (3.28)

and its logarithm takes the form

log p (V ,H|M) = 〈S (V ,H) ,G (M)〉 −A (M) , (3.29)

the derivations of which are given in Sect. 3.7. Here, the functions A (·), G(·), and

S(·) are defined as

S (V ,H) :=
K∑
k=1

xkx
>
k , G (M) := −1

2
M−1,

and A (M) :=
K

2
logdetM + const.

(3.30)

Observe that (3.29) is now similar in form as (3.17). Having established the distri-

butions, the E-step and M-step can now be tackled.

Since the joint distribution in (3.28) is in the exponential family, it suffices to

consider only the expectation of the sufficient statistics:

Et−1 [S (V ,H)] =

K∑
k=1

Et−1
[
xkx

>
k

]
. (3.31)

However, since vector xk consists of a subvector vk for the observed data and a

subvector hk for the unobserved data, the following submatrices of Et−1
[
xkx

>
k

]
need

to be considered:

Et−1
[
vkv

>
k

]
, Et−1

[
vkh

>
k

]
, and Et−1

[
hkh

>
k

]
.

Note that from (3.27), Et−1
[
vkv

>
k

]
= Ep(H|V ,M (t−1))

[
Q

(k)
v,v

]
= Q

(k)
v,v, where here,

M (t−1) denotes the current value of the model parameter M . Meanwhile, it can be
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shown that the expectations of the remaining submatrices are

Et−1
[
vkh

>
k

]
= Q(k)

v,v

(
M (k)

v,v

)−1
M

(k)
v,h

= Q
(k)
v,h; (3.32)

Et−1
[
hkh

>
k

]
= M

(k)
h,h −M

(k)
h,v

(
M (k)

v,v

)−1
M

(k)
v,h

+M
(k)
h,v

(
M (k)

v,v

)−1
Q(k)
v,v

(
M (k)

v,v

)−1
M

(k)
v,h

= Q
(k)
h,h, (3.33)

which coincide with the closed-form solutions (3.11) and (3.12) of MKMC algorithm

in the imputation step. The expectation of the sufficient statistics is therefore

S(t) = Et−1 [S (V ,H)] =
K∑
k=1

Et−1
[
xkx

>
k

]
=

K∑
k=1

Q(k), (3.34)

and the corresponding Q-function is given by

Q (M) =
〈
S(t),G (M)

〉
−A (M)

=

〈
K∑
k=1

Q(k),−1

2
M−1

〉
− K

2
logdetM + const.

(3.35)

Optimizing this function with respect to M gives the model parameter update

(3.13). The derivation for the model parameter update and for (3.32) and (3.33) can

be found in Sect. 3.7.

From the discussions above, it can be seen that the steps involved in MKMC

algorithm correspond to the steps in the EM algorithm. To see why the optimal

solution from the EM algorithm is also the optimal solution for MKMC algorithm, it

should be noted that when the expressions for the log-likelihood function L (M) and

the objective function J (H,M) are examined,

L (M) :=
K∑
k=1

log p (V ,H|M)

= −K
2

logdetM − 1

2

〈
S (V ,H) ,M−1〉+ const. (3.36)

J (H,M) =

K∑
k=1

KL
(
Q(k),M

)
=

K

2
logdetM +

1

2

〈
S (V ,H) ,M−1〉

− 1

2

K∑
k=1

logdetQ(k) + const. (3.37)
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Figure 3.3: Experimental set-up.

The proposed method completes the incomplete kernel matrices, then
integrates them for an SVM classifier to train on a subset of data
in M (training data). The trained classifier then predicts which of
the remaining data points (testing data) are membrane and which are

non-membrane proteins.

the terms involving their sufficient statistic are inversely proportional. Hence, the log-

likelihood solution for the maximum of L (M) is also the solution for the minimum

of J (H,M).

3.5 Experiments and Results

As representations of generalized similarities among data points, the completed kernel

matrices must be able to characterize data well so that underlying patterns can be

easily detected. Hence, when inferring missing kernel matrix values, the relationships

among the data points must also be considered. In this section, the efficacy of MKMC

model is tested not only by the model’s prediction accuracy, but by its ability to retain

the interrelationships among the data points as well.

In this experiment, the proposed method is applied to the problem of protein

membrane classification, following the work of [30].

3.5.1 Experimental Setting

The experiment proceeds as follows: the incomplete kernel matrices will be completed

by MKMC algorithm by inferring the missing entries, then integrates the completed

kernel matrices to be used for SVM training. The MKMC algorithm’s model up-

date step provides a way for the completed kernel matrices to integrate, that is, via

their average. From a subset of these integrated matrices, called training data, an

SVM classifier will be trained. Classification performance is then evaluated on the

remaining data points that were not included in the training phase (testing data),
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through the number of times the classifier has correctly categorized the testing data.

Figure 3.3 illustrates the setting for the experiment.

Data Set

The data set3consists of seven kernel matrices derived from various yeast protein data

types, such as protein-protein interaction data, gene expression data, and amino-acid

sequence data. These information are important in membrane classification task,

as they provide the characteristics in common with membrane proteins and non-

membrane proteins. For instance, membrane proteins must have more similarities in

their amino-acid sequences, or in their gene expressions, compared to proteins that

are non-membrane. Moreover, membrane proteins must have interacted more often

than the non-membrane ones. Due to the valuable information that these data types

provide, they can be utilized as data sources for membrane classification task.

Membrane proteins are proteins that are anchored in biological membranes (selec-

tive penetrable barriers within living things), either permanently (integral membrane

proteins) or temporarily (peripheral membrane proteins). Much research has been

dedicated to membrane protein classification, as most modern medicinal drugs are

targeted towards membrane proteins.

Lanckriet et al. [30] provided descriptions on how the kernel matrices were de-

rived from real data. For instance, pairwise comparison of amino-acid sequences of

proteins via BLAST4 algorithm yields a matrix of score vectors. Since this matrix is

nonpositive semidefinite, a linear kernel is evaluated to each matrix entries, resulting

to a valid kernel matrix (i. e., a symmetric, positive semidefinite matrix), containing

all the information acquired from amino-acid sequences of a set of proteins.

Another kernel matrix formulation from real-world data is through an interaction

matrix, where the rows and columns correspond to proteins, and the binary entries

correspond to whether or not two proteins interact. The kernel matrix corresponding

to this protein-protein interaction is then formed from the inner products of rows and

columns of the said binary matrix, where larger inner products indicate more similar

interaction pattern.

Of the seven kernel matrices used for this experiment, four are from primary

sequence data, two are from protein-protein interaction data, and one is from gene

expression data. The annotations (or labels) for the proteins are provided by CYGD

[35]. Membrane proteins are labeled as +1 while non-membrane proteins are labeled

as −1. Of the 2,318 proteins considered, 497 belong to the positive class.

3The data set is obtained from https://noble.gs.washington.edu/proj/sdp-svm/.
4Basic Local Alignment Search Tool is one of the algorithms available for comparing primary

biological sequences.
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Completion Task

To generate incomplete kernel matrices, randomly-picked rows and columns are “re-

moved” from each data source, i. e., the selected rows and columns are replaced by

undetermined values (such as zero) so as not to change the size of the matrix. Var-

ious percentage of missed data is considered, from 0% (as baseline) to 90%, where

selection of rows and columns to be missed is done by increments of 10%.

Traditional completion methods that fit the problem setting are considered for

comparison. Such methods are the zero-imputation method and mean-imputation

method. From the names themselves, zero-imputation method imputes zeros on the

“missing” entries (which is also used to initialize the kernel matrices in MKMC algo-

rithm), while mean-imputation method5 imputes the mean of the remaining entries

in the corresponding rows and columns.

In this task, each of the completion methods (MKMC algorithm, zero-imputation,

and mean-imputation) is performed on each percentage of missing entries (10% to

90%) in each of the kernel matrices (Q(1), . . . ,Q(7)), repeated five times.

Classification Task

For this task, after completion of the kernel matrices, an SVM classifier [12] is trained

on a subset of the combined kernel matrices. Several number of training points are

considered, including 200 and 1,000 training data points. Similar to the completion

task, the selection of training data is done in random. The remaining data points

served as the testing data, where classification performance is evaluated.

3.5.2 Experimental Results

Classification Performance

The classification performance of each completion method is evaluated using receiver

operating characteristic (ROC) score, or area under the ROC curve (AUC). This

curve captures the categorization ability of a binary classifier as the discrimination

threshold is varied. To compare the generalization performance of certain models, the

ROC scores (or AUCs) of each model are being compared. Models with higher ROC

scores have better classification performance than the other models. ROC scores may

range from 0.5 (random prediction) to 1.0 (perfect prediction). The classification

performance of the three completion methods (when the ratio of missed entries had

5A description on how the kernel matrices are completed by this method can be found in [41].
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Figure 3.4: Classification performance for varying number of missing
entries.

The height of the bars represent the ROC scores of the completion
methods when the ratio of missing entries is varied. Here, the SVM

classifier is trained on 200 data points of the model matrix.

been varied) is illustrated in Fig. 3.4. Here, the methods zero-imputation and mean-

imputation are renamed as zero-SVM and mean-SVM, respectively, after an SVM

classifier has been trained on their respective integrated kernel matrices (average of

the kernel matrices). Although the classification performance of MKMC model (as

well as those of zero-SVM and mean-SVM) declines as the number of missed entries

increases, it has remained the victor over the other two completion methods in most

of the cases, especially at 40% to 70% missed entries.

The classification performance was also tested on the individual completed kernel

matrices to see whether or not the completion methods have preserved the relation-

ships among the data. As shown in Fig. 3.5, the proposed model MKMC bested the

other two completion methods on the individual classification performance. From

a one-sample t-test, the mean ROC score of MKMC model (0.779) is statistically

significant from those of zero-SVM (0.721) and mean-SVM (0.745), with P-values

8.32 · 10−5 and 1.40 · 10−3, respectively, for 200 training data points. In the case

of 1,000 training data points, the mean ROC score of MKMC model (0.848) is also

statistically significant from zero-SVM (0.836, P-value = 3.45 · 10−2) and mean-SVM

(0.832, P-value = 4.60 · 10−3).
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(a) 200 training data

(b) 1,000 training data

Figure 3.5: Classification performance for each kernel matrix.

The height of each bar shows the ROC scores of the completion meth-
ods for 50% missed data. The SVM classifier was trained on (a) 200

and (b) 1,000 data points.
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Figure 3.6: Prediction accuracy of the completion methods.

The lines show the prediction accuracy of the completion methods as
the number of missing entries increases. Better prediction accuracy is

implied by lower correlation matrix distance value.

Completion Accuracy

The criterion used in evaluating how accurate the missing entries were recovered is the

mean correlation matrix distance between the original and completed kernel matrices:

1

K

K∑
k=1

1−
Tr
(
Q(k)Q̂(k)

)
∥∥Q(k)

∥∥
F

∥∥∥Q̂(k)
∥∥∥
F

 , (3.38)

where ‖·‖F is the Frobenius norm, Q(k) denotes the “true” kernel matrix while Q̂(k)

denotes the corresponding estimated or completed kernel matrix. In this criterion,

lower correlation matrix distance value implies better prediction accuracy. As shown

in Fig. 3.6, with the exception of 80% to 90% missed entries, the MKMC model

obtains the best prediction accuracy than the other two completion methods in each

ratio of missing entries.
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3.6 Summary

In this chapter, a novel kernel-based method for mutual completion of kernel matrices

is introduced. The proposed algorithm, the MKMC model, relies upon the use of

kernel matrices in order to fuse partial descriptions of the data into a single, big picture

of the data set at hand. This, in turn, was used to infer the missing entries in each of

the kernel matrices representing the relevant data sources for prediction. Aside from

the promising capabilities of the MKMC model as shown in the experimental results

on real-world data set, a statistical description of the model was also presented, giving

the proposed algorithm a principled way to handle and integrate kernel matrices with

missing data.

3.7 Derivations and Some Discussions

This section presents the derivations of some expressions and of the closed-form so-

lutions for the MKMC algorithm.

3.7.1 Derivation of (3.28) and (3.29)

From (3.28),

p (V ,H|M) =
K∏
k=1

N (xk|0,M)

=

K∏
k=1

1

(2π)
`
2 |M |

1
2

exp

{
−1

2
x>kM

−1xk

}

=
1

(2π)
K`
2 |M |

K
2

exp

{
−1

2

K∑
k=1

〈
xkx

>
k ,M

−1
〉}

=
1

(2π)
K`
2 |M |

K
2

exp

{〈
K∑
k=1

xkx
>
k ,−

1

2
M−1

〉}
,

(3.39)

and observe that p (V ,H|M) is in the exponential family. Now, taking the logarithm

of both sides, the same expression as (3.29) is obtained:

log p (V ,H|M) =

〈
K∑
k=1

xkx
>
k ,−

1

2
M−1

〉
− K

2
logdetM + const.

= 〈S (V ,H) ,G (M)〉 −A (M) , (3.40)
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where the functions A (·), G(·), and S(·) are defined as

S (V ,H) :=

K∑
k=1

xkx
>
k , G (M) := −1

2
M−1,

and A (M) :=
K

2
logdetM + const.

(3.41)

3.7.2 Derivation of (3.32) and (3.33)

Let the parameter model M be also denoted by Θ. Using the posterior distribution

of the unobserved data hk

p (hk|vk,M) = N
(
hk|M

(k)
h,v

(
M (k)

v,v

)−1
vk,M

(k)
h| v

)
,

with

M
(k)
h| v := M

(k)
h,h −M

(k)
h,v

(
M (k)

v,v

)−1
M

(k)
v,h ,

the expectation in (3.32) is derived as follows:

Et−1
[
vkh

>
k

]
= Eq(V )

[
vk Ep(H|V ,Θ(t−1))

[
h>k

]]
= Eq(V )

[
vk

(
M

(k)
h,v

(
M (k)

v,v

)−1
vk

)>]
= Eq(V )

[
vkv

>
k

] (
M (k)

v,v

)−1
M

(k)
v,h

= Q(k)
v,v

(
M (k)

v,v

)−1
M

(k)
v,h

= Q
(k)
v,h.

On the other hand, the expectation in (3.33) is computed as

Et−1
[
hkh

>
k

]
= Eq(V )

[
M

(k)
h| v +

(
M

(k)
h,v

(
M (k)

v,v

)−1
vk

)(
M

(k)
h,v

(
M (k)

v,v

)−1
vk

)>]
= M

(k)
h| v +M

(k)
h,v

(
M (k)

v,v

)−1
Q(k)
v,v

(
M (k)

v,v

)−1
M

(k)
v,h

= Q
(k)
h,h.
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3.7.3 Derivation of the Model Parameter Update

The model parameter update is the optimal solution of the Q-function. To obtain

the optimal solution, first let the Q-function be rewritten as

Q (M) =

〈
K∑
k=1

Q(k),−1

2
M−1

〉
− K

2
logdetM + const.

= −1

2

K∑
k=1

Tr
(
M−1Q(k)

)
+
K

2
logdetM−1 + const.

Taking the derivative of the Q-function with respect to M−1, then setting to zero

gives

−1

2

K∑
k=1

Q(k) +
K

2
M = 0.

Finally, solving for M yields M =
1

K

K∑
k=1

Q(k).
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Chapter 4

Parametric Models for Mutual

Kernel Matrix Completion

This chapter presents alternative methods in addressing the incomplete multiview

learning problem, in which the complexity of the model can be controlled. These

methods, as variants of the MKMC model introduced in the previous chapter, are

appropriately named PCA-MKMC and FA-MKMC. PCA-MKMC employs the prob-

abilistic Principal Component Analysis (PCA) approach in restricting the covariance

model, whereas FA-MKMC follows that of the Factor Analysis (FA) model. Proba-

bilistic PCA1 and FA are linear Gaussian models that model the covariance structure

of the data via a small number of latent variables. In particular, many data sets

have similar structures since they are all associated with a latent. For instance, in

a particular survey question, many respondents may have similar answers or opin-

ions based on their religion. The similarity in responses are then generated by the

latent religion. As illustrated in the example, the data points are generated by latent

variables, and data structures may lie in a (much) lower dimensional space than the

original input space. In such situations, fitting a full covariance model in the input

space may seem inappropriate as it considers each and every correlation in the data,

and a large number of free parameters needs to be considered.2 In essence, dimen-

sionality reduction methods such as (probabilistic) PCA and FA “compress” highly

correlated features. When a learning classification algorithm such as SVM is fitted to

a data set with highly correlated features, the learned classifier might become prone

to overfitting, i. e., the classifier is trained so well in the training set that it cannot

correctly classify a new, unseen data very well. Thus, even when there is some infor-

mation loss in dimensionality reduction, this loss in information might become useful

for the learned model to generalize well.

1The notion of PCA is based on a linear projection of the data onto a lower dimensional subspace
to reduce data dimensionality. Tipping and Bishop [49] and Roweis [42] reformulated PCA as the
maximum likelihood solution of a probabilistic latent variable model, and called it probabilistic PCA.

2Fitting a full covariance matrix A ∈ R`×` uses ` (` + 1) /2 free parameters.
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From the above description, a data point xk ∈ R` can be thought of as being

generated by the underlying data structure zk ∈ Rq of much lower dimensionality

(q � `), that is,

xk = Wzk + εk, (4.1)

where xk is expressed as a linear combination of the basis vectors [w1, . . . ,wq] =

W ∈ R`×q, plus noise εk ∈ R`.

The density of the latent variable zk is spherical Gaussian N (zk; 0, Iq), and εk

is a normally distributed random variable with zero mean and covariance ψ ∈ R`×`,
where ψ is diagonal. Conditioned on the latent variable, the data point xk then

has conditional density N (xk;Wzk,ψ). From these assumptions, the probability of

observing xk can be obtained:

N
(
xk; 0,WW> +ψ

)
. (4.2)

The MKMC model variants PCA-MKMC and FA-MKMC learn the model matrix

M described in the previous chapter in a constrained setting. FA-MKMC adopts the

covariance matrix in (4.2), expressed as an outer product of two skinny matrices plus

a diagonal matrix

M = WW> +ψ, (4.3)

where control of the model complexity enters through the choice of q, i. e., the number

of columns of W . Meanwhile, ψ is the covariance matrix of the observed noises, and

its diagonal entries are called uniquenesses. The goal of factor analysis is to learn

the parameters W and ψ such that (4.3) is as close to the sample data covariance as

possible.

When employing the expression (4.3) for the model parameter, restrictions must

be made to ψ for the model to gain information from xk. Given the goal of FA

mentioned earlier, observe that when ψ is full covariance, maximum likelihood es-

timation of M leads to simply choosing W = 0 and setting ψ to be the sample

data covariance, and all the data structures are then explained by the noise, as can

be observed from (4.1). The maximum likelihood solution obtained in this kind of

setting corresponds to an unconstrained Gaussian distribution [8, 43], which is the

case of the (full covariance) MKMC model introduced in the previous chapter.

In factor analysis, the matrix ψ is restricted to be diagonal, i. e., all off-diagonal

entries are zero. In this setting, fitting the model matrix M requires only estimation

of `q+`−q (q − 1) /2 free parameters3, where the first term corresponds to estimating

the `×q matrix W ; the second term is for estimating the diagonal matrix ψ; and the

third term corresponds to redundancy to axis rotations and flips in the latent space.

3The number of free parameters are also alternatively called degrees of freedom.
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A similar model to FA, but not identical to, is the probabilistic PCA model.

Here, the noise covariance matrix is further restricted to σ2I, making the expression

for the model matrix be given as

M = WW> + σ2I. (4.4)

In contrast with FA where the noise variance is independent for each dimension,

probabilistic PCA assumes the same noise value for all dimension. Here, the number

of degrees of freedom is `q + 1− q (q − 1) /2. PCA-MKMC adopts the expression in

(4.4) for its model matrix, and learns the parameters W and σ2 through probabilistic

PCA.

As mentioned earlier, (probabilistic) PCA and FA models are for reducing the

dimension of the data and, consequently, leads to some information loss due to dis-

carded correlations in the input data. The amount of information to retain (and

to lose) therefore lies on the choice of q, as each factor (or column in W ) contains

a certain amount of the overall variance, measured by its corresponding eigenvalue.

For instance, a factor that explains more variance than a single observed variable

has an eigenvalue greater than one. Intuitively, those factors that least contribute

to the explanation of the variance are generally discarded, as shown by Tipping and

Bishop [49]. There still has no standard approach in choosing the number of factors to

retain, but a widely-used criterion is the Kaiser criterion, where all factors with eigen-

values greater than one are retained [36], and the Guttman-Kaiser criterion, where

all factors with eigenvalues greater than the mean of the eigenvalues are retained [57].

Other factor retention methods have been proposed, such as via the scree-plot, total

variance explained, and most recently, the empirical Kaiser criterion [11].

As well-established dimensionality reduction techniques, PCA and FA have been

well-researched and applied. Two definitions of PCA are attributed to Hotelling and

Pearson: Hotelling defined PCA as a maximum variance formulation that maximizes

the variance of the projected data onto the principal subspace [24]; while Pearson

defined it as a linear projection that minimizes the mean projection error [39]. Jolliffe,

on the other hand, demonstrated how PCA can be used for applications such as data

compression and data visualization, among others [25]. Variants of PCA such as

PPCA and mixtures of PPCA were introduced by Tipping and Bishop [48, 49]. Links

between FA [5, 4, 20] and PCA were also investigated [23, 54, 3].

The rest of this chapter introduces the proposed variants of MKMC model: the

PCA-MKMC and FA-MKMC, and demonstrates how learning in these models are

unified by the EM algorithm.
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4.1 Overview of Probabilistic PCA and Factor Analysis

The following section gives an overview of the fundamentals of PCA, probabilistic

PCA, and FA for a smooth understanding on how the proposed parametric models

PCA-MKMC and FA-MKMC are formulated.

4.1.1 Principal Component Analysis

Principal component analysis finds a subspace onto which the projected data points

have (1) maximum variance [24]; and (2) minimum mean projection error [39].

PCA as Maximum Variance

Consider K data points {x1, . . . ,xK} , xk ∈ R` and for simplicity, suppose they are

centered in advance. Also, consider orthonormal vectors4

[u1, . . . ,uq] =: Uq ∈ R`×q. (4.5)

Then the q-dimensional subspace where the projection points have maximum variance

is determined by Uq, where u1, . . . ,uq are the eigenvectors corresponding to the

dominant eigenvalues λ1 ≥ · · · ≥ λq (≥ λq+1 ≥ · · · ≥ λK) in the eigendecomposition

of S:

SU = ΛU , (4.6)

where

S =
1

K

K∑
k=1

xkx
>
k (4.7)

is the data covariance matrix, U = [u1, . . . ,uK ], and Λ = diag (λ1, . . . , λK). The

subspace obtained from Uq is therefore called the principal subspace, with principal

components u1, . . . ,uq.

To see why this is the case, consider projection onto R in the direction of say,

u1. Then the projection variance is given by

1

K

K∑
k=1

(
u>1 xk

)2
= u>1 Su1, (4.8)

and is maximized subject to the constraint u>1 u1 = 1 (from the orthonormal assump-

tion earlier). The equivalent Lagrange formulation is

max
u1

{
u>1 Su1 + λ

(
1− u>1 u1

)}
, (4.9)

4Orthonormal vectors are unit vectors that are orthogonal to each other.
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where λ is the introduced Lagrange multiplier. The solution for this maximization

problem is

Su1 = λu1, (4.10)

implying that u1 is an eigenvector of S with eigenvalue λ. Rewriting the above

equation as

u>1 Su1 = λ, (4.11)

it can be observed that the LHS of this equation is maximum when u1 is chosen such

that it corresponds to the largest eigenvalue.

For the general case of q-dimensional subspace, the principal components are ob-

tained by choosing the q eigenvectors of S corresponding to the q largest eigenvalues.

PCA as Minimum Mean of Projection Errors

Another way to look at the PCA formulation is as follows: given the q-dimensional

principal subspace determined by q eigenvectors, the remaining ` − q eigenvectors

are therefore orthogonal to the said subspace. The lengths of these remaining eigen-

vectors, as scaled by their corresponding eigenvalues, represent the projection errors;

and the mean of the projection errors

1

`− q
∑̀
i=q+1

λi (4.12)

is minimum when the eigenvectors corresponding to ` − q smallest eigenvalues are

chosen, which is equivalent to choosing the eigenvectors with largest eigenvalues as

principal components.

4.1.2 Probabilistic PCA

As a dimensionality reduction tool, PCA can be given a probabilistic reformulation

so that it can be used as a constrained density model, whilst capturing dominant

data correlations.

In probabilistic PCA, the generative model xk = Wzk + εk in (4.1) is assumed

to have the following Gaussian densities:

p (zk) = N (zk; 0, Iq) ; (4.13)

p (εk) = N
(
εk; 0, σ

2I`
)

; and (4.14)

p
(
xk| zk,W , σ2

)
= N

(
xk;Wzk, σ

2I`
)
. (4.15)
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From here, the Gaussian density of the complete data can be computed:

p
(
(xk, zk) |W , σ2

)
= p

(
xk| zk,W , σ2

)
p (zk)

=
1

(2πσ2)`/2
exp

(
−‖xk −Wzk‖2

2σ2

)

· 1

(2π)q/2
exp

(
−‖zk‖

2

2

)
(4.16)

= N

(
(xk, zk) ; 0,

[
WW> + σ2I W

W> I

])
. (4.17)

From this joint density, the marginal density (or the probability of observing xk) can

be obtained:

p
(
xk|W , σ2

)
= N

(
xk; 0,WW> + σ2I

)
, (4.18)

as well as the posterior distribution

p
(
zk|xk,W , σ2

)
= N

(
zk;W

>
(
WW> + σ2I

)−1
xk,

I − σ2W>
(
WW> + σ2I

)−1
W

)
= N

(
zk;C

−1W>xk, σ
2C−1

)
. (4.19)

Here, matrix inversion formula is applied so that the `× ` matrix
(
WW> + σ2I

)−1
can be efficiently evaluated by computing instead the inverse of a smaller q×q matrix

C, as follows: (
WW> + σ2I

)−1
=

1

σ2
I − 1

σ2
WC−1W>, (4.20)

where

C := W>W + σ2Iq. (4.21)

It can be observed that the obtained conditional density in (4.19) has mean that

is a linear function of the data variable xk, and covariance that is independent of xk.

Probabilistic PCA is hence an example of a linear-Gaussian model [43, 37], which

usually involves maximization of expressions such as the complete-data log-likelihood

function.

Closed-Form Solutions

In probabilistic PCA, the goal is to learn the parameters W and σ2 so as to make

the covariance M = WW>+ σ2I of the predictive distribution (4.18) be as close as

possible to the data covariance S in (4.7). From the marginal density p (xk|Θ), the
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corresponding log-likelihood function is then

log p (X|Θ) =
K∑
k=1

log p (xk|Θ)

= −K`
2

log(2π)− K

2
logdetM − K

2

〈
M−1,S

〉
=: L. (4.22)

Fortunately, from standard matrix differentiation results of [28], the following partial

derivative can be obtained:

∂L
∂W

= K
(
M−1SM−1W −M−1W

)
= 0 (4.23)

yielding the stationary points

SM−1W = W , (4.24)

whose trivial solutions are W = 0 and M = S. Of course, the desired case is when

W 6= 0 and M 6= S, the solution of which was shown by Tipping and Bishop [49].

Making use of the singular value decomposition of W leads to the potential solutions

W = Uq
(
Lq − σ2I

)1/2
R, (4.25)

where the ` × q matrix Uq consists of concatenation of any eigenvectors of the data

covariance S. The q× q diagonal matrix Lq have diagonal entries λi, the eigenvalues

corresponding to the eigenvectors in Uq. Meanwhile, the matrix R is an arbitrary

orthogonal matrix, and hence can be treated as the identity matrix Iq.

However, the maximum likelihood solution is obtained when the columns of Uq

are the eigenvectors of S corresponding to the dominant eigenvalues λ1 ≥ · · · ≥
λq (≥ λq+1 ≥ · · · ≥ λ`), and σ2 is the average of the `− q smallest eigenvalues. Thus,

for eigenvectors u1, . . . ,u` corresponding to the eigenvalues λ1 ≥ · · · ≥ λ`, the maxi-

mum likelihood solutions WML and σ2ML are therefore

WML = Uq
(
Λq − σ2I

)1/2
, for Λq = [u1, . . . ,uq] (4.26)

σ2ML =
1

`− q
∑̀
i=q+1

λi, (4.27)

which are analogous to obtaining the principal components in Sect. 4.1.1. As can be

observed, the model covariance

M = WMLW
>
ML + σ2MLI (4.28)

captures the dominant correlations in the data through WML, and treats the corre-

lations lost from dimensionality reduction as noise through σ2MLI.
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EM algorithm for PCA

As the maximum likelihood solutions have already been found, pushing through with

the EM algorithm at this point may already seem worthless. However, using an iter-

ative procedure such as the EM algorithm is deemed computationally advantageous

over eigendecomposition of the sample covariance matrix in high-dimensional spaces.

Also, the discussion on EM algorithm for probabilistic PCA can be extended to factor

analysis, as can be seen in the next section. The EM algorithm for probabilistic PCA

then proceeds as follows:

E-step. In this step, the sufficient statistics of the (latent space) posterior distribution

in (4.19) is computed, using the current parameter values Θ(t−1) =
(
W (t−1), σ2t−1

)
:

E [zk] =
(
C(t)

)−1 (
W (t−1)

)>
xk (4.29)

E
[
zkz

>
k

]
= σ2t−1

(
C(t)

)−1
+ E [zk]E [zk]

> , (4.30)

where C(t) =
(
W (t−1))>W (t−1) + σ2t−1I.

M-step. For this step, the model parameter updates Θ(t) =
(
W (t), σ2t

)
are obtained

by maximizing the expected log-likelihood of the complete data, as follows:

W (t) = argmax
W

K∑
k=1

E [log p (xk, zk)] ; (4.31)

σ2t = argmax
σ2

K∑
k=1

E [log p (xk, zk)] , (4.32)

under the sufficient statistics in the E-step. Thus, for the M-step, consider the

complete-data log-likelihood

log p (X,Z|Θ) =
K∏
k=1

N
(
xk;Wzk, σ

2I
)
N (zk; 0, Iq)

=
K∑
k=1

(log p (xk| zk,Θ) + log p (zk)) , (4.33)

and take the expectation under the posterior distribution in (4.19) to obtain
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E [log p (X,Z|Θ)] = −K`
2

log
(
2πσ2

)
− 1

2σ2

K∑
k=1

‖xk‖2

−1

2
Tr

(
K∑
k=1

E
[
zkz

>
k

])
+

1

σ2

K∑
k=1

E [zk]
>W>xk

− 1

2σ2

〈
W ,W

K∑
k=1

E
[
zkz

>
k

]〉
−q

2
log(2π). (4.34)

Keeping the posterior statistics (4.29) and (4.30) fixed, (4.34) is maximized with

respect to W and σ2. The model parameter updates are then obtained as follows:

W (t) =

(
K∑
k=1

xkE [zk]
>

)(
K∑
k=1

E
[
zkz

>
k

])−1
(4.35)

σ2t =
1

K`

K∑
k=1

[
‖xk‖2 − 2E [zk]

>
(
W (t)

)>
xk

+ Tr

(
E
[
zkz

>
k

] (
W (t)

)>
W (t)

)]
. (4.36)

The EM algorithm is then carried out by first initializing the parameters, and then

repeatedly doing (4.29), (4.30), (4.35), and (4.36) in order until convergence.

4.1.3 Factor Analysis

Closely related to probabilistic PCA, factor analysis also models data points as a

linear combination of the factors, with specified error terms. The only difference of

FA from probabilistic PCA is that the noise covariance, which is also the covariance

of the conditional distribution of xk given the latent zk, is diagonal:

p (εk) = N (εk; 0,ψ) ; and (4.37)

p (xk| zk,W ,ψ) = N (xk;Wzk,ψ) , (4.38)

instead of an isotropic σ2I. The probability of observing xk is therefore given by the

marginal distribution

p (xk|W ,ψ) = N
(
xk; 0,WW> +ψ

)
, (4.39)
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and the posterior distribution is then

p (zk|xk,W ,ψ) = N
(
zk;W

>
(
WW> +ψ

)−1
xk,

Iq −W>
(
WW> +ψ

)−1
W

)
= N

(
zk;GW

>ψ−1xk,G
)
, (4.40)

where

G := Iq −W>
(
WW> +ψ

)−1
W

=
(
Iq +W>ψ−1W

)−1
, (4.41)

by utilizing again the matrix inversion formula to efficiently evaluate the inverse.

Unlike in the probabilistic PCA model, the maximum likelihood solution for

factor analysis has no closed form, that is, the model parameters are coupled in a way

such that the maximum likelihood estimates cannot be solved directly. The optimal

solution must therefore be found iteratively, which can be done via EM algorithm.

The EM algorithm for FA is analogous to that of probabilistic PCA. The sufficient

statistics of the (latent space) posterior distribution are given by

E [zk] = W>
(
WW> +ψ

)−1
xk

= GW>ψ−1xk (4.42)

E
[
zkz

>
k

]
= Iq −W>

(
WW> +ψ

)−1
W + E [zk]E [zk]

>

= G+ E [zk]E [zk]
> . (4.43)

For the M-step, the complete-data log-likelihood for FA is as follows:

log p (X,Z|Θ) =

K∏
k=1

N (xk;Wzk,ψ)N (zk; 0, Iq)

=

K∑
k=1

(log p (xk| zk,Θ) + log p (zk)) . (4.44)

Holding the sufficient statistics fixed, the model parameter updates are obtained by

setting the gradient of the above complete-data log-likelihood function to zero. The

model parameter updates are then

W (t) =

(
K∑
k=1

xkE [zk]
>

)(
K∑
k=1

E
[
zkz

>
k

])−1
(4.45)

ψ(t) = diag

(
S −W (t) 1

K

K∑
k=1

E [zk]x
>
k

)
, (4.46)
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where the expectations are evaluated using the current parameter values Θ(t−1) =(
W (t−1),ψ(t−1)), and diag sets the off-diagonal entries of ψ(t) to zero.

The EM algorithm goes forth by first initializing5 the parameters W and ψ, then

performing the following repeatedly in order: solving for the q×q matrixG; evaluating

the expectations (4.42) and (4.43) for the E-step; and revising the parameters in (4.45)

and (4.46) for the M-step.

4.2 Parametric Models for MKMC

Given how the maximum likelihood solutions for probabilistic PCA and FA are ob-

tained by EM algorithm, the parametric models PCA-MKMC and FA-MKMC can

now be introduced. These parametric models are the constrained counterparts of

the (full covariance) MKMC model introduced in the previous chapter. The aim of

PCA-MKMC and FA-MKMC is to provide control of model complexity, in order to

improve the generalization performance of the proposed models.

4.2.1 PCA-MKMC

For its model parameter matrix, PCA-MKMC adopts the covariance matrix of the

predictive probability described in probabilistic PCA model. The model matrix for

PCA-MKMC is hence expressed as

M = WW> + σ2I, (4.47)

where W ∈ R`×q and σ2 ∈ R are the model parameters. The objective function for

this model is given by

JPCA

(
H,W , σ2

)
:=

K∑
k=1

LogDet
(
Q(k),WW> + σ2I

)
, (4.48)

whereH is the set of submatrices of missing entries, as described in (3.7). The optimal

model parameter estimates are obtained by repeating the following steps:

1. Imputation step. Using the current parameter estimates W (t−1) and σ2t−1, min-

imize JPCA with respect to H:

H(t) := argmin
H

JPCA

(
H,W (t−1), σ2t−1

)
; (4.49)

5Since the maximum likelihood (ML) solutions in probabilistic PCA can be obtained directly from
the eigendecomposition of the data covariance matrix, these ML solutions can be used to initialize
the parameters in the EM algorithm for FA.
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2. Model update step. Fixing the update H(t), minimize JPCA with respect to W

and σ2: (
W (t), σ2t

)
:= argmin

(W ,σ2)

JPCA

(
H(t),W , σ2

)
. (4.50)

Here, the imputation step is analogous to the imputation step in the (full covariance)

MKMC in Chap. 3, but with the model matrix defined as (4.47). The kernel matrix

Q(k) is hence updated using (3.11) and (3.12), and let the updated Q(k) be denoted

as Q(t,k).

Fixing the updated empirical kernel matrices, the objective function in (4.48) is

now expressed as

JPCA

(
H(t),W , σ2

)
:=

K

2
logdet

(
WW> + σ2I

)
+
K

2

〈(
WW> + σ2I

)−1
,S(t)

〉
+ const., (4.51)

where ’const.’ denotes the terms independent of the model parameters, and

S(t) :=
1

K

K∑
k=1

Q(t,k), (4.52)

where Q(t,k) is the value of Q(k) in the t-th iteration.

The closed-form solutions in the model update step are obtained in the following

manner. Letting u1, . . . ,u` be the eigenvectors corresponding to the eigenvalues

λ1 ≥ · · · ≥ λ` of S(t), the model parameter updates W (t) and σ2t are given as

σ2t =
1

`− q
∑̀
i=q+1

λi (4.53)

W (t) = Uq
(
Λq − σ2t I

)1/2
, (4.54)

where Uq := [u1, . . . ,uq], and Λq := diag (λ1, . . . , λq). The outline of PCA-MKMC

algorithm is given in Alg. 2.

4.2.2 FA-MKMC

In FA-MKMC, the model matrix takes the form

M = WW> +ψ, (4.55)

where the model parameters are the diagonal matrix ψ and W ∈ R`×q. As this

model has more freedom in the variance of each variable, FA-MKMC is a bit more
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Algorithm 2 PCA-MKMC Algorithm.

Input: Incomplete kernel matrices Q(1), . . . ,Q(K).
Output: Completed kernel matrices Q(1), . . . ,Q(K).

1: begin

2: Initialize
{
Q(k)

}K
k=1

by imputing zeros in the missing entries;

3: Initialize the model matrix as M := 1
K

∑K
k=1Q

(k);
4: repeat
5: for all k ∈ {1, . . . ,K} do

6: Update Q
(k)
v,h and Q

(k)
h,h using (3.11) and (3.12);

7: end for
8: Set S as (4.52);
9: Update W and σ2 using (4.53) and (4.54);

10: Set M as (4.47);
11: until convergence
12: end.

flexible than PCA-MKMC, but is more rigid than the (full covariance) MKMC. The

objective function for FA-MKMC is given by

JFA (H,W ,ψ) :=

K∑
k=1

LogDet
(
Q(k),WW> +ψ

)
. (4.56)

Fitting the FA parameters to the empirical kernel matrices is also analogous to those

of (full covariance) MKMC and PCA-MKMC, where two steps (imputation and model

update steps) are repeated. However, as previously mentioned, the FA parameters

have no closed-form solutions since its maximum likelihood estimates cannot be solved

directly. Hence, inference in FA-MKMC is done by repeatedly performing the follow-

ing steps:

1. Imputation step. Using the current parameter estimates W (t−1) and ψ(t−1),

minimize JFA with respect to H:

H(t) := argmin
H

JFA

(
H,W (t−1),ψ(t−1)

)
; (4.57)

2. Model update step. Fixing the update H(t), find the model parameter updates

W (t) and ψ(t) such that

JFA

(
H(t),W (t−1),ψ(t−1)

)
≥ JFA

(
H(t),W (t),ψ(t)

)
. (4.58)

Similar to (full covariance) MKMC and PCA-MKMC, inference of the missing entries

in the imputation step can be done using (3.11) and (3.12).
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Algorithm 3 FA-MKMC Algorithm.

Input: Incomplete kernel matrices Q(1), . . . ,Q(K).
Output: Completed kernel matrices Q(1), . . . ,Q(K).

1: begin

2: Initialize
{
Q(k)

}K
k=1

by imputing zeros in the missing entries;

3: Initialize the model matrix as M := 1
K

∑K
k=1Q

(k);
4: Initialize W and ψ using (4.53) and (4.54);
5: repeat
6: for all k ∈ {1, . . . ,K} do

7: Update Q
(k)
v,h and Q

(k)
h,h using (3.11) and (3.12);

8: end for
9: Set S as (4.52);

10: Update W and ψ using (4.59) and (4.60);
11: Set M as (4.55);
12: until convergence
13: end.

On the other hand, the model parameter updates that satisfy (4.58) are computed

as

W (t) := S(t)
xz

(
S(t)
zz

)−1
; (4.59)

ψ(t) := diag

(
S(t) −W (t)

(
S(t)
xz

)>)
, (4.60)

where
S(t)
zz := G(t) +B(t)S(t)

xz

S(t)
xz := S(t)

(
B(t)

)>
B(t) := G(t)F (t)

G(t) :=
(
Iq + F (t)W (t−1)

)−1
F (t) :=

(
W (t−1)

)> (
ψ(t−1)

)−1
.

(4.61)

The monotonic decrease in (4.58) during optimization is guaranteed by the fol-

lowing proposition6:

Proposition 4.2.1. The inequality (4.58) always holds in every iteration in Alg. 3.

6Proof is shown in Sect. 4.6.3.
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4.3 PCA-MKMC and FA-MKMC in a

Statistical Framework

Following the same course of action as in the previous chapter, the following section

shows how EM algorithm is derived for the probabilistic models PCA-MKMC and

FA-MKMC, and then proceeds to showing how to arrive at the optimal solutions.

4.3.1 EM Algorithm for PCA-MKMC

Recall from Sect. 3.4.2 that each vector xk ∈ R` consists of the subvectors vk ∈
Rnk and hk ∈ Rmk , corresponding to the observed and unobserved data in Q(k),

respectively. Thus, analogous to (4.22), the expected log-likelihood of the joint density

pPCA

(
vk,hk|W , σ2

)
= pPCA

(
xk|W , σ2

)
= N

(
xk; 0,WW> + σ2I

)
, (4.62)

is the Q-function

QPCA
t

(
W , σ2

)
:=

K∑
k=1

E
[
log pPCA

(
xk|W , σ2

)]
= −K`

2
log(2π)− K

2
logdet

(
WW> + σ2I

)
−1

2

〈(
WW> + σ2I

)−1
,
K∑
k=1

E
[
xkx

>
k

]〉
. (4.63)

Here, the expectation is evaluated under the posterior q (hk|vk) q (vk) using cur-

rent parameter values W (t−1) and σ2t−1, yielding E
[
xkx

>
k

]
= Q(k). The above Q-

function results to an equivalent expression as (4.22), with M = WW> + σ2I and

S = 1
K

∑K
k=1Q

(k), of which, the maximum likelihood solutions are (4.26) and (4.27).

Moreover, as can be observed, the resulted Q-function is the negative of the objec-

tive function JPCA in (4.51), up to some constant. Hence, the maximum likelihood

solutions of PCA-MKMC are indeed those given in (4.53) and (4.54).

4.3.2 EM Algorithm for FA-MKMC

In FA-MKMC, a latent variable zk ∈ Rq, drawn from a standard GaussianN (zk; 0, Iq),

is introduced for each data point xk. The complete data for the k-th data source is
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(xk, zk); and the joint density takes the form

pFA (xk, zk|W ,ψ) = N (xk;Wzk,ψ)N (zk; 0, Iq)

= N

(
(xk, zk) ; 0,

[
WW> +ψ W

W> I

])
. (4.64)

Also from here, the marginal density of xk can be obtained:

pFA (xk|W ,ψ) = N
(
xk; 0,WW> +ψ

)
. (4.65)

E-step. From the above result, the posterior distribution of the latent variable is

obtained (4.40), as well as the sufficient statistics (4.42) and (4.43).

Meanwhile, the expected complete-data log-likelihood is given by the following

Q-function:

QFA
t (W ,ψ) :=

K∑
k=1

E [log pFA(xk, zk|W ,ψ)]

=

K∑
k=1

E
[
−1

2

〈
xk −Wzk,ψ

−1 (xk −Wzk)
〉
− 1

2
logdetψ + const.

]

=

〈
W ,ψ−1

K∑
k=1

E
[
xkz

>
k

]〉
− 1

2

〈
W ,ψ−1W

K∑
k=1

E
[
zkz

>
k

]〉

− 1

2

〈
ψ−1,

K∑
k=1

E
[
xkx

>
k

]〉
− K

2
logdetψ + const.,

(4.66)

where the expectation is taken under the joint posterior density

qt (xk, zk) = qt (zk,hk|vk) q (vk)

= pFA

(
zk|hk,vk,Θ(t−1)

)
pFA

(
hk|vk,Θ(t−1)

)
q (vk)

= pFA

(
zk|xk,Θ(t−1)

)
pFA

(
hk|vk,Θ(t−1)

)
q (vk)

(4.67)

from the current model parameter values Θ(t−1) =
(
W (t−1),ψ(t−1)). The second

moments appearing in (4.66) are obtained7 as

K∑
k=1

E
[
xkx

>
k

]
= KS,

K∑
k=1

E
[
xkz

>
k

]
= KSxz,

and

K∑
k=1

E
[
zkz

>
k

]
= KSzz.

(4.68)

7The derivations are given in Set. 4.6.1.
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M-step. When the above results for the second moments are substituted directly to

(4.66), the following expression for QFA
t is obtained:

QFA
t (W ,ψ) =

〈
W ,Kψ−1Sxz

〉
− K

2

〈
W ,ψ−1WSzz

〉
− K

2

〈
ψ−1,S

〉
− K

2
logdetψ + const.

(4.69)

Setting its gradient to zero yields the parameter updates (4.59) and (4.60).8

4.4 Experiments and Results

To test how changing the flexibility of a kernel matrix affects a learning classifier’s

generalization capability, experiments on real-world data are conducted. The pro-

posed parametric models are applied to functional classification prediction of yeast

proteins, following the works of [18, 31, 38].

Figure 4.1: Experimental set-up.

The proposed method completes the incomplete kernel matrices, then
integrates them for an SVM classifier to train on a subset of data in
M (training data). The trained classifier then predicts which of the
remaining data points (testing data) belong to a certain functional

class or not.

4.4.1 Experimental Setting

The setting for this experiment (Fig. 4.1) is similar to that in the previous chapter,

where the incomplete kernel matrices are first completed by the proposed methods,

then integrated to form a single kernel matrix consisting of all the information derived

from different but relevant data sources. An SVM classifier is then trained on a subset

of this integrated matrix, and the learned classifier then categorizes the test data. The

8The derivation for the model parameter update appears in Sect. 4.6.2.
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only difference in the setting is that instead of classifying the proteins as membranes

or non-membranes, the proteins in this experiment are classified as to whether they

perform a certain function or not. For instance, if a protein is involved in DNA

processing and in transcription, but not in metabolism, then this protein is labeled

+1 in the former classes (DNA processing and transcription), and −1 in the latter

(metabolism). In this experiment, 13 functional classes9 are considered, leading to 13

binary classification problems.

Data Set

The data set consists of 3,588 yeast genes with known functions (from the 13 func-

tional classifications). The corresponding kernel matrices are hence of size 3, 588 ×
3, 588, and the kernel matrices used in this study are derived from the following dif-

ferent data sources: gene expression data, genetic interaction data, protein-protein

interaction data, Pfam domain structure data, Smith-Waterman10 pairwise sequence

comparison data, and protein interaction via TAP data. A detailed description of

these six kernel matrices can be found in [31].

Completion Methods

The completion methods involved in this experiment are the traditional methods

(zero-imputation and mean-imputation, as described in the previous chapter), the

(full covariance) MKMC method, and the parametric methods PCA-MKMC and FA-

MKMC. In choosing the flexibility of the parametric methods, two criteria are consid-

ered: the Kaiser criterion (greater-than-one) and Guttman-Kaiser citerion (greater-

than-mean). Hence, in this experiment, PCA-GK and PCA-K correspond to PCA-

MKMC using Guttman-Kaiser and Kaiser criterion, respectively. Similarly for FA-

MKMC, FA-GK and FA-K are considered. In total, seven completion methods are

tested for classification performance.

In this experiment, incomplete kernel matrices are generated in the same fashion

as in the previous experiment, where rows and columns to be missed are chosen

at random. The completion methods then infer the missing entries to be able to

complete an incomplete kernel matrix. The fused completed kernel matrices (the

model kernel matrix) for each completion method is then used to train an SVM

classifier for function prediction task.

9The complete list of the functional classes is given in [31].
10Smith-Waterman algorithm determines similar regions between two protein sequence strings

through sequnce alignment.
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Table 4.1: Classification performance for 20% missed entries.

The SVM classifier is trained on the integrated completed kernel ma-
trices of each method, for 20% training data. The mean ROC scores
are then tabulated, where each row corresponds to the ROC score of
the completion methods on a given functional class. The largest ROC
score per class is boldfaced, while those with no significant difference

from the highest ones are underlined.

Class zero-SVM mean-SVM (FC) MKMC PCA-GK PCA-K FA-GK FA-K

1 0.7914 0.7915 0.7995 0.8015 0.8022 0.8010 0.8006
2 0.7918 0.7925 0.7975 0.8025 0.8032 0.8014 0.8021
3 0.7941 0.7933 0.8000 0.8045 0.8052 0.8029 0.8032
4 0.8418 0.8431 0.8497 0.8529 0.8534 0.8516 0.8519
5 0.8839 0.8844 0.8956 0.8972 0.8979 0.8961 0.8967
6 0.7665 0.7669 0.7745 0.7780 0.7783 0.7770 0.7770
7 0.8321 0.8328 0.8414 0.8437 0.8444 0.8429 0.8440
8 0.7336 0.7336 0.7354 0.7407 0.7418 0.7391 0.7386
9 0.7621 0.7630 0.7651 0.7706 0.7714 0.7694 0.7695
10 0.7441 0.7445 0.7485 0.7551 0.7570 0.7525 0.7556
11 0.5766 0.5757 0.5825 0.5791 0.5807 0.5793 0.5772
12 0.9357 0.9347 0.9435 0.9448 0.9453 0.9443 0.9444
13 0.6818 0.6845 0.6794 0.6913 0.6911 0.6840 0.6838

4.4.2 Classification Performance Result

The experiment is performed ten times for each completion method, and the mean

ROC scores are recorded in Tab. 4.1.

Indeed, classification performance is improved when the model kernel matrix is

not too flexible. The parametric models PCA-MKMC and FA-MKMC introduced in

this chapter have performed better than the (full covariance) MKMC model, in par-

ticular, the highest ROC scores are obtained by PCA-MKMC using Kaiser criterion,

with the exception from the two functional classes where ROC scores are the least

(Classes 11 and 13). To determine the statistical difference of PCA-K among the

other completion methods, a one-sample t-test is again employed. Indeed, the para-

metric models have no significant difference in general, but are statistically significant

over the other completion methods.

4.5 Summary

In this chapter, two variants of the (full covariance) MKMC model are developed in

order for the user to gain control of the model flexibility. These parametric mod-

els, the PCA-MKMC and FA-MKMC, justified the claim that by reducing a model’s

flexibility, overfitting is avoided, suggesting better generalization of the learned clas-

sifier. Indeed, the parametric models performed the best among the other completion
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methods in the task of functional classification prediction in yeast proteins. Simi-

lar to (full covariance) MKMC model, theoretical backgrounds are also provided for

PCA-MKMC and FA-MKMC models.

4.6 Proofs and Derivations

4.6.1 Derivation of the second moments for FA.

From the product rule of probabilities, the joint distribution qt (xk, zk) can be ex-

pressed as a product of a marginal and a conditional distribution:

qt (xk, zk) = qt (zk|xk) qt (xk) (4.70)

= qt (xk| zk) qt (zk) . (4.71)

On the other hand, the marginal qt (xk) can be obtained by marginalizing out zk

from the joint distribution:

qt (xk) =

∫
qt (xk, zk) dzk

=

∫
qt (xk| zk) qt (zk) dzk. (4.72)

From (4.42), (4.43), (4.61), (4.70), and (4.72), the following second moments are

obtained:
Eqt(xk,zk)

[
xkx

>
k

]
= Eqt(zk|xk)

[
Eqt(xk)

[
xkx

>
k

]]
= Q(k);

(4.73)

Eqt(xk,zk)

[
xkz

>
k

]
= Eqt(xk)

[
xkEqt(zk|xk)

[
z>k

]]
= Eqt(xk)

[
xkx

>
k

] (
B(t)

)>
= Q(k)

(
B(t)

)>
;

(4.74)

and
Eqt(xk,zk)

[
zkz

>
k

]
= Eqt(xk)

[
Eqt(zk|xk)

[
zkz

>
k

]]
= G(t) + Eqt(xk)

[
B(t)xkx

>
k

(
B(t)

)>]
= G(t) +B(t)Q(k)

(
B(t)

)>
.

(4.75)
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It then follows that

K∑
k=1

E
[
xkx

>
k

]
= KS,

K∑
k=1

E
[
xkz

>
k

]
= KSxz,

and

K∑
k=1

E
[
zkz

>
k

]
= KSzz.

(4.76)

4.6.2 Derivation of the model parameter updates

for FA-MKMC.

The model parameter update W (t) is obtained as follows:

∂QFA
t (W ,ψ)

∂W
= ψ−1

(
KS(t)

xz −KWS(t)
zz

)
= 0.

=⇒ W (t) = S(t)
xz

(
S(t)
zz

)−1
.

For the model update ψ(t),

∂QFA
t (W ,ψ)

∂ψ−1
=
K

2
ψ − K

2
S(t) +

K

2
W (t)B(t)S(t)

=⇒ ψ = S(t) −W (t)B(t)S(t)

= S(t) −W (t)
(
S(t)
xz

)>
=⇒ ψ(t) = diag

(
S(t) −W (t)

(
S(t)
xz

)>)
,

where diag sets the off-diagonal entries of ψ(t) to zero.

4.6.3 Proof of Proposition 4.2.1

Let Θ = (W ,ψ). With the use of empirical distribution qt (xk) and marginal density

(4.65), the objective function (4.56) in the model update step can be expressed as

follows:

JFA

(
H(t),Θ

)
=

K∑
k=1

Eqt(xk) [log qt (xk)]−
K∑
k=1

Eqt(xk) [log pFA (xk|Θ)]

=

K∑
k=1

Eqt(xk) [log qt (xk)]−
K∑
k=1

Eqt(xk,zk)

[
log

pFA (xk, zk|Θ)

pFA (zk|xk,Θ)

]
,
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where the second equality follows from

pFA (xk, zk|Θ) = pFA (zk|xk,Θ) pFA (xk|Θ) , (4.77)

for any zk ∈ Rq, for k = 1, . . . ,K.

Likewise, the Q-function for FA-MKMC can be rewritten as follows:

QFA
t (Θ) =

K∑
k=1

Eqt(xk,zk) [log pFA (xk, zk|Θ)]

=

K∑
k=1

Eqt(xk,zk)

[
log

pFA (xk, zk|Θ)

pFA (zk|xk,Θ)

]

+
K∑
k=1

Eqt(xk)

[
Eqt(zk|xk) [log pFA (zk|xk,Θ)]

]
= −JFA

(
H(t),Θ

)
+

K∑
k=1

Eqt(xk) [log qt (xk)]

+
K∑
k=1

Eqt(xk)

[
Eqt(zk|xk) [log pFA (zk|xk,Θ)]

]
.

From the monotonic increase of the Q-function for each model parameter update

Θ(t) =
(
W (t),ψ(t)

)
, and from the non-negativity of the KL-divergence between two

probabilistic density functions, the following inequality holds:

0 ≤ QFA
t

(
Θ(t)

)
−QFA

t

(
Θ(t−1)

)
= −JFA

(
H(t),Θ(t)

)
+ JFA

(
H(t),Θ(t−1)

)
−

K∑
k=1

KL
(
pFA

(
zk|xk,Θ(t−1)

)
, pFA

(
zk|xk,Θ(t)

))
≤ −JFA

(
H(t),Θ(t)

)
+ JFA

(
H(t),Θ(t−1)

)
.

It goes to show that at each update of the model parameters, the objective function

decreases monotonically. �
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Chapter 5

Conclusion

This thesis has successfully addressed the problem of learning from incomplete data

in a kernel-based setting, by introducing a novel method that mutually infers the

missing entries of kernel matrices representing different data types. This method, the

(full covariance) MKMC model, not only infers the missing entries whilst preserving

the relationships in the data, but also provides a way of unifying the data sources,

backed by a statistical analysis of the algorithm. As this model has full covariance, two

variants of this model are also introduced: the PCA-MKMC and FA-MKMC, derived

from the notions of probabilistic PCA and factor analysis. These parametric models

have further improved detection of underlying structures in the data by providing a

means of adjusting the number of free parameters or degrees of freedom. By adjusting

the number of degrees of freedom, model flexibility is controlled, providing a real data

structure for a learning classifier to exploit. As the demand for finding patterns and

hidden structures in the data increases, with the availability of multiple information

sources, statistical learning algorithms such as the ones presented in this thesis are

highly sought-after.

Succinctly, a mutual kernel matrix completion method, called MKMC model, is

introduced in Chapter 3 to solve the multiview learning problem with missing informa-

tion. The proposed model, applied to the membrane protein classification problem,

has demonstrated its efficacy over the conventional methods through classification

performance and completion accuracy.

In Chapter 4, parametric models are introduced, combining the notions of prob-

abilistic PCA and factor analysis to the (full covariance) MKMC model in Chapter 3.

These parametric models allow control of model flexibility, and have shown their

positive influence in the generalization capability of a learned classifier through ex-

periments on protein function classification on yeast proteins.
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Appendix A

Some Formulas and Identities

This appendix is added as a quick reference for the formulas and identities that were

extensively used in this thesis.

A.1 Probability Densities

Let x = (x1, . . . , x`) consist of continuous variables x1, . . . , x`. The multivariate

probability density then satisfies

p(x) ≥ 0; (A.1)∫
p(x) dx = 1. (A.2)

From sum and product rules of probability, the following hold for multivariate prob-

ability densities:

p(x) =

∫
p (x,y) dy; (A.3)

p (x,y) = p (y|x) p(x) (A.4)

= p (x|y) p(y), (A.5)

for some continuous vector y.

A.2 Multivariate Gaussian Distribution

The Gaussian (or normal) distribution is a continuous probability distribution for

real-valued random variables.
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For a single variable x with a Gaussian distribution, its probability density func-

tion takes the form

p
(
x|µ, σ2

)
= N

(
x;µ, σ2

)
=

1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}
, (A.6)

where µ and σ2 are the mean and variance, respectively.

In the case of an `-dimensional vector x, the multivariate Gaussian distribution

is given by

p (x|µ,Σ) = N (x;µ,Σ)

=
1

(2π)`/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)>Σ−1 (x− µ)

}
,

(A.7)

where µ ∈ R` is the mean vector, and Σ ∈ R`×` is the covariance matrix, with ` and

` (`+ 1) /2 independent parameters, respectively.

Some remarks about multivariate Gaussian:

1. The argument of the exponential in (A.7) is in quadratic form, i. e., of the form

a>Aa, for some vector a ∈ Rn and symmetric matrix A ∈ Rn×n;

2. The mean vector is the expectation of x:

µ = E [x] , (A.8)

also called the first moment of x;

3. The covariance of x is given by

cov [x] = E
[
(x− E [x]) (x− E [x])>

]
= Σ; (A.9)

4. The second moment of x is

E
[
xx>

]
= µµ> + cov [x]

= µµ> + Σ;
(A.10)

5. The first and second moments of x entirely characterizes multivariate Gaussian

distributions.

6. For X = (x1, . . . ,xK) consisting of independent variables xk ∈ R` drawn from

a Gaussian distribution (in this case, the variables are called independent and
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identically distributed, or i.i.d.), the (marginal) probability of X is given by

p (X|µ,Σ) =

K∏
k=1

N (xk|µ,Σ) . (A.11)

7. Given a joint Gaussian density p (xa,xb|µ,Σ), then the conditional densities

p (xa|xb,µ,Σ) and p (xb|xa,µ,Σ), and the marginal densities p (xa|µ,Σ) and

p (xb|µ,Σ), are also Gaussians.

A.2.1 Partitioned Gaussians

Let x ∈ R` consist of two disjoint subsets xa ∈ Rn and xb ∈ R`−n, for n < `, and

suppose that x ∼ N (x;µ,Σ), where

µ =

(
µa

µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
, (A.12)

are the corresponding mean vector and covariance matrix, respectively. Here, since

Σ is a symmetric matrix, it follows that the submatrices Σaa and Σbb are symmetric,

and Σ>ba = Σab. The following Gaussian distributions are then obtained:

Marginal Distribution

p (xa|µ,Σ) = N (xa;µa,Σaa) ; (A.13)

p (xb|µ,Σ) = N (xb;µb,Σbb) . (A.14)

Conditional Distribution

p (xa|xb,µ,Σ) = N
(
xa;µa| b,Σa| b

)
(A.15)

p (xb|xa,µ,Σ) = N
(
xb;µb| a,Σb| a

)
, (A.16)

where

µa| b = µa + ΣabΣ
−1
bb (xb − µb) ; (A.17)

µb| a = µb + ΣbaΣ
−1
aa (xa − µa) ; (A.18)

Σa| b = Σaa −ΣabΣ
−1
bb Σba; (A.19)

Σb| a = Σbb −ΣbaΣ
−1
aa Σab. (A.20)
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The covariances Σa| b and Σb| a are called the Schur complement of the submatrices

Σbb and Σaa, respectively [46].

A.3 Matrix Properties

Let A denote a matrix, whose element in the ith row and jth column is denoted by

Ai,j . The following are some definitions and identities involving matrices:

1. The transpose of A, denoted by A>, has elements of the form
(
A>
)
i,j

= Aj,i.

2. A square matrix A is symmetric if

A = A>, (A.21)

i. e., the elements of A are of the form Ai,j = Aj,i.

3. For two matrices A ∈ Rm×p and B ∈ Rp×n,

(AB)> = B>A>. (A.22)

4. A matrix A is said to be invertible if its inverse A−1 exists such that

AA−1 = A−1A = I. (A.23)

5. For invertible matrices A,B ∈ Rn×n,

(AB)−1 = B−1A−1; (A.24)(
A>
)−1

=
(
A−1

)>
. (A.25)

6. If A = diag (A1, . . . , An) is a diagonal matrix, then its inverse is given by

A−1 = diag (1/A1, . . . , 1/An) . (A.26)

7. For matrices A, B, C, and D of correct sizes, the Woodbury formula (or matrix

inversion formula) is given by

(
A+BD−1C

)−1
= A−1 −A−1B

(
D +CA−1B

)−1
CA−1. (A.27)
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8. For any a ∈ R and square matrix A ∈ Rn×n, the trace of A is given by

Tr (aA) = aTr (A) = a

n∑
i=1

Ai,i. (A.28)

9. For matrices A, B, and C of corresponding sizes, the following hold:

Tr (AB) = Tr (BA) ; (A.29)

Tr (ABC) = Tr (CAB) = Tr (BCA) . (A.30)

10. If a matrix A ∈ Rm×n satisfies A>A = In, then A is said to be an orthonormal

matrix.

11. For a square matrix A ∈ Rn×n, the determinant of A is defined as

|A| =
∑

(±1)A1,i1A2,i2 · · ·An,in , (A.31)

where the coefficient is +1 if the permutation i1i1 · · · in is even, and −1 if the

permutation is odd.

12. For two square matrices A and B,

|AB| = |A| |B| . (A.32)

13. The determinant of an invertible matrix is given by

∣∣A−1∣∣ =
1

|A|
. (A.33)

14. For matrices A,B ∈ Rm×n, their inner product is defined as

〈A,B〉 :=

m∑
i=1

n∑
j=1

Ai,jBi,j . (A.34)

15. For matrices A,B,C ∈ Rm×n and scalars a, b ∈ R, the following hold:

〈A,B〉 = 〈B,A〉 = Tr
(
A>B

)
= Tr

(
B>A

)
; (A.35)

〈aA,B〉 = a 〈A,B〉 = 〈A, aB〉 ; (A.36)

〈aA, bB〉 = ab 〈A,B〉 ; (A.37)

〈A,B +C〉 = 〈A,B〉+ 〈A,C〉 . (A.38)
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16. The Frobenius norm of a matrix A is defined as

‖A‖F :=
√
〈A,A〉 ≥ 0. (A.39)

17. The eigendecomposition (or spectral decomposition) of an n × n symmetric

matrix A is given by

A = UΛU>, (A.40)

where U is an n×n orthonormal matrix whose columns are called eigenvectors,

and Λ = diag (λ1, . . . , λn) is a diagonal matrix whose diagonal entries are called

eigenvalues.

18. An n × n symmetric matrix A is said to be positive semidefinite if for any

α ∈ Rn,

α>Aα ≥ 0. (A.41)

19. If A is positive semidefinite then its eigenvalues are non-negative, and its de-

terminant is also non-negative.

20. An n×n symmetric matrix A is said to be (strictly) positive definite if for any

α ∈ Rn,

α>Aα > 0, (A.42)

and has positive determinant and eigenvalues.

A.4 Matrix Derivatives

The following are some properties involving derivatives of matrices, say matrices A

and B:

∂

∂A
Tr (A) = I (A.43)

∂

∂A
Tr (AB) = B> (A.44)

∂

∂A
Tr
(
A>B

)
= B (A.45)

∂

∂A
Tr
(
ABA>

)
= A

(
B +B>

)
(A.46)

∂

∂A
logdet (A) =

(
A−1

)>
. (A.47)
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