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Abstract 

This dissertation deals with the reduction of Electromagnetic Interference (EMI) in the 

DC-DC switching converter for the communication equipment. Simultaneously, a novel 

EMI spread spectrum technology is proposed that does not distribute the switching 

noise into some specified frequency bands. 

 For reducing the switching noise of DC-DC switching converter, we often use 

frequency modulation of the clock. But in the hysteretic control convert with 

Constant-On Time (COT) pulse and ripple injection method or soft switching converter, 

there is no fixed clock pulse. For these clock-less switching converter, we have 

developed techniques to reduce EMI noise. In this case, the modified ripple is also 

increased and it is corrected by developed ripple reduction method.  

In the Pulse Width Modulation (PWM) method for switching converter also causes 

EMI noise on its clock frequency and harmonics. In order to reduce the EMI noise, 

modulation of the clock pulse is used by shaking the phase or frequency of the clock. 

Since the energy of clock frequency and its high frequency harmonics can be diffused to 

other frequencies, the peak level of the clock spectrum is low and there is no line 

spectrum at the frequency of the clock and its harmonic spectra, but the bottom level 

(floor noise) is high. Therefore, we have created an EMI spread spectrum technique 

with both EMI reduction and noise diffusion based on Spread-Spectrum Clock 

Generator (SSCG) uses a Delta-sigma (ΔΣ) Digital-to-Time Converter (DTC) to spread 

the clock spectrum while allowing us to select the bands that we do not want to spread 

by predecessors. 

In this dissertation we propose an EMI spread spectrum technology with 

automatically setting of the notch frequency using the pulse coding controlled method 

in the DC-DC switching converter for the communication equipment. In communication 

devices, small noise as much as possible is desired at the receiving signal band. We 

realized the method that notch frequency can be automatically set to the frequency of 

the received signal by adjusting the clock frequency. Therefore, just let the notch 

frequency be equal to the received signal frequency suppress noise in the received 

signal frequency.  

Chapter 1 introduces the background, the motivation, and the objectives of this 

research and the proposed approaches. Chapter 2 discusses the basic topology and basic 

operation of DC-DC switching converter. Chapter 3 presents proposed EMI reduction 

and output ripple suppression method. Chapter 4 discusses notch frequency method 
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with pulse coding control in switching converter. Chapter 5 describes a full-automatic 

notch generation of pulse width coding switching converter. Chapter 6 confirmed the 

notch frequency experimentally with the prototype circuit. Chapter 7 summarizes 

conclusions obtained through this research and future work is proposed. 
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1. Introduction 

This dissertation describes the results of research on an EMI reduction in the DC-DC 

switching converter for the communication equipment. Furthermore, we propose a 

spread spectrum technology that the noise component of a specific frequency could be 

suppressed. In this chapter, first we introduce the research background. Next, based on 

the background, we describe how predecessors notice that the notch characteristics 

appears in the spectrum of the output pulse in the pulse coding system in DTC circuit 

[1]. Then, the motivation and purpose of this dissertation are explained. The 

organization of the dissertation is shown in the last section in this chapter. 

1.1 Research background 

In recent years, switching power supply circuits are used in many electronic devices 

because of their advantages such as high efficiency, high performance (such as low 

output ripple and fast transient response), large current output and continuously variable 

output voltage. Also the communication circuit has been accelerated to be powerful and 

higher density packaging. However, since the switching power supply circuit is driven 

by switch with the clock, it will generate large switching noise [2]-[3]. The fluctuation 

of the switching noise has strongly spread in the wide frequency range with the 

acceleration of high-speed and high-frequency electronic equipment. So it is very 

important to reduce EMI noise.  

EMI stands for electromagnetic interference. In terms of switching power supplies, 

the action of switching generates switching noise. In a loop in which currents are 

suddenly turned on and off during switching, high-frequency ringing (switching noise) 

occurs due to parasitic components. In order to reduce the switching noise that they 

generate, complex noise filtering and shielding are needed which make the switching 

power supply larger in size and costly [4]. For this reason, noise reduction methods that 

do not use filters are required in many fields, including the automotive field. There are 

some techniques for broadening and flattening their switching noise power spectrum to 

reduce EMI and to satisfy EMI regulation [5], such as spread spectrum method that 

randomly modulates the clock signal [6]-[9]. Spread spectrum of switching power 

supply means changing the switching frequency in a certain range and distributing noise 

energy to surrounding frequencies without concentrating on one frequency, lowering the 
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peak value of noise and clearing EMI standards, generating noise. The technique to 

reduce the impact on the equipment such as spread spectrum method that randomly 

modulates the clock signal is being used. For example, some techniques talk about EMI 

reduction method with spread spectrum using pseudo analog noise which is produced 

from M-sequence circuit with PLL circuit [10]. Some techniques talk about digital 

pseudo-random dithering of the switching, regulator control clock timing, and such 

clock jitter can be introduced by adding simple digital circuitry [11]. Some techniques 

talk about using triangular waveform modulation as the spectrum modulation method. 

Moreover, some spread spectrum methods talk about chaos-based pulse width 

modulation [12]-[17]. 

Although these methods suppressing the peak levels at the fundamental frequency 

and its harmonic frequencies, there are problems such as ripple of output voltage will 

increase or the diffusion noise is superimposed on an unwanted band (diffusion band). 

Particularly, in the automobile field, the density and complexity of internal electronic 

circuits are progressing toward electrification and automatic driving. If EMI 

countermeasures are not taken, noise may be superimposed on the radio band or 

malfunctions may be induced in other electronic devices. Vehicle noise standards are 

stricter than consumer products. Not only is the standard itself strict, but it is also 

required that AM radio sound must not contain noise. For this reason, the switching 

frequency of the DC-DC converter is preferably 2MHz or higher, which is higher than 

the AM radio frequency band, but this leads to a demand for high-speed switching and 

causes further high-frequency noise. In response to EMI standards for in-vehicle 

equipment, many countermeasures are required. One example of this is that “the 

switching frequency used in in-vehicle DC-DC converters and their high frequencies 

must not overlap with the reception frequency band of radio AM, FM” [18]. 

So we try to consider about some spread spectrum techniques for EMI reduction with 

suppressing diffusion of power supply noise and decrease output ripple. Moreover, we 

propose a spread spectrum technique for clock pulse with suppressing diffusion of 

power supply noise using pulse width coding methods, based on the notch 

characteristics design. We expect that if notch frequency is set to the frequency of the 

received signal by adjusting the clock frequency. Therefore, just let the notch frequency 

be equal to the received signal frequency, it will suppress noise in the received signal 

frequency and be not affected by other spread spectrum. So in the following part, it will 

be shown that the occurrence of the notch characteristic by predecessors is the 

motivation of this research. 
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1.2 SSCG for Switching Converter using Digital ∆𝚺 Modulation 

Predecessors have suggested an auto-configurable Spread-Spectrum Clock Generator 

(SSCG) that dynamically changes clocks spread spectrum in a way to eliminate clock 

speeded collision with other desired signal in neighboring frequency bands. This 

proposed method uses a Delta-Sigma (ΔΣ) Digital-to-Time Converter (DTC) to spread 

the clock spectrum while allowing us to select the bands that we do not want to spread. 

1.2.1 SSCG using PWM ΔΣ DTC 

Constant trend of device miniaturization and functioning frequency has led to rise in ΔΣ 

modulation methods popularity. The usage of lower resolution signal with higher 

samples in ΔΣ method simplifies the overall circuit complexity and therefore benefits 

cost efficiency. ΔΣ modulation converts the analog voltage into a pulse frequency output 

easily brought to time domain. This coarsely quantized output has found increasing 

usage in time domain signal processing. In time domain signal processing, variable is 

always measured and analyzed against time rather than its amplitude. Functions such as 

electronic signals, market behaviors are some example of time domain values. Time 

domain signal processing superiority, arguably is due to its lack of requirement for 

process such as filtering, amplifying and mixing plus its support for prediction and 

regression of the signal behavior over the time.  

Further, time domain signal analysis makes it much easier to work in situation where 

the aim of analysis is to analyze and solve a time domain related problem; the SSCG in 

this dissertation is such one [19]. 

DTC converter is an algorithm to bring and convert digital signals (in voltage 

domain) to analog signal in time domain by component (period, width, phase) of the 

pulse according to the value. The process of converting signal from digital to analog 

usually involves many techniques such as filtering and smoothing of the signal before 

convention. DTC includes a digital ΔΣ modulator and samples are interpolated with 

analog low pass filter (LPF). In DTC, LPF is used to smooth the signal by cutting its 

high frequency components. Output signal is then converted to one-bit resolution timing 

signal. 

DTC output signal spectrum can easily be manipulated by the algorithm and chosen 

parameters in the conversion process and its usage is found in spread spectrum clock 

generator and power circuits switching EMI removal [20]. 

Fig. 1.1 shows the circuit structure of spread spectrum clock generator. A sine wave 
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input to ∆Σ modulator, and a square wave with noise shaping is output through the ∆Σ 

modulator. Identification of this as a digital value of “0” on no modulation situation and 

“1” on modulation situation, and the digital value is input to the DTC. The clock signal 

is modulated according to the digital value that is ΔΣ modulated by the DTC, and the 

modulated clock signal is output.  

 

Figure 1.1Circuit structure of spread spectrum clock generator 

Since the main cause of EMI is created by voltage, current switching synchronized 

with the circuit clock, in the noise spectrum, power is concentrated at a specific 

frequency (clock frequency and integral multiple frequency). It will lead to failure to 

meet EMI regulation. Fig.1.2 (a) shows the spectrum of pulse coding signal using fast 

Fourier transform (FFT). We can find that clock frequency does not meet EMI 

regulation. Here by modulating the clock signal using spread spectrum clock generator, 

the spread spectrum of pulse coding signal as shown in Fig. 1.2 (b). As a result, peak 

power is reduced and EMI problems can be reduced. However, as application in some 

signal bands (such as AM radio frequency 𝑓𝑠), it is not desirable to have noise from the 

spread clock. If spread spectrum using ΔΣ DTC algorithm implemented in 

programmatically configurable digital circuit, location of the required exclusion 

spectrum bands can be sensed and DTC algorithm parameters can change automatically 

(Fig. 1.2 (c)). 



5 

 

 

Figure 1.2 Spectrum of pulse coding signal. 

We introduce here that SSCG with proposed PWM ΔΣ DTC methods can adjust 

emission bands and excluding noise emission in specific bands. 

First, Fig. 1.3 (a) shows the waveform without modulation (digital value = “0”). The 

parameter of the pulse wave is a rectangular wave with a period 𝑇 = 1𝑚𝑠 (frequency: 

𝑓 = 1𝑘𝐻𝑧), width 𝑊 = 200𝜇𝑠 , phase 𝜃 = 0 , duty ratio D = 20%. Pulse Width 

Modulation (PWM) ∆Σ DTC changes the pulse width of the output signal based on the 

input digital value. As shown in Fig. 1.3 (b), when the digital value is “1”, the pulse 

width is set to 𝑊𝑀 (600𝜇𝑠 in the figure). 𝑊 is the pulse width before modulation, 

𝑊𝑀 is the pulse width after modulation, and let 𝑊𝑀 be smaller than one period. Fig. 

1.4 shows an example of the generated pulse. It represents the pulse train when the ∆Σ 

modulated value “01011” is input. When D = “0”, no modulation is performed and 

𝑊 = 200𝜇𝑠, but when D = “1”, pulse width modulation is performed and 𝑊𝑀 =

600𝜇𝑠 is modulated. 



6 

 

 

Figure 1.3 Modulation figures of PWM. 

 

 

Figure 1.4 PWM pulse sequence. 

1.2.2 Notch Frequency Generation due to Two-Coding Pulse 

Fig. 1.5 (a) shows the spectrum of the fundamental PWM (Fig. 1.3 (a)) using FFT. In 

the PWM method, when the pulse width is 𝑊 = 200𝜇𝑠 when input “0”, the period 

T=1ms, and 𝑊𝑀 = 600𝜇𝑠 when input “1”. At this time, one notch appears shown in 

Fig. 1.5 (b) which equal to 2.5kHz. Then using a lot of simulations examined to find the 

notch frequency equation. The position of notch changes depending on the modulated 

value. When frequency f=1kHz situation, set one square equal to 200𝜇𝑠, the width 

before modulation is W, and after modulation is 𝑊𝑀. Notch can be created as following 

[21]: 

(5 200 )

( ) 400
notch

M

kHz s k
f k

W W s


 






 

 

(1.1) 

where the notation 𝑘 denotes a positive integer. When 𝑘 = 1, a notch is created at 

2.5kHz which is the same as Fig. 1.5 (b). According to Eq. 1.1, the notch frequency is 

decided by only the difference of the pulse width. At here, predecessors developed an 

algorithm that uses ∆Σ modulation to spread the clock spectrum while allowing us to 

select the bands that we do not want to spread. We find that the notch characteristics can 

be applied in DC-DC switching converter to reduce EMI. Furthermore, the noise 

component of a specific frequency could be suppressed. 
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Figure 1.5 Spectrum of PWM using PWM ∆Σ DTC. 

1.3 Organization of Dissertation 

In this dissertation, we try to consider about some spread spectrum techniques for EMI 

reduction with suppressing diffusion of power supply noise and output ripple decrease. 

We discuss various kinds of DC-DC converter, and create methods in order to reduce 

EMI noise. Moreover, we propose a spread spectrum technique for clock pulse with 

suppressing diffusion of power supply noise using pulse width coding methods, based 

on the notch characteristics design. We expect that if notch frequency is set to the 

frequency of the received signal by adjusting the clock frequency. Therefore, just let the 

notch frequency be equal to the received signal frequency, and it will suppress noise in 

the received signal frequency and be not affected by other spread spectrum as we 

mentioned in section 1.2. 

  Chapter 1 introduces the background, the motivation and the objectives of this 

research. Chapter 2 discusses the basic topology and basic operation of DC-DC 

switching converter, and also discusses other types of switching power supply such as 

hysteretic control converter and soft switching converter and illustrates their merits and 

demerits. Chapter 3 presents proposes EMI reduction and creates output ripple decease 

method. Chapter 4 discusses notch frequency method with pulse coding control in 

DC-DC buck converter. Chapter 5 creates a full-automatic notch generation of pulse 

width coding switching converter. Chapter 6 confirms the notch frequency 

experimentally with the prototype circuit. Chapter 7 summarizes conclusions obtained 

through this research.
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2. Conventional DC-DC Switching Converter 

The DC-DC converter is the power converter of the switching power supply. Normally, 

a DC-DC converter is constituted by switching element (such as transistor and diode), 

inductor and capacitor. There are three available basic topologies according to the way 

of the inductor connection: buck converter (step-down type), boost converter (step-up 

type) and buck-boost converter (invert type). This chapter reviews their fundamental 

and also discusses other type of switching power supply such as hysteretic control 

converter and soft switching converter and illustrates their merits and demerits. 

2.1 Basic Topology 

DC-DC switching converter can be classified in terms of functions and operating 

methods, as shown in Fig. 2.1. A DC/DC switching converter can step down or step up 

the input voltage. As an extension of this capability, buck/boost conversion is also 

possible. 

Pulse Width Modulation (PWM) and Pulse Frequency Modulation (PFM) are among 

the operation modes to control the output voltage. PWM provides regulation by 

adjusting the on/off time ratio at a constant switching cycle (frequency), whereas PFM 

uses a fixed on/off time ratio and a variable frequency. Also, a current mode, a voltage 

mode, and a hysteretic (or ripple, or comparator) control mode are among the available 

feedback control methods designed to regulate the output.  

Switching converter is configured by a combination of these elements. The optimal 

combination must be selected based on the intended application, input/output conditions, 

design specifications and performance goals, cost, size and other restrictions to be met. 

The designer needs to know the characteristics as well as pros and cons of each element. 

We hope to design the low noise, high efficiency, low cost, compact, small ripple, low 

power consumption and fast response switching converter by combining various factors. 
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Figure 2.1 Performance of DC-DC switching converter. 

Fig. 2.2 shows the basic configuration of a DC-DC converter. A typical DC-DC 

switching converter includes a detection circuit, a reference voltage, an error 

amplification circuit, a PWM modulation circuit, a drive circuit, and a power stage. First, 

the DC input voltage is controlled by the power stage of the DC-DC converter. By this, 

it is converted into a high-frequency square wave. DC voltage output is obtained by 

smoothing this square wave. The output voltage is detected by the feedback circuit and 

compared with the reference voltage to amplify the error voltage. Then, according to the 

magnitude of the amplified error voltage, the PWM modulation circuit controls the on / 

off ratio of the switch through the drive circuit, thereby adjusting the output voltage so 

as to suppress the error voltage. This is the basic configuration of a DC-DC converter in 

a typical switching system.  

There are three distinct rails possible for an inductor to be connected: the output, the 

input and the ground in DC-DC converter part. These three connecting ways realize 

three basic topologies of DC-DC switching converter. They are buck converter, boost 

converter and buck-boost converter respectively, as shown in Fig. 2.3. 
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Figure 2.2 Basic configuration of DC-DC switching converter. 

 

Figure 2.3 Basic constitution of buck, boost, and buck-boost converters. 

In the case of a PWM converter, the voltage applied to the switch and the waveform 

of the current flowing through the switch are approximately square waves, and Fig. 2.4 

shows the operation of the switch SW, the current flowing through the switch 𝑖𝑠𝑤, and 

the waveform of the voltage applied to the switch 𝑉𝑠𝑤. Define the on-duty ratio 𝐷 and 

off-duty ratio 𝐷′ as Eq. 2.1 and 2.2. Here, 𝑇𝑠 is a switching cycle, 𝑇𝑜𝑛 is a switch-on 

period and 𝑇𝑜𝑓𝑓 is a switch-off period. 
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Figure 2.4 Switch state and switching waveform. 
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2.2 Basic Operation of DC-DC Switching Converter 

2.2.1 Basic Operation of Buck Converter 

Next, the operation of the most basic buck converter among DC-DC converters is 

explained. Figs. 2.5, 2.6, 2.7 show the basic circuit of a buck converter, and Fig. 2.8 

shows its timing chart. This circuit contains a main power switch SW, a freewheeling 

diode D, an inductor L, an output capacitor C and a load resistor 𝑅𝐿. When the switch 

SW is on, the current is supplied from the input voltage 𝑉𝑖 to the output through the 

inductor L. At this time, the increase in the current ∆𝐼𝐿 flowing through the inductor is 

given by the following: 

i o
L on

V V
I T

L


    

 

(2.3) 

On the other hand, when SW is off, the current flowing in inductor 𝐼𝐿 is supplied to the 

load via D. At this time, the increase in the current ∆𝐼𝐿 flowing through the inductor is 

given by the following: 



12 

 

o
L off

V
I T

L
     

 

(2.4) 

In the steady-state, the amount of change in the inductor current during the on-period 

and the off-period is equal, so the following equation holds from (2.3) and (2.4). 

0i o o
on off

V V V
T T

L L


     

 

(2.5) 

Rearranging Eq. 2.5, the following can be given: 

o

i

V
D

V
  

 

(2.6) 

The above equation shows the relationship between the input/output voltage ratio and 

the duty ratio in the buck converter. From these relationships, it can be seen that the 

buck converter can control the output voltage by controlling the duty ratio. 

 

Figure 2.5 Basic circuit of buck converter. 

 

 

Figure 2.6 Buck converter when switch (SW) turns on. 
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Figure 2.7 Buck converter when switch (SW) turns off. 

  The inductor current, the capacitor current and the output voltage is showing in Fig. 

2.6. When the switch is on, the inductor current increases with the slope (𝑉𝑖 − 𝑉𝑜)/𝐿. 

When the switch is off, the inductor current decreases with the slope 𝑉𝑜/𝐿. Since the 

voltage on the filter capacitor is equal to the output voltage, the voltage change across 

the capacitor is actually the ripple voltage of the output voltage. 

 

Figure 2.8 Timing chart of buck converter (continuous current mode (CCM)). 

Fig. 2.8 shows a basic block diagram of the buck type DC-DC converter [23]-[24] 

with the Pulse Width Modulation (PWM) signal control and Fig. 2.9 shows its main 

signals. This converter consists of the power stage and the control stage. The power 

stage contains a main power switch SW, a freewheeling diode D, an inductor L, an 

output capacitor C and a load resistor R. The main switch is controlled by the PWM 
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signal from the control stage, which consists of an operational amplifier AMP, a 

comparator Comp and a reference voltage source 𝑉𝑟. First, when the PWM signal is 

high, the switch signal SW is turned on and the output voltage rises. Therefore, the error 

voltage ∆𝑉 is reduced and the duration of the PWM signal in high is shortened. To 

make the off-time of switch SW longer, the output voltage 𝑉𝑜 is going to decrease. As 

𝑉𝑜 decreases, the error voltage ∆𝑉 increases. Therefore, the duration of the PWM 

signal at the low state is shortened. To make the on-time of the PWM signal SW longer, 

𝑉𝑜 increases. By repeating this operation, 𝑉𝑜 is kept to be constant. The comparator 

Comp generates the PWM signal by comparing a saw-tooth signal SAW and the 

amplified error voltage ∆𝑉 as shown in Fig. 2.10. The saw-tooth generator resets and 

starts when the clock pulse rises. 

 

Figure 2.9 Voltage-mode negative feedback control circuit. 

 

Figure 2.10 Waveforms in switching converter. 
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2.2.2 Power Stage Transfer Function of Buck Converter 

Since the DC-DC converter is a power circuit using negative feedback control, its 

stability is determined by the loop gain. However, it is not easy to derive the loop gain 

of DC-DC converter. Because the power stage of the DC-DC converter has two 

different operating states when the switch is on and off, the transfer function cannot be 

derived simply. Generally, the state-space averaging method [22] is used to derive the 

transfer function of the power stage in a DC-DC converter. So in the following, we will 

derive the transfer function of the power stage in the buck converter. 

  Fig. 2.11 shows the basic circuit of the power stage with equivalent resistance in the 

buck converter. This buck converter can be represented by the equivalent circuit by 

dividing it into an on-period and an off-period. Fig. 2.12 shows the equivalent circuit 

during the on-period, and Fig. 2.13 shows the equivalent circuit during the off-period. 

At here, 𝑟𝑠 is the equivalent resistance of switch SW1, 𝑟𝑑 is the equivalent series 

resistance of diode D, and 𝑟𝐿 is the equivalent series resistance of inductor 𝐿. Here, the 

state equation is established on the assumption that the buck converter shown in Fig. 

2.11 operates in the continuous current mode (CCM). Then we define state variables of 

inductor current 𝑖𝐿 and capacitor voltage 𝑉𝑐. Then, apply Kirchhoff's voltage law to the 

equivalent circuit of the on-period and the off-period, and derive the state equation in 

each period. In the following sections, we derive the state equation, the static and 

dynamic characteristics, and finally the transfer function of the converter. 

 

Figure 2.11 Basic circuit of power stage. 
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Figure 2.12 On-period equivalent circuit. 

 

Figure 2.13 Off-period equivalent circuit. 

First, let us derive the state equation. Deriving on-state equation according to Fig. 2.12  

and applying Kirchhoff's voltage law and current measurement to the inductor current 

𝑖𝐿 and capacitor voltage 𝑉𝑐 gives the following equation: 

1 1s LL
L c i

r rdi
i V V

dt L L L


      

 

(2.7) 

1 1c
L c

dV
i V

dt C CR
    

 

(2.8) 

Here, Eq. 2.7 and 2.8 using the state vector 𝑿 = [
𝑖𝐿

𝑉𝑐
]  can be expressed as the 

following: 

1 1 i

dX
A X BV

dt
   

 

(2.9) 
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Eq. 2.10 is the on-state equation in buck converter. Then using the same method can 

derive the off-state equation according Fig. 2.13. 
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So the off-state equation in the buck converter is like in the following Eq. 2.14. 
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The weighted average of the state equation for the on-period and off-period at the duty 

ratio D becomes the following equation: 
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Here, each coefficient matrix of Eq. 2.15 is: 
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Here, 𝑟 = 𝑟𝐿 + 𝐷 ∙ 𝑟𝑠 + 𝐷′ ∙ 𝑟𝑑. 

Then, let us show the static characteristics equation in the buck converter. In the static 

state, state variables and parameters do not change, as shown in the following equation: 

0i
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(2.18) 
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According to Eq. 2.18, we can get 𝑿 = −𝑨−1 ∙ 𝑩 ∙ 𝑉𝑖 . So X can be expressed as 

follows: 
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Here 𝑍𝑜 is the internal resistance of the buck converter and is given by the following 

equation: 

'
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(2.20) 

Next, small signal dynamic characteristics is shown when the input voltage, duty ratio 

and load resistance are subjected to small deviations [22]-[25]. 
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Here, 𝑃(𝑠) = 1 + 2𝛿(𝑠/𝜛𝑛) + (𝑠/𝜛𝑛)2. In the buck converter, 𝛿 = (1/𝐶𝑅+𝑍𝑜/𝐿)/

𝜛𝑛, 𝜛𝑛 = √(1 + 𝑍𝑜/𝑅)/𝐶𝑅 [26]. Eq. 2.24 is a transfer function that indicates the 

change in output voltage 𝑉𝑜 with respect to the change in duty ratio D. 
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Using the same method, Eq. 2.25 is a transfer function that indicates the change in 

output voltage 𝑉𝑜 with respect to the change in input voltage 𝑉𝑖.  
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Eq. 2.26 is a transfer function that indicates the change in output voltage 𝑉𝑜 with 
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respect to the change in resistance R. 
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In the case of a switching power supply, the duty ratio D, the load resistance R, and 

the input voltage 𝑉𝑖 are considered as external parameters, and Fig. 2.14 shows a block 

diagram of the buck converter. The error voltage amplifier and PWM converter in the 

control circuit are linear conversions and can be replaced by a constant K. Here, the 

transfer function of the phase compensation circuit performed by the error amplifier is 

not described. At this time, the loop transfer function 𝐺𝑜(𝑠) is basically a quadratic 

equation, in an actual circuit, a phase delay occurs due to a delay caused by discrete 

control of an amplifier and a PWM signal, and the power supply system tends to be 

unstable. In Fig. 2.14, the load current fluctuation is equivalently indicated by load 

resistance change Δ𝑅 and input voltage change is indicated by Δ𝑉𝑖. The block after the 

power supply 𝑃(𝑠) represents the effect of the output impedance 𝑍𝑜 on the actual 

power supply. 

 

Figure 2.14 CCM block diagram of buck converter. 

At last, the characteristics of the buck converter is analyzed with the simulation 

software SIMPLIS. The parameters used there are shown in Table 2.1 and the loop 

transfer function is shown in Fig. 2.15 using a Bode diagram. Here, the internal 

resistance of the switch and inductor are 50mΩ and 10mΩ, the ESR of the capacitor is 

220mΩ, and the GB product of the operational amplifier is 100 MHz. From Fig. 2.15 

we can found that the phase margin is about 50 degrees. The gain changes at the 

frequency where the phase becomes 90 degrees, and we can find that the resonance 

phenomenon occurs at 1.50kHz. According to the transfer function, the resonance 
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frequency 𝑓 =
1

2𝜋√𝐿𝐶
=

1

2𝜋√50×10−6×220×10−6
= 1.52𝑘𝐻𝑧  is obtained, which roughly 

equal to the value on the Fig 2.15. 

Table 2.1 Parameters of the buck converter. 

𝑉𝑖 𝑉𝑜 𝐼𝑜 

10V 5V 0.5A 

𝐿 𝐶 𝐹𝑐𝑘 

50μH 220μF 500kHz 

 

 

Figure 2.15 Bode diagram of the buck converter. 

2.2.3 Boost Converter 

In the following, the operation of the boost converter is explained. Figs. 2.16, 2.17, 2.18 

shows the basic circuit of the boost converter, and Fig. 2.19 shows the timing chart of 

the boost converter under steady state. Similar to the buck converter in previous section, 

the switch can be set at two positions alternately, and the circuit operates at on-state and 

off-state accordingly, as shown in Fig. 2.17 and Fig. 2.18. 

When the switch SW is on, the energy storage in coil and the inductor current 

increases by the slop 𝑉𝑖/𝐿. When switch SW is off, the inductor current decreases by 

the slope (𝑉𝑜 − 𝑉𝑖) /𝐿.  

When the switch SW is on, the increase in the current ∆𝐼𝐿 flowing through the 

inductor is given by following: 

i
L on

V
I T

L
    

 

(2.27) 

On the other hand, when SW is off, supply energy to the load via D from power supply 
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E and coil L. At this time, the increase in the current ∆𝐼𝐿 flowing through the inductor 

is given by following: 

o i
L off

V V
I T

L


     

 

(2.28) 

According to the steady-state principle of the inductor volt-second balance, the relation 

between the input voltage and the output voltage is obtained 

( )
0

o i offi on
V V TV T

L L

 
   

 

(2.29) 

Rearranging Eq. 2.29, the following can be given: 

'

1o s

i off

V T

V T D
   

 

(2.30) 

The above equation shows the relationship between the input/output voltage ratio and 

the duty ratio in the boost converter. From these relationships, it can be seen that the 

output voltage 𝑉𝑜 of the boost converter must be larger than the input voltage 𝑉𝑖. 

 

Figure 2.16 Basic circuit of the boost converter. 

 

 

Figure 2.17 Boost converter when switch (SW) turns on. 
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Figure 2.18 Boost converter when switch (SW) turns off. 

 

Figure 2.19 Timing chart of the boost converter (CCM). 

 

2.2.4 Buck-boost converter 

The converters in Figs. 2.20, 2.21 and 2.22 are boost converter. When the switch SW is 

on, the inductor current increases by the slope 𝑉𝑖/𝐿. When the switch SW is off, the 

inductor current decreases by the slope 𝑉𝑜/𝐿. The timing chart of the buck-boost 

converter under steady state is as shown in Fig. 2.23. 

When the switch SW is on, the increase in the current ∆𝐼𝐿 flowing through the 
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inductor is given by the following: 

i
L on

V
I T

L
    

 

(2.31) 

On the other hand, when SW is off, the increase in the current ∆𝐼𝐿 flowing through the 

inductor is given by the following: 

o
L off

V
I T

L
     

 

(2.32) 

In the steady-state, the amount of change in the inductor current during the on-period 

and the off-period is equal, so the following equation holds:  

0i o
on off

V V
T T

L L
     

 

(2.33) 

Rearranging Eq. 2.33, the following can be given: 

'

o on

i off

V T D

V T D
   

 

(2.34) 

From Eq. 2.34, we can know that the output of buck-boost converter is an inverting 

voltage. When 0 ≤ D < 0.5, the output voltage is reduced. When 0.5 < D ≤ 1, the output 

voltage is amplified. Also when D = 0.5, we can get 𝑉𝑜 = −𝑉𝑖. 

 

Figure 2.20 Basic circuit of the buck-boost converter. 
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Figure 2.21 Buck-boost converter when switch (S) turns on. 

 

 

Figure 2.22 Buck-boost converter when switch (S) turns off. 
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Figure 2.23 Timing chart of the buck-boost converter. 

2.3 Hysteretic Control Switching Converter 

Roughly, there are two control methods for stabilizing the operation of the DC-DC 

converter; linear control and nonlinear control. Linear control is such as voltage mode 

control and current mode control. The output voltage is stabilized by adjusting the 

timing at which the switching element is turned on and off using a fixed-frequency 

PWM (pulse width modulation) signal, which is used in a very wide range of fields 

from portable electronic devices to industrial electronic devices. That is, it can be 

applied to both low power output and high power output. However, it has the 

disadvantage that the response speed to sudden changes in load is relatively slow. Its 

reasons are delay due to the frequency characteristics of the error amplifier in the 

feedback loop, dead time delay equivalent to one cycle of the switching operation, and 

delay due to the frequency characteristic of the phase compensation circuit including the 

LC filter. Nonlinear control such as hysteretic controlled has the advantage of high 

response speed to sudden load changes and it can be realized with a simple circuit 

configuration. 
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2.3.1 Basic Operation of Hysteretic Control Converter 

The hysteresis control method was developed to meet the power requirements of even 

faster load transient response of load elements, such as CPU and FPGA. Because it 

performs controls by detecting ripples in the output, this method is also referred to as a 

ripple control method. The method directly monitors the output voltage by means of a 

hysteresis comparator without going through an error amplifier. When detecting that the 

output voltage has exceeded or fallen below a set threshold level, the comparator 

directly turns the switch on/off. The three control schemes are available: hysteresis 

window method, bottom detection on-time fixed method and upper detection off-time 

method. The hysteresis window method is using the thresholds provided on the upper 

side and the bottom side, that is, using the hysteresis window to control the timing of 

turning on/off the switching element. Bottom detection on-time fixed method is 

detecting a voltage below the threshold level with a fixed on-time. Upper detection 

off-time fixed method is detecting above the threshold with a fixed off-time. Fig. 2.24 

shows the diagram and Fig. 2.25 shows the operation waveforms of the hysteretic 

control buck converter. 

 

Figure 2.24 Basic hysteretic control buck converter. 
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Figure 2.25 Operation waveforms of hysteretic control. 

The basic operation of the hysteretic control method is explained as the following. 

The comparator is a hysteresis comparator, which has a slight hysteresis to prevent 

chattering and to limit the operating frequency. When the switch SW turns off, the 

output voltage 𝑉𝑜 decreases. When the output voltage 𝑉𝑜 falls below the reference 

voltage 𝑉𝑟𝑒𝑓  of the non-inverting terminal, the PWM signal output from 

hysteretic∙comparator becomes high with a short delay, and SW turns ON. As a result, 

𝑉𝑜 increases. When 𝑉𝑜 exceeds 𝑉𝑟𝑒𝑓, after a short delay, the PWM signal goes low and 

SW turns OFF. As a result, 𝑉𝑜 decreases again. By repeating the above operation, 

control is performed so that 𝑉𝑜 matches a constant voltage 𝑉𝑟𝑒𝑓. The operating time 

𝑇𝑜𝑝 is determined by the next equation: 

2 ( )op sw IL C compT t t t t       

(2.35) 

Here, 𝑡𝑠𝑤  means the delay of SW, 𝑡𝐶  means the integrated time by C and 𝑡𝑐𝑜𝑚𝑝 

means the delay of the comparator. Usually this delay time 𝑡𝑜𝑝 is less than 1𝜇s.  

2.3.2 Features of Hysteretic Control Converter 

This control method does not use an error amplifier. Instead, it uses a comparator. The 

comparator compares the output voltage with the reference voltage to control the on/off 

timing of the switching element. Therefore, there is no delay due to the frequency 

characteristics of the error amplifier and no dead time delay of one cycle of the 

switching operation. It is the inductance component of the LC filter that determines the 

response speed. Therefore, a very high response speed can be obtained even if the 

switching frequency is low. Simultaneously, since the control system can be configured 

with only the comparator, the system is essentially stable. Therefore, there is no need to 

design a compensation circuit. 
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  On the other hand, the hysteretic control method also has disadvantages as follows: 

  1) Since the comparator is driven by using the ripple component of the output voltage, 

there is a disadvantage that an output capacitor having a relatively large equivalent 

series resistance (ESR) is required, and hence large output voltage ripple occurs. 

  2) The fast operation with switching the voltage and the current generates the large 

EMI noise, which emits the unnecessary noise to the air and the conductive noise in the 

input power line. 

  3) Since it is clock-less control and the switching frequency fluctuates depending on 

the load conditions, clock frequency modulation is difficult and EMI countermeasures 

using the conventional method were difficult. 

Recently, control methods have been introduced that solve these disadvantages. 

Specifically, there are a Constant On Time (COT) method and a ripple injection method. 

If the former is used, fluctuations in the switching frequency can be minimized and EMI 

measures can be simplified. The latter allows the use of low ESR multilayer ceramic 

capacitors as output capacitors. This makes it possible to reduce the size of the power 

supply circuit. 

2.3.3 COT Type Hysteretic Control Converter 

The COT control method is one of the control methods of a feedback circuit that 

stabilizes the output voltage in a DC-DC converter. Broadly classified, it is included in 

the hysteretic control method. 

The biggest feature of COT type hysteretic control is that it can achieve high-speed 

load response characteristics. Microprocessors, DSPs, FPGAs, ASICs, etc., have 

changed their operation modes in order to reduce power consumption. For example, 

switching from full operation mode to low power consumption mode, or switching from 

standby mode to full operation mode, at the time of such mode switching, a current 

supplied to a microprocessor, a DSP, an FPGA, an ASIC, that is called load current 

greatly changes. At that time, the output voltage also fluctuates greatly, and in some 

cases, the output voltage is out of the allowable range, and the microprocessor or the 

like may malfunction. If using the COT control method, it can minimize fluctuations in 

the output voltage, so that malfunctions of microprocessors also can be prevented. 

In the COT control method (Fig. 2.26), only the lower threshold of the output voltage 

is set (Fig. 2.27) and there is no upper threshold. Instead, the on-time is fixed. 
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Specifically, when the output voltage reaches the lower threshold, the switching element 

is turned on. Then, the switching element is automatically turned off when a 

predetermined on time elapses. Like this operation, the output voltage is stabilized. 

 

Figure 2.26 COT type hysteretic control buck converter. 

 

Figure 2.27 Timing chart of COT type hysteretic control buck converter. 

With this method, the on-time is constant, so the operating frequency is constant in 

the steady state regardless of the magnitude of the load current. But the operating 

frequency is changed on Discontinuous Conduction Mode (DCM) or for the change of 

the input voltage 𝑉𝑖. 



30 

 

2.3.4 Ripple Injection Method of Hysteretic Control Converter 

Fig. 2.28 shows the circuit of the ripple injection method of the hysteretic control 

converter, and Fig. 2.29 shows the waveform of this converter. In order to generate the 

large ripple (or the triangular signal) synchronized with the output voltage ripple ∆𝑉𝑜 

or the PWM pulse, the 𝐶𝑓𝑅𝑓 circuit is added across the inductor. This large ripple is 

injected into the ripple ∆𝑉𝑖, which is much larger than ∆𝑉𝑜 and connected to the 

negative input of the comparator through the coupling capacitor 𝐶𝑏. The PWM pulse is 

easily generated to compare this large signal with the reference voltage 𝑉𝑟. There is no 

need to use the hysteresis comparator nor the high ESR capacitor. No need of hysteresis 

comparator keeps the high frequency response and using the low ESR of the capacitor 

makes the output ripple very small [27]. 

 

Figure 2.28 Ripple injection method buck converter. 

 



31 

 

 

Figure 2.29 Waveforms of ripple injection converter. 

2.4 Soft Switching Converter 

The development trend of modern power electronic devices is miniaturization and 

weight reduction, and at the same time, higher requirements for device efficiency and 

electromagnetic compatibility. Generally, filter inductors, capacitors, and transformers 

account for a large proportion of the size and weight of a device. We know that 

increasing the switching frequency can reduce the parameters of the filter and 

miniaturize the transformer; thereby they effectively reduce the size and weight of the 

device. Therefore, the most direct way to reduce the size and weight of the device is to 

increase the frequency of the circuit. However, as the switching frequency is increased, 

the switching loss also increases, the circuit efficiency is severely reduced, and the 

electromagnetic interference is also increased; so simply increasing the switching 

frequency is not feasible. In order to deal with these problems, soft switching 

technology has appeared, which mainly solves the switching loss and switching noise 

problems in the circuit, and the switching frequency can be greatly increased. 

2.4.1 Features of Soft Switching Converter 

As shown in Fig. 2.4 in Section 2.1, in this circuit, the voltage and current are not 

zero during the switching process, and there is overlap, so there is a significant 

switching loss. The speed of voltage and current changes is very fast, and the waveform 

has obvious overshoot, which results in switching noise. This switching process is 

called hard switching. The switching loss has a linear relationship with the switching 
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frequency, so when the operating frequency of the hard circuit is not too high, the 

switching loss accounts for a small proportion of the total loss. However, as the 

switching frequency increases, switching losses become more and more significant. 

This time, soft switching technology must be used to reduce switching losses. 

A typical soft switching circuit is a buck type Zero Voltage Switching (ZVS) resonant 

circuit. The voltage and current waveforms during the switching process are shown in 

Fig. 2.31. Compared with the hard switching circuit voltage and current waveforms (Fig.  

2.30), low switching losses created during switch off and on process. 

 

Figure 2.30 Voltage and current during hard switching (a): off-process (b): on-process. 

 

Figure 2.31 Voltage and current during soft switching (a): off-process (b): on-process. 
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2.4.2 Basic Operation of Soft Switching Converter 

Compared with the hard switching circuit, the resonant inductance 𝐿𝑟  and the 

resonant capacitance 𝐶𝑟 are added to the soft switching circuit shown in Fig. 2.32. 

Compared to filter inductors and capacitors, the values of 𝐿𝑟 and 𝐶𝑟 are much smaller. 

After the switch is turned off, resonance occurs between 𝐿𝑟 and 𝐶𝑟, and the waveform 

of voltage and current in the circuit is similar to a sine half wave. Resonance slows 

down the changes in voltage and current during switching, and reduces the voltage 

across the switch to zero before it turns on. This significantly reduces switching losses 

and switching noise. 

Before the switch is turned on, the voltage across it is zero. When the switch is turned 

on, there will be no loss and noise. This turn-on method is called zero voltage switching 

operation. Before the switch is turned off, its current is zero, and no loss and noise will 

be generated when the switch is turned off. This shutdown method is called zero current 

switching operation. Next, let us introduce about basic operation of the voltage-mode 

resonant switching converter with ZVS operation. 

Fig. 2.32 shows the circuit of the full-wave type voltage-mode resonant converter. 

This converter contains a main power switch SW, a free-wheel diode 𝐷𝑜, a main 

inductor 𝐿𝑜, an output capacitor 𝐶𝑜 and resonant elements which are an inductor 𝐿𝑟, a 

capacitor 𝐶𝑟  and a diode 𝐷𝑟 ; if there is no 𝐷𝑟 , it will form a half-wave type 

soft-switching converter. 

The operation of the full-wave resonant converter can be divided into the following 6 

states in one switching period, and Fig. 2.33 shows its major signal waveforms [28]:  

State 0: 𝑇0 < 𝑡 < 𝑇1: Before the time 𝑇𝑜, the switch keeps on and 𝐷𝑜 keeps off, 

𝑢𝐶𝑟 = 0, 𝑖𝐿𝑟 = 𝐼𝐿; when 𝑡 = 𝑇0, the switch is turned off, the capacitor 𝐶𝑟 is charged 

with current and the capacitor voltage 𝑢𝑟 rises linearly from zero. At the same time, the 

voltage of the diode Vd drops. Until 𝑡 = 𝑇1, 𝑉𝑑 = 0, the diode is turned on. 

State 1: 𝑇1 < 𝑡 < 𝑇2: When 𝑡 = 𝑇1, the diode is turned on. 𝐶𝑟 resonates with the 

𝐿𝑟 . In resonance period, 𝐿𝑟  charges 𝐶𝑟 , and 𝑢𝐶𝑟  continues to rise, while 𝑖𝐿𝑟 

continues to fall, until 𝑡 = 𝑇2, 𝑖𝐿𝑟 drops to zero, and 𝑢𝑟 reaches the resonance peak.  

State 2: 𝑇2 < 𝑡 < 𝑇3: When 𝑡 = 𝑇2 𝐶𝑟 discharges to 𝐿𝑟, current changes direction, 

𝑢𝐶𝑟 keeps going down until 𝑡 = 𝑇3, 𝑢𝐶𝑟 = 𝑉𝑖𝑛. At this time, the voltage across 𝐿𝑟 is 0 

and 𝑖𝐿𝑟 reaches the peak reverse resonance.  

State 3:  𝑇3 < 𝑡 < 𝑇4: The 𝐿𝑟 reverse charging the 𝐶𝑟, the 𝑢𝐶𝑟 continues to drop, 

until 𝑡 = 𝑇4, 𝑢𝐶𝑟 = 0.  
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State 4:  𝑇4 < 𝑡 < 𝑇5: 𝑢𝐶𝑟 resonates in the negative direction after 𝑢𝐶𝑟 = 0. The 

switch is turned on during this time. When 𝑢𝐶𝑟 becomes zero again, the resonance state 

ends and enters to next state.  

State 5:  𝑇5 < 𝑡 < 𝑇6: 𝑖𝐿𝑟 rises linearly, until 𝑡 = 𝑇6, 𝑉𝑑  turns off. During this 

period, 𝑢𝑖𝑛 drops to the 𝐷𝑜 and 𝑖𝐿𝑟 flows through the switch. This state continues 

until the next turn off operation. 

Here, when switch is on, the voltage across it is 0V, and ZVS is realized. Further, 

when the switch is off, the voltage across it is 0V and it is maintained by 𝐶𝑟, which is 

also the ZVS operation. 

 

Figure 2.32 Full-wave resonant soft-switching. 

 

Figure 2.33 Timing chart of full-wave resonant soft-switching. 



35 

 

  Using resonance to realize the ZVS operation, a soft-switching converter can realize 

high efficiency and low EMI noise. However, unnecessary radiation and conduction 

noises of the input current by the switch are still large. This kind of converter has an 

operating frequency dependent on the resonant waveform. Since the fixed frequency 

clock is not used, the frequency modulation of the PWM operation signal is strict and 

the EMI reduction is difficult. 

2.5 Summary 

This chapter reviews the basic structure and operating principle of buck converter, boost 

converter, buck-boost converter, hysteretic control switching converter and soft 

switching converter, and then discusses their merits and demerits.  

The merits of buck, boost and buck-boost converter are high efficiency, low cost and 

compact. On the other hand, their switching noise is inevitable. This noise generation is 

a major disadvantage of the DC-DC converter. The hysteretic control switching 

converter does not have a concept of a loop response, and is operated by a comparator 

(comparing circuit), so that its response is fast. Moreover, since a compensator is not 

required, the design is simple, and it has been widely used as a power supply for 

electronic devices that require a high-speed response. On the other hand, there are some 

demerits such as large output voltage ripple, substantial EMI noise. Soft switching has 

the great advantage of suppressing switching loss and harmonic noise. On the other 

hand, since soft switching is realized using the L and C resonance phenomena, 

conduction loss is increased due to resonance current. 

  In the next chapter, we will propose new EMI reduction technologies with buck 

converter, hysteretic control switching converter and soft switching converter.
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3. EMI Noise Reduction Technology 

EMI stands for Electromagnetic Interference. We usually refer to any unintentional 

power transfer between a source and a victim. Types of EMI are conducted emission 

and radiated emission. Conductive emission is propagated through wires and PCB 

wiring. Radiated emission is a type of noise that is emitted (radiated) through the air. 

  EMI has always been an issue in electrical devices. In the early years of (analog) 

electronics the main concern was the generation of disturbances in the victim. For 

example, analog TV systems have been developed with a 50 Hz or 60 Hz frame-rate in 

order to minimize the flickering effect due to interference coming from nearby 50/60 Hz 

AC devices [29]. 

  In recent years, the communication circuit has been accelerated to be powerful and to 

have higher density packaging. The fluctuation of the switching noise has strongly 

spread in the wide frequency range with the acceleration of high-speed and 

high-frequency electronic equipment. EMI-related problems have received considerable 

attention, as proven by the presence of many international regulations [30], aiming to 

impose/guarantee the electromagnetic compatibility (EMC) of any electronic device. 

That is, any electronic equipment must not generate EMI above a tolerable level, and 

must be not susceptible to EMI if it is below a tolerable level.  

In order to reduce the switching noise of high-speed and high-frequency electronic 

equipment, complex noise filtering and shielding are needed [5], which makes the 

switching power supply larger in size and costly. There were some techniques for 

broadening and flattening their switching noise power spectrum to reduce EMI such as a 

spread spectrum method that randomly modulates the clock signal [6]-[9] or 

chaos-based pulse width modulation [12]-[17]. Frequency modulation techniques have 

been used to reduce EMI noise by modulating the original constant clock frequency in 

order to spread the energy of each single harmonic into a certain frequency band, thus 

reducing the peak amplitude of EMI at harmonic frequencies. Frequency modulation 

such as frequency hopping modulation, digital phase modulation, linear sweep 

frequency modulation and analog random frequency modulation are often used.  

In the frequency hopping technique, for the simple case of only two hopping 

frequencies, the resulting spectrum of 𝑉𝑆𝑊 can be predicted using Fig. 3.1, where 𝑉𝑆𝑊 

is viewed as the sum of two components. Each component is modeled as the result of 

the random digital sequences 𝑃1  and 𝑃2  modulating carrier signals 𝑉𝐶1  and 𝑉𝐶2 , 
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respectively. The result of this modulation is that the spectrum of the random digital 

sequences 𝑃1 and 𝑃2 gets upconverted to 𝑓1 and 𝑓2, respectively. The spectrum of 

the random digital sequences 𝑃1 and 𝑃2 contains dc energy (a spur at dc), as well as 

spread-out energy (modeled as a sinc function [31]) due to the randomness of the 

sequence. Therefore, two spurs at 𝑓1 and 𝑓2 appear in the spectrum of 𝑉𝑆𝑊  with 

slightly elevated random noise floor. While applying frequency hopping to buck 

converters can reduce output spurs, there are implementation difficulties that must be 

addressed. Changing the switching frequency disturbs the steady-state switching duty 

cycle of the converter if the hopping instant occurs at the middle of a ramp cycle. In this 

case, resetting the ramp in order to start a new ramp cycle at a different frequency can 

cause pulse swallowing or significant instantaneous error in the duty cycle. This duty 

cycle disturbance manifests itself in the form of transients or glitches at the output of the 

converter every time hopping occurs, which interferes with the operation of the load 

[32]. 

 

Figure 3.1 Waveforms analysis of a frequency-hopped buck converter with two hopping 

frequencies. 

  In the digital phase modulation, basic clock sequentially stored in shift register. Select 

by random signal for each cycle, random phase clock can be created. The demerits of 

digital phase modulation method are large size and need many components. For 

example when phase shift circuit is about 10~12bit situation, 1000~4000 shift registers 

and selectors are needed [9]. 

In this chapter, we propose new EMI reduction technologies and automatic output 

voltage ripple cancellation method for the PWM buck converter with voltage-mode, the 

hysteretic controlled switching converter and the soft switching converter. Normally, 

modifying the clock frequency is effective to reduce the EMI noise, but it may increase 

the output ripple. We also have developed techniques to cancel the increased ripple by 

modifying the slope of the saw-tooth signal or current of the ripple injection circuit. 
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3.1 EMI Reduction with PWM Control Converter 

In an electronic device, radiation at a clock frequency and harmonics of a clock used in 

a digital processor or a power supply circuit is increased, which affects other electronic 

devices such as malfunction. Similarly, switching noise of high voltage and large current 

becomes radiation noise and interferes with the surroundings. For this reason, EMI 

regulations are stipulated in many countries. For example, Fig. 3.2 shows the 

information of CISPR (International Special Committee on Radio Interference) 22 

indicates noise regulations in radiation noise for information technology equipment. The 

dark and light lines indicate the upper limit of EMI for commercial ∙ light industry and 

home use, respectively. Exceeding this limit will affect other electronic devices. There 

are some techniques to meet this limit, such as using shielding or filtering. The use of 

shielding increases the overall cost while the use of filtering increases the size. As we 

mentioned early, one of the methods for reducing such electromagnetic radiation is a 

spread spectrum clock generation technique. This technology can significantly reduce 

EMI and since the generation of noise is suppressed by the "source", there is an 

advantage that the number of parts for general noise suppression can be greatly reduced. 

 

Figure 3.2 EMI regulation in radiation noise (CISPR22) in Japan. 

3.1.1 Conventional EMI Noise with PWM Control Buck Converter 

Type of EMI are conducted noise and radiated noise. The EMI (especially the peak of 

radiated noise) generated by switching is mainly caused by the resonance of stray L, C 

components existing on the switching itself and its peripheral circuits. It is possible to 

suppress the noise generated in the resonance loop that uses the voltage applied to the 

device [33]-[34]. The EMI noise reduction we are studying is the conduction noise 

which returns to the input of the power supply, and we are not considering the radiation 
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noise here. Therefore, in conjunction with reducing the low frequency noise of the 

PWM pulse, the PWM frequency and its harmonic noise are reduced and the conduction 

noise is proportionally attenuated. 

The basic action of the buck converter with PWM control method is explained in part 

2.2.1, and Fig. 3.3 shows its circuit diagram. The parameters of this buck converter are 

shown in Table 3.1. Here, as the switching signal of high power is increased in speed, 

large noise is generated. Fig. 3.4 shows the spectrum of the PWM signal in the buck 

converter (Fig. 3.3). There is the line spectrum at the frequency of the clock (0.5MHz) 

which is equal to 3.5V and there appear many harmonic spectra.  

 

Figure 3.3 Buck converter with PWM signal control. 

 

Figure 3.4 Simulated spectrum without EMI reduction. 
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Table 3.1Parameter values of simulation circuit. 

𝑉𝑖 𝑉𝑜 𝐼𝑜 

12V 5V 0.25A 

𝐿 𝐶 𝑇𝑐𝑘 

200μH 470μF 2.0𝜇s 

3.1.2 EMI Noise Reduction with Clock Frequency Modulation 

In order to reduce the clock noise, the clock pulse modulation is used by shaking the 

frequency of the saw-tooth generator (Fig. 3.5). This circuit consists of the saw-tooth 

SAW generator, the Voltage Controlled Oscillator (VCO) and the control voltage signal. 

The output frequency 𝐹𝑐𝑘 of the VCO is represented by Eq. 3.1. The control voltage 

𝑉𝑐𝑜𝑛 is set to the base DC voltage 𝑉𝑏=4.0V and the modulation signal, which is the 

triangular signal set to the frequency 𝐹𝑚=1kHz and the amplitude 𝑉𝑚=±1.0V. K is the 

sensibility of the VCO (K=50[kHz/V]). The frequency of the VCO output is modulated 

from 150kHz to 250kHz. 

( )ck con b mF K V K V V      (3.1) 

Fig. 3.6 shows the modulated spectra of the PWM pulse. The 𝐹𝑐𝑘 peak level of the 

PWM pulse is from 3.5V to 673mV, which is about 14 dB reduction. There is no line 

spectrum in harmonic frequencies. With this modulation, the output ripple becomes 

very large from 3 m𝑉𝑝𝑝 to 18 m𝑉𝑝𝑝 according to Fig. 3.7. This large ripple is no good 

for the voltage regulators and it should be improved. 

 

Figure 3.5 Frequency modulation of buck converter with PWM signal control. 
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Figure 3.6 Spectra of modulation converter. 

 

Figure 3.7 Output ripple with/without modulation. 

3.1.3 EMI Reduction & Output Ripple Improvement 

With the frequency modulation, the duty D of the PWM pulse is also modulated and 

the output voltage is a little up and down shown in Fig. 3.7. To improve this modulated 

ripple, we have developed the cancellation method by correcting the duty change of the 

PWM pulse, as shown in Fig. 3.8. Assume that the modulation signal is becoming 

higher and the clock frequency is modulated to be higher and the period of the SAW 

signal is becoming smaller. In this case, the slope of the SAW signal is not changed and 
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the output pulse width of the comparator is also not changed. Then the duty D of the 

PWM pulse is a little increased. To correct this duty increase, the slope of the SAW 

signal is linearly increased with the modulation signal 𝑉𝑚 shown in Fig. 3.9. In this 

case, the peak voltages of the original SAW signal and of the corrected SAW signal are 

the same values [35].  

To design the conductance value 𝑔𝑚 in the correction circuit of Fig. 3.8, we need to 

analyze the optimum conductance 𝑔𝑚 . First, assuming that the conversion rate 

(sensitivity) of the VCO is K (kHz/V), the modulation signal base voltage is 𝑉𝑏, the 

modulation signal amplitude is 𝑉𝑚, and the modulation rate α = 𝑉𝑚/𝑉𝑏. Here, the clock 

frequency after modulation 𝐹𝑐𝑘 is given by the following Eq. 3.2.  

' ( ) (1 ) (1 )m
ck b m b b

b

V
F K V V KV KV

V
        

 

(3.2) 

For example, when the modulation rate α = 0.1, the modulated clock frequency 𝐹𝑐𝑘
′  is a 

frequency modulated by ± 10% compared to the original clock frequency 𝐹𝑐𝑘. Here, 

similarly to the modulation part, by correcting the current of α, the slop of the saw-tooth 

wave is corrected, and the change of duty can also be suppressed. Normally, the 

saw-tooth wave correction current d𝐼𝑆𝐴𝑊 can be expressed as in Eq. 3.3, assuming that 

this is the same value as α𝐼𝑆𝐴𝑊 for which the current has been corrected by α, the 

optimum current correction amount 𝑔𝑚 can be derived as shown in the following 

equation Eq. 3.4. 

SAW m mdI g V    

(3.3) 
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(3.4) 

Simulation was performed by adding the correction circuit in Fig. 3.8 to the one in 

Fig. 3.5. Simulation parameters are in Table 3.2. The conditions of the correction circuit 

section are as follows: saw-tooth wave generation current source 𝐼𝑆𝐴𝑊 = 1.0𝑚A , 

current correction amount 𝑔𝑚 = 200~300μS  (S: Siemens, a unit of electrical 

conductance). Further, when 𝐼𝑆𝐴𝑊 = 1.0𝑚A and the modulation signal base voltage 

𝑉𝑏 = 4V and is substituted into Eq. 3.4, the theoretical value of the current correction 

amount in this simulation circuit is 𝑔𝑚 =250μS. 
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Fig. 3.10 shows the original ripple 𝑉𝑜, modulated ripple 𝑉𝑜𝑚 and corrected ripple 

𝑉𝑜𝑐, respectively. The correct ripple is almost the same as the original non-modulated 

ripple. 

 

Figure 3.8 SAW generator & modified current source. 

 

Figure 3.9 Comparison of SAW signals. 

Table 3.2 Simulation parameters. 

𝑉𝑖 𝑉𝑜 𝑇𝑐𝑘 𝐿 

12V 5V 2.0𝜇s 200μH 

𝐶 𝐹𝑚 𝑉𝑚 𝑉𝑏 

470μF 1kHz -1~1[V] 4[V] 
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Figure 3.10 Modulated and corrected ripple. 

= 

3.2 EMI Reduction with Hysteretic Control Converter 

It is well-known that EMI noise is very serious problem which occurs from switching 

the input voltage and the large current. We adopt the PWM noise as the EMI noise and 

investigate the conductive noise which is the input current noise in the input power line. 

In order to reduce the EMI noise, it is usually used to modify the clock frequency or 

phase. For the clock-less hysteretic control converter, it is difficult to shake the PWM 

pulse. We have modified the width of the COT pulse to shake the frequency of the 

operating pulse to reduce EMI noise, and created the method to cancel the output 

voltage ripple. 

3.2.1 Conventional Hysteretic Control Converter using COT Method 

For the basic hysteretic control converter, the operation frequency 𝐹𝑂𝑃 is variable, 

depending on the load current 𝐼𝑂, which affects the characteristics of the loop transfer 

function. In order to make 𝐹𝑂𝑃 stable against 𝐼𝑂, it is agreeable to set the on-time 𝑇𝑜𝑛 

(or off-time) constant because the operation period is decided by the relationship 
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between the duty ratio D and the on-time of the PWM pulse. When 𝑇𝑂𝑁 is set, 𝑇𝑂𝑃 is 

automatically controlled as the next equation. Eq. 3.5. 

1 on i
op on

op o

T V
T T

F D V
    

 

(3.5) 

From this equation, we can find change load resistance will not affect the output 

voltage. When the load current is half of the peak-to-peak value of the ramp of 𝐼𝐿, the 

lowest point of the ramp drops to zero (Fig. 3.12). At this lowest point, the inductor 

current is zero and the energy storage is zero. If the load current is further reduced, the 

inductor will enter a discontinuous current mode (DCM). In this situation, the output 

voltage and on-time 𝑇𝑜𝑛 is constant, but the operating frequency changes low. Fig. 3.11 

shows the configuration of the buck converter using the COT control method, and Fig. 

3.12 shows its operating waveforms. The COT pulse is generated at the positive edge of 

the output pulse of the comparator. Simulation parameters are in Table 3.3. The 

waveform of the COT pulse generator is shown in red border (Fig. 3.11). It consists of a 

saw-tooth SAW generator, a comparator Comp2 and the COT reference voltage 𝑉𝑟𝐶𝑂𝑇. 

The SAW generator includes a switch, a current source 𝐼𝐶𝑂𝑇 and a capacitor 𝐶𝐶𝑂𝑇. The 

switch is controlled by the positive edge of 𝑉𝑐𝑜𝑚𝑝 and resets / starts the SAW signal. 

The COT pulse is generated by comparing the SAW signal with the COT voltage 

reference 𝑉𝑟𝐶𝑂𝑇, and 𝑇𝐶𝑂𝑇 is calculated with the next equation Eq. 3.6. 

COT COT
COT

c

Vr C
T

I


  

 

(3.6) 

Table 3.3 Simulation parameters. 

𝑉𝑖 𝑉𝑜 𝐿 

10V 3V 10μH 

𝐶 𝑉𝑟𝐶𝑂𝑇  

10μF 0.51V  
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Figure 3.11 COT control method hysteretic control converter. 

 

Figure 3.12 Waveforms of COT type hysteretic control converter. 

3.2.2 EMI Noise Reduction with COT Control Method 

   For the clock-less control converter, it is difficult to shake the PWM pulse. We have 

modified the width of the COT pulse to reduce the peak level of the PWM frequency in 

the spread spectrum. 
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Fig. 3.13 shows the block diagram of the COT converter with EMI noise reduction. 

In Fig. 3.13, the reference voltage 𝑉𝑟𝑐𝑜𝑡 is modified by the triangular signal and the 

variation of 𝑉𝑟𝑐𝑜𝑡  modifies the COT pulse width 𝑇𝑐𝑜𝑡  shown in Fig. 3.14. The 

frequency of the modified signal is 𝐹𝑚=1.0 kHz and 𝑉𝑟𝑐𝑜𝑡 is 2.4VDC + 0.25Vpp AC. 

 

Figure 3.13 EMI noise reduction with COT control circuit. 

 

 

Figure 3.14 Timing chart of modified COT pulse. 

Fig. 3.15 shows the COT control method spectrum without EMI reduction, in which 
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the red spectrum is the PWM noise and the green one is the conductive noise. The peak 

level of the PWM frequency (f =940 kHz) is 2.7 V and that of the conductive noise is 

1.0V, which is -8.6 dB of that of the PWM spectrum. The spectrums of the harmonic 

frequencies are almost in the same rate. Fig. 3.16 shows the modified spectrum with 

EMI reduction. There is no line spectrum and the maximum level of the PWM noise is 

210 mV which is about 8% of the normal spectrum and is 22 dB reduction. The 

spectrum of the conduction noise with EMI reduction is 90 mV which is reduced to 9 % 

( -21dB). Whole spectrum of the conductive noise with the EMI reduction has the 

-21dB level of that of the PWM pulse as shown in Fig. 3.15. 

  The COT pulse modulation is very effective to reduce the EMI noise shown in Fig. 

3.16, but it makes the output voltage ripple ∆𝑉𝑜 increase significantly. The modulated 

output ripple ∆𝑉𝑜𝑚  is 6.0mVpp shown in Fig. 3.17. (The normal ripple ∆𝑉𝑜  is 

1.2mVpp.)  

 

Figure 3.15 COT control method spectrum without EMI reduction. 
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Figure 3.16 Spectrum with EMI reduction. 

 

Figure 3.17 Output ripple with modulation. 

3.2.3 Improved EMI Noise Reduction with COT Control Method 

The COT pulse modulation control method is very effective to reduce the EMI noise 

shown in Fig. 3.16, but it makes the output voltage ripple ∆𝑉𝑜 increase very much. We 

have investigated the improved EMI noise reduction with the COT control method by 

the phase shift of the comparator output shown in Fig. 3.18. Fig. 3.19 shows the block 

diagram of the improved EMI noise reduction with the COT converter. 
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Figure 3.18 Improved EMI noise reduction with the COT control method. 

 

Figure 3.19 Block diagram of improved EMI noise reduction with the COT converter. 
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Fig. 3.19 shows a block diagram of improved EMI noise reduction with the COT 

converter. In Fig. 3.13, PWM signal is modulated by tail edge and the output ripple is 

increased. In Fig. 3.19 we can find that the PWM signal is also modulated by rise edge 

using phase shift. The output ripple of improved EMI noise reduction with the COT 

converter shown in Fig. 3.20. The modulated output ripple ∆𝑉𝑜𝑚 is 3.3mVpp and 

smaller than the COT control method with EMI reduction. 

 

Figure 3.20 Output ripple with improved EMI noise reduction with the COT converter. 

3.2.4 Conventional EMI Noise Reduction with Ripple Injection Method 

As we mentioned in Section 2.3.4, the ripple injection method of the hysteretic control 

converter also has good performance because no need of a hysteresis comparator keeps 

the high frequency response. In order to generate the large ripple (or the triangular 

signal) synchronized with the output voltage ripple ∆𝑉𝑜 or the PWM pulse, the 𝐶𝑓𝑅𝑓 

circuit is added across the inductor. This large ripple is injected into the ripple ∆𝑉𝑖, 

which is much larger than ∆𝑉𝑜 and connected to the negative input of the comparator 

through the coupling capacitor 𝐶𝑏. The PWM pulse is easily generated to compare this 

large signal with the reference voltage 𝑉𝑟. 

  The block diagram of EMI noise reduction with the ripple injection method is shown 

in Fig. 3.21. The waveform of the COT pulse generator is shown in red border. It 

consists of a saw-tooth SAW generator, a comparator Comp2 and a COT reference 

voltage 𝑉𝑟𝐶𝑂𝑇. The SAW generator includes a switch, a current source 𝐼𝐶𝑂𝑇 and a 

capacitor 𝐶𝐶𝑂𝑇. The switch is controlled by the positive edge of 𝑉𝑐𝑜𝑚𝑝 and resets / 

starts the SAW signal. The COT pulse is generated by comparing the SAW signal with 

the COT voltage reference 𝑉𝑟𝐶𝑂𝑇. Spectrum of the ripple injection method hysteretic 



52 

 

converter is shown in Fig. 3.22. It is about 400mV and very small.  

 

Figure 3.21 EMI noise reduction with the ripple injection method. 

 

Figure 3.22 Spectrum of the ripple injection method hysteretic converter. 
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3.2.5 EMI Reduction and Output Ripple Improvement with Ripple Injection 

Method 

The ripple injection method is very effective to reduce the EMI noise shown in Fig. 3.22. 

But it makes the output voltage ripple ∆𝑉𝑜𝑚 increase very much shown in Fig. 3.25, 

which is no good for the voltage regulator. We have investigated the cancellation 

method to return ∆𝑉𝑜 level to the normal level. Increase of ∆𝑉𝑜 is corresponding to the 

modulation signal 𝑉𝑚. The modulated output ripple ∆𝑉𝑜𝑚 is 6mVpp, which is about 5 

times of the normal ripple (=1.2mVpp). Modification of the COT pulse width 𝑇𝐶𝑂𝑇 

changes the duty ratio 𝐷 of the PWM pulse. In order to cancel the 𝐷 change, it is 

effective to modulate the operating period 𝑇𝑜𝑝 reversely against the modulation signal 

𝑉𝑚.  

Fig. 3.23 shows the circuit to cancel the increase of the output ripple, which adds the 

modulation signal to the ripple generating CR circuit across the inductor L. Fig. 3.24 

shows the simulation results of the cancellation ripple 𝑉𝑜𝑐 versus the attenuator gain 

𝐴𝐶  with the variant modulation signal level 𝑉𝑚. This graph shows that the best value is 

𝐴𝐶 =0.37 with each modulation level 𝑉𝑚 . When 𝐴𝐶 >0.37, the modulated ripple is 

over-compensated and its phase is reversed to be shown by the minus voltage. 

Fig. 3.25 shows the cancellation ripple 𝑉𝑜𝑐 compared with the normal ripple 𝑉𝑜 and 

the modulated ripple 𝑉𝑜𝑚. The ratio of the attenuator is 𝐴𝐶  = 0.33, the cancellation 

ripple 𝑉𝑜𝑐 is almost equal to the normal level 1.2 mV. Fig. 3.26 shows the saw-tooth 

signal which means the operating period, and the inductor current which indicates in 

proportion to 𝑉𝑜. The cancellation ripple 𝑉𝑜𝑐 is reduced very small but the operating 

period 𝑇𝑜𝑝 varies according to the modulation signal 𝑉𝑚. The spectrum of the EMI 

noise is almost the same as the one in Fig. 3.22. The optimum attenuator gain of the 

cancellation signal is 𝐴𝐶  =3.7 from the simulation result shown in Fig.3.24.  
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Figure 3.23 Circuit to cancel the output ripple. 

 

 

Figure 3.24 Cancellation of the output ripple 
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Figure 3.25 Cancellation of the ripple 𝑉𝑜𝑐. 

 

Figure 3.26 Signals with cancellation. 

3.3 EMI Reduction with Soft-Switching Converter 

As we mentioned in Section 2.4, soft switching technology can solve the switching loss 

and switching noise problems in the circuit, and the switching frequency can be greatly 

increased. In order to reduce the EMI noise, the modulation of the clock pulse is often 

realized by shaking its phase or frequency. On the other hand, a high-efficiency, 

low-noise soft-switching converter has also been developed by the Zero Voltage 
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Switching (ZVS) operation. Although, its EMI noise is relatively small compared to the 

usual PWM control switching converter, it has to be still suppressed with unnecessary 

radiation and conduction noises. Therefore, we discuss the EMI noise reduction in the 

soft-switching converter. The reduction of the EMI noise level is considered by spread 

spectrum with the phase modulation of the operation signal by not using a fixed clock. 

3.3.1 Conventional Soft-Switching Converter 

Fig. 2.27 shows the circuit of a buck converter with full-wave type voltage-mode 

resonant converter. The converter consists of power and control stages. The power stage 

contains a main power switch SW, a free-wheel diode 𝐷𝑜, a main inductor 𝐿𝑜, an 

output capacitor 𝐶𝑜 and resonant elements which are an inductor 𝐿𝑟, a capacitor 𝐶𝑟 

and a diode 𝐷𝑟. The output voltage 𝑉𝑜 compared with the reference voltage 𝑉𝑟𝑒𝑓 can 

generate an error voltage ∆V, which is compared with SAW the PWM pulse is 

generated. The main switch SW is controlled by this PWM pulse. The SAW generator is 

triggered by the output of the comparator which detects the resonant voltage 𝑉𝑟 and 

diode voltage 𝑉𝑑. When 𝑉𝑟 goes across 𝑉𝑑, the SAW starts to rise up. 

 

Figure 3.27 Circuit of the full-wave resonant converter. 
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3.3.2 EMI Reduction with Soft-Switching Converter 

Fig. 3.28 shows the EMI reduction circuit of a full-wave resonant converter. In this 

circuit we shift the start timing of the SAW Generator1 in Fig. 3.27, in order to spread 

the noise spectrum. We can trigger shifted SAW Generator2 according to the output of 

Comp2. The SAW generated from Generator2 and the triangular wave signal for phase 

modulation are compared to trigger the SAW Generator1 for the PWM signal. Thus, the 

PWM signal is modulated by modulating the off-timing of the SW. Its operation 

waveform is shown in Fig. 3.29. 

 

 

Figure 3.28 EMI reduction modulation circuit. 

 

 

Figure 3.29 Simulation waveforms in EMI reduction modulation circuit. 
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Table 3.4 Parameter values in simulation. 

𝑉𝑖n 𝑉𝑜 𝐼𝑜 

10.0V 5.0V 0.25A 

𝐿𝑜 𝐶𝑜 𝐹𝑐𝑘 

200μF 470μF 500kHz 

We use the simulator SIMetrix-SIMPLIS for circuit simulation with the circuit 

parameter values in Table 3.4. The spectrum of the standard PWM method buck 

converter is shown in Fig. 3.4 in Section 3.1.1, while the one of the full-wave type 

soft-switching converter without EMI reduction is shown in Fig. 3.29 and the one with 

EMI reduction is shown in Fig. 3.30. 

Compared with Fig. 3.4 and Fig. 3.29, although the spectrum of the PWM signal is 

equivalent in principle, but the basic spectrum is reduced from 3.50V to 2.94V. Next, 

comparing the EMI reduction effect (Fig. 3.30 and 3.31) in the soft-switching converter. 

The basic spectrum of the PWM (shown in red) decreases from 2.94V to 1.12V which is 

8.4dB reduction. Conduction noise (shown in green) is also reduced from 359mV to 

132mV. The operating frequency is changed from 480kHz to 410kHz due to the 

influence of the frequency modulation. 

 

Figure 3.30 Spectrum of the soft-switching converter output. 
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Figure 3.31 Spread spectrum of the soft-switching converter output. 

3.3.3 Output Ripple Cancelation with EMI Reduction 

By phase-modulating the start timing of the SAW in order to spread spectrum to reduce 

EMI as we mentioned earlier, the duty ratio of the PWM signal is also modulated. Due 

to this effect, originally the output ripple ∆𝑉𝑜 in steady-state is about 1.5mV, but in the 

EMI reduction situation ∆𝑉𝑜  becomes large as 22mV in synchronization with the 

modulated triangular signal as shown in Fig. 3.34 (shown in red) and this is a big 

problem. 

Therefore, we discuss how to let the modulated duty ration keep to original duty 

ration. The waveforms of output ripple cancelation method are shown in Fig. 3.32. Red 

line represents the modulated waveforms. In the PWM converter, duty ratio 𝐷 can be 

expressed by Eq. 3.7 which is the same as Eq. 2.1. Here 𝑇𝑠 is the switching period and 

𝑇𝑜𝑛 is the on-period of the switch, while 𝑇𝑜𝑓𝑓 is its off-period. 

on on

s on off
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 


 

 

(3.7) 

In the EMI reduction method, the duty ratio is modulated and it leads to 𝑇𝑜𝑓𝑓 

extended. Since the duty ratio is unbalanced, the ripple cancelation method is to let the 

operation period 𝑇𝑜𝑛 corrected longer and change to 𝑇𝑜𝑛
′ , correspondingly the period 

will change to 𝑇′, then the modulation is performed to cancel the change of the duty 

ratio. 

The modulation ripple cancellation circuit is shown in Fig. 3.33, where in PWM edge 

shift modulation part, using triangular compared with SAW (created from original 
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PWM) can generate a longer PWM period 𝑇′. Fig. 3.34 shows the simulation results 

using modulation ripple cancelation circuit. Compared with EMI reduction method 

(shown in red), using the ripple cancellation method, the output ripple decrease to 3mV 

(shown in green), which is very small. 

 

Figure 3.32 Waveforms in the ripple cancellation circuit. 

 

 

Figure 3.33 Circuit of the output ripple cancellation method. 



61 

 

 

Figure 3.34 Output ripple with EMI reduction (red) and ripple cancellation (green). 

 

For the communication equipment including the radio receiver, it is very important to 

reduce the radiation noise at the specific frequencies, such as the receiving frequency of 

radio receiver by suppressing diffusion of power supply noise. We have proposed the 

pulse coding technique to create the notch characteristics in the noise spectrum of the 

switching converter. 

In the ripple cancellation circuit, the PWM signal is phase modulated by shifting the 

optimum stop timing (𝑉𝑑 = 𝑉𝑟) of the resonance voltage. As a result, on-timing of the 

SW for realizing ZVS is delayed, and as shown in Fig. 3.35, the resonant voltage 𝑉𝑟 

causes over-resonant even at 120V. This operation is contrary to the basic ZVS 

operation of the soft-switching converter. Therefore, we consider about a 

countermeasure that can cancel this over-resonant while keeping EMI reduction and 

ripple cancellation enabled.  

In order to operate ZVS, it is necessary to maintain the resonance voltage 𝑉𝑟 equal to 

the diode voltage 𝑉d even during the over-resonant period. At this time, there is a 

relationship of 𝑉𝑟 = 𝑉d = 𝑉𝑖𝑛. The current of the resonant inductor 𝐼𝐿𝑟 is not allowed 

to flow to the diode or the load side. As a method of satisfying this condition, it is 

considered that both ends of the resonant inductor 𝐼𝐿𝑟 can be shorted to maintain the 

current value of 𝐼𝐿𝑟 and maintain the resonant voltage 𝑉𝑟 = 𝑉𝑖𝑛. 

Fig. 3.36 shows a circuit for solving this problem, and Fig. 3.37 shows its operation 

waveforms. In this circuit, instead of stopping the PWM signal at the original 𝑉𝑟 = 𝑉d 

timing, short circuit of 𝐿𝑟 with switching to flow the resonant current in the coil itself 

at resonant stop timing. As a result, the charging current to 𝐶𝑟 is stopped and the 

resonance voltage is maintained at 0V. The control pulse of SW is canceled (turned off) 

simultaneously with the on-timing of the PWM signal, and the resonance voltage 

waveform has no overshoot of the resonance voltage as shown in Fig. 3.37. We can find 
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that the resonant voltage 𝑉𝑟 is equal to 15V, and generates the ZVS operation. 

 

Figure 3.35 ZVS operation waveforms at ripple correction. 

 

Figure 3.36 ZVS operation improvement circuit. 

 

Figure 3.37 Waveforms of ZVS operation improvement. 
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We see in Fig. 3.37 that before SW turn-on, the peak of resonant voltage is still high. 

The cause of this over-voltage generation is due to the delay time until 𝐿𝑟 is shorted 

after detection of 𝑉𝑟 = 𝑉d. There are two ways to resolve this problem. We can set 𝑉d 

to be lower by -5V than 𝑉𝑟, or set 𝑉𝑟 higher (𝑉𝑟
′ = 𝑉𝑟 + 15𝑉) than 𝑉𝑑. The simulation 

result of the first way is shown in Fig. 3.38. We see that the resonant voltage peak 

disappears. 

 

Figure 3.38 Simulation result of the resonant voltage improvement. 

Fig. 3.39 shows the spectrum in case that the ZVS improvement method is used. 

Since we add the ripple correction to the edge modulation and use triangular waveform 

to shake the PWM signal, the basic spectrum of PWM (shown in red) decreases from 

1.12V to 864mV (2.3dB reduction), compared with the EMI reduction method in Fig. 

3.31. Also conducted noise (shown in green) is almost the same. 

 

Figure 3.39 Spectrum of ZVS improvement circuit. 

We have proposed the output ripple cancelation method for the EMI reduction 

full-wave type soft-switching converter, and considered about reducing EMI by 

modulating the time shift of the resonance end edge. However, the modulation of the 

resonant operation adversely affects the ZVS operation, and the output ripple also 

increases; then we add a ripple cancellation circuit. Also the ZVS operation is improved 

to reduce the EMI spectrum by more than 10dB. Furthermore, the output modulation 

ripple can be suppressed to 1mV, and EMI and conducted noises also are reduced. 
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3.4 Summary 

This chapter has proposed methods in order to reduce EMI noise for the normal buck 

converter, hysteretic control converter and soft switching converter.  

EMI noise reduction with clock frequency modulation is used by shaking the 

frequency of the saw-tooth generator. But with this modulation, the output ripple 

becomes very large, then we created EMI reduction & ripple improvement with 

saw-tooth correction method to solve this problem.  

For the clock-less hysteretic control converter, it is difficult to shake the PWM pulse. 

We have modified the width of the COT pulse to shake the frequency of the operating 

pulse to reduce EMI noise, and created the method to cancel the output voltage ripple. 

Similarly, soft switching converter is also clock-less converter. EMI reduction with 

soft switching converter is used by modulating the time shift of the resonance end edge. 

At this time, modulation of the resonant operation adversely affects the ZVS operation, 

and the output ripple also increases. Along with this ripple cancellation circuit, the ZVS 

operation is also improved to reduce the EMI spectrum by more than 10dB. 

Furthermore, the output modulation ripple can be suppressed. 

In the next chapter, we propose an EMI spread spectrum technique with the selectable 

notch frequencies using the pulse coding methods for DC-DC switching converters.
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4. Notch Frequency with Pulse Coding Control 

In order to reduce EMI noise, the technique such as a spread spectrum method that 

randomly modulates the clock signal is being used. This includes using Σ∆ and ∆ 

modulation, instead of conventional pulse width modulation [36]-[37]. However, 

reduction in peaks comes at the expense of high noise floor due to the quantization 

noise added by the Σ∆ modulator. This is problematic for many noise-sensitive loads 

and often mandates using LDOs for post regulation and there is a problem that the 

diffusion noise is superimposed on an unwanted band (diffusion band shown in Fig. 3.6). 

Particularly, in the automobile field, the density and complexity of internal electronic 

circuits are progressing toward electrification and automatic driving. If EMI 

countermeasures are not taken, noise may be superimposed on the radio band or 

malfunctions may be induced in other electronic devices. 

As we mentioned in Section 1.2.3, we find that the notch characteristics can be 

applied in DC-DC switching converter to reduce EMI. In this chapter, we propose an 

EMI spread spectrum technique with the selectable notch frequencies using the pulse 

coding methods for DC-DC switching converters of communication equipment. The 

notches in the spectrum of the switching pulses appear at the frequencies obtained from 

empirically derived equations using the pulse coding method: the PWC (Pulse Width 

Coding) method, the PCC (Pulse Cycle Coding) method and the PWPC (Pulse Width 

and Phase Coding) method. We show the relationships between the notch frequencies 

and the coded pulses in the simulation. We also derived the theoretical formula of the 

notch characteristic. 

4.1 Pulse Width Coding (PWC) Control Switching Converter 

As for the pulse coding control method is usually used for the switching converters, it is 

very important to reduce an Electro Magnetic Interference (EMI) problem, mainly by 

suppressing the peak level of the fundamental frequency and its harmonic frequencies. 

Using these methods, the peak levels of the line spectrums are reduced and the energy at 

the basic frequency and its harmonic frequencies are spread to all frequencies, which 

would not be desired for the communication equipment such as a radio. Therefore, we 

researched coding methods that automatically generate notch characteristics in the 

reception frequency. 



66 

 

4.1.1 PWC Method Switching Converter 

In the pulse coding control methods, the main switch is controlled by the pulse coded 

drive signal PCD which is selected from two coded pulses. Pulse 1 and Pulse 2 are 

obtained by the pulse coding. These two coded pulses are selected by the select signal 

SEL supplied from the Flip-Flop as shown in Fig. 4.1. The Flip-Flop and two pulse 

generators (Pules 1, 2) are triggered by the internal clock. When the SEL signal is High, 

then the Pulse 1 is selected. When the SEL signal is Low, the Pulse 2 is selected. 

According to Fig. 4.1, various coding methods can be easily changed only by changing 

the pulse generation circuit of the coding part. 

 

Figure 4.1 Switching converter with pulse coding. 

Generally, the control scheme of the switching converter uses a PWM method which 

linearly modulates the pulse width to feedback. Here, we use the PWC method of 

discretely modulating the width of the feedback pulse. 

Fig. 4.2 shows the control circuit for the PWC method switching converter. The error 

voltage ∆𝑉 between the output voltage and the reference voltage 𝑉𝑟 is amplified and 

its output logic level is 1-bit high/low signal using a D-type Flip-Flop. This signal is 

converted to a pulse corresponding to high/low signal by the coding circuit, which is 

fed-back to the input switch. Fig. 4.3 shows the SEL signal, high voltage 𝑉𝐻, low 

voltage 𝑉𝐿 and PWC pulse (𝑊𝐻, 𝑊𝐿). After D-type Flip-Flop, if SEL signal is high, the 

multiplexer will select 𝑉𝐻, comparison with SAW will create 𝑊𝐻. If SEL signal is low, 

the multiplexer will select 𝑉𝐿, comparison with SAW will create 𝑊𝐿. In order to 

perform stable control, it is necessary to control the increase and decrease of the output 

voltage by satisfying the following condition [38]: 
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Here, 𝐷𝐿 =
𝑊𝐿

𝑇𝑐𝑘
 and 𝐷𝐻 =

𝑊𝐻

𝑇𝑐𝑘
 in Fig. 4.1. 

 
Figure 4.2 Buck converter with PWC control. 

 

 

Figure 4.3 Main signal waveforms of PWC method. 

In this spread spectrum technology by the PWC method, pulses are generated by 

digital modulation which converts analog output voltage error to digital signal. By 

switching these pulses appropriately, the output voltage of switching power supply will 

be stabilized. As a result, the spectrum of the clock frequency can be spread and the 

notch can be generated at the arbitrary set frequency. 

Parameters are defined to show the empirical formula of the notch frequency of the 

PWC method. Let 𝑊 be the width of pulse period, 𝑊𝐻 be the longer modulation 

width and 𝑊𝐿 be the shorter one. N represents a positive integer. The notch frequency 
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𝐹𝑛  is expressed by the following equation obtained by a numerical experiment 

[39]-[40]: 

( )
n

H L

N
F

W W



 

 

(4.2) 

It can be seen from Eq. 4.2 that the notch frequency depends only on the difference in 

the pulse width of the coding signal and does not depend on the clock frequency. By 

adjusting the pulse width, the notch frequency can be arbitrarily set. 

4.1.2 Simulation Result with the PWC Control 

In this pulse coded control, the output voltage is controlled with only two pulses and 

there is no need of the saw-tooth signal, but in order to control the output voltage 

precisely, the frequency of the clock is set to be higher 500 kHz. Other parameters of the 

switching converter with PWC are shown in Table 4.1. 

Table 4.1 Parameter values of PWC control simulation circuit. 

𝑉𝑖 𝑉𝑜 𝐼𝑜 𝐿 

12V 5V 0.52A 200μH 

𝐶 𝑇𝑐𝑘 𝑊𝐻 𝑊𝐿 

470μF 2.0𝜇s 1.6𝜇s 0.3𝜇s 

In simulation, we set peak voltage of SAW is 12𝑉. Using voltage-dividing circuit also 

can manually set 𝑉𝐻 = 9.6𝑉 , 𝑉𝐿 = 1.8𝑉 . Correspondingly, using 𝑉𝐻  and 𝑉𝐿 

compared with SAW can create 𝑊𝐻=1.6𝜇s and 𝑊𝐿 =0.3𝜇s respectively. Here, the 

period of the clock signal is given as 𝑇𝑐𝑘=2𝜇s. Fig. 4.4 shows the major signals and Fig. 

4.5 shows the spectrum of the coded pulses of the PWC signal. The upward arrows 

represent clock frequency, twice frequency and three times frequency of the PWC signal 

spectrum. There appears the notch characteristics frequency 𝐹𝑛 at the frequencies of 

770kHz, which are the theoretical frequencies (Eq. 4.2) by calculating from the coded 

pulses in 𝑊𝐻=1.6𝜇s, 𝑊𝐿=0.3𝜇s situation. The notch frequency also is created at about 

1.54MHz which is equal to 2𝐹𝑛 . Since this frequency is partially hidden by high 

frequency noise of the clock, the notch is not very obvious. As a result, comparing the 

maximum power of the normal clock in Fig. 3.3 and the proposed circuit in Fig. 4.5, the 

proposed circuit noise was reduced from 3.5V to 1.1V and a notch is produced. Fig. 4.6 

shows the transient response characteristics of PWC method when 𝐼𝑜 change from 

0.52mA to 0.72mA. The overshoot was observed. 
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Figure 4.4 Main signal waveforms of PWC method. 

 

Figure 4.5 Spread spectrum with PWC control. 

 

Figure 4.6 Transient response characteristics of PWC method. 
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4.2 Pulse Phase Coding (PPC) Control Switching Converter  

PPC circuit can be simply realized by a delay circuit and a multiplexer shown in Fig. 

4.7. Since the duty ratio of the pulse does not change, it is difficult to satisfy the stability 

control condition of Eq. 4.1. Therefore, it is inappropriate for the power supply circuit 

by this system alone, but it can be used for a power supply circuit by using this method 

with the PWC method combined system. 

 

Figure 4.7 Buck converter with PPC control. 

Parameters are defined to show the empirical formula of the notch frequency of the 

PPC method shown like Fig. 4.8. Let 𝜏 be the delay of pulse coding, 𝜏𝐻 be the longer 

delay and 𝜏𝐿  be the shorter one. N represents a natural number. This method is 

classified as one type of pulse period coding (PCC), and the notch characteristics is also 

expressed by the PCC method Eq. 4.6. Here, consider a pulse train with a clock cycle of 

𝑇𝑜. Expressing the period T(k) of the k-th pulse using the phase by the following Eq. 

4.3: 

 ( ) ( ) ( 1)T k T k k      (4.3)  

In other words, in the PPC method, the notch characteristics also depend on the 

previous one pulse. For this reason, the coding cycle T(k) including 2
2
 patterns, and 

notches are unlikely to occur. To compensate for this, if alternate coding of H/L is 

performed in phase coding, the following two periodic patterns are available: 
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Substituting Eq. 4.4 into Eq. 4.6 gives Eq. 4.5 as follows: 

2( )
np

H L

N
F 

 
 

 

(4.5) 

From this equation, the notch characteristic depends on the twice of difference in pulse 

phase. 

 
Figure 4.8 Waveforms of PPC control. 

4.3 Pulse Cycle Coding (PCC) Control Switching Converter 

4.3.1 PCC Method Switching Converter 

In the switching converter shown in Fig.4.1, the duties of two coded pulses are different 

each other in the relationship with Eq. 4.1. In this case, the duty will be changed by 

changing the pulse period shown in Fig. 4.9. 

In Fig. 4.9, there shows the example of two pulses with the PCC method. Here the 

pulse width 𝑊𝑜 is 0.4μs and the pulse periods are 𝑇𝑠=0.5μs and 𝑇𝐿=2.0μs, then their 

duties are 𝐷𝐻=0.8 and 𝐷𝐿=0.2. In this case, the equation of the notch frequencies 𝐹𝑛𝑐 

in the spectrum of the PCD signal is represented below. 

( )
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(4.6) 
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These coded pulses are generated by the circuit which includes the D-Flip Flop (DFF), 

preset pulse generation counter, differentiator, saw-tooth generator and comparator 

shown in Fig. 4.10. Pulses with different periods are generated from the next-stage pulse 

generation counter according to the SEL signal output from the D-FF. Here, 𝑇𝐿/𝑇𝑠 is 

defined as the pulse period generated corresponding to the high / low of the SEL signal 

which is the output of DFF. By using a differential circuit, a periodically modulated 

clock signal can be generated. The generated saw-tooth compared with 𝑉𝑟 can create 

PCC pulse. Figure 4.11 shows the main signal waveforms in the pulse code section of 

the PCC system. The clock cycle changes according to the SEL signal, and a PCC 

waveform synchronized with that cycle is output.  

 

Figure 4.9 Coded pulses with the PCC method. 
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Figure 4.10 Buck converter with PCC control. 

 

 

Figure 4.11 Main signal waveforms of PCC method. 

4.3.2 Simulation Result with the PCC Control 

Fig. 4.12 shows the major signals. The pulse lengths of the PCC signal are changed 

according to the SEL signal. Fig. 4.13 shows the simulation results of the frequency 

spectrum of the PCC control. In this case, pulse conditions are 𝑇𝐿=600ns and 𝑇𝑠=220ns, 
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so the basic notch frequency is calculated as 𝐹𝑛𝑐=2.6MHz from Eq. 4.4. In Fig. 4.13, 

there appear the notches at around 𝐹𝑛𝑐=2.6MHz but they are not clear. There are many 

line spectrum because EMI reduction does not use. Appearances of the notch 

frequencies or the spectrum are easily changed by the conditions of the coded pulse 

frequencies or the parameters of the switching converter.  

Table 4.2 Parameter values of PCC control simulation circuit. 

𝑉𝑖 𝑉𝑜 𝐼𝑜 𝐿 

10V 3V 0.5A 100μH 

𝐶 𝑊𝑜 𝑇𝐿 𝑇𝑠 

470μF 170ns 600ns 220ns 

 

Figure 4.12 Simulation waveforms of PCC method. 

 

Figure 4.13 Spectrum of buck converter with PCC control (without EMI reduction). 
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4.4 Pulse Width and Phase Coding (PWPC) Control Switching 

Converter 

4.4.1 PWPC Method Switching Converter 

The configuration of the PWPC method can be easily realized by adding a PPC circuit 

between the SAW generator of PWC and the clock as shown in Fig. 4.14. In PWPC 

method, the notch frequency can be realized by Eq. 4.2 and Eq. 4.3, these two equations 

are made to obtain a large notch. Fig. 4.15 shows the SEL signal and PWPC signal. If 

select signal is high, 𝑊𝐻 will be selected. If select signal is low, shifted 𝑊𝐿
′ will be 

selected. Comparing with PWC method, it can be confirmed that the notch 

characteristics of the PWPC method is deeper. 

 

Figure 4.14 Buck converter with PWPC control. 
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Figure 4.15 Main signal waveforms of PWPC method. 

4.4.2 Simulation Result with the PWPC Control 

In the simulation, we set 𝑇𝑜 = 500𝑛𝑠 , 𝑊𝐻 = 320𝑛𝑠 , 𝑊𝐿 = 160𝑛𝑠 , 𝜏𝐻 = 80𝑛𝑠 , 

𝜏𝐿 = 0𝑛𝑠. Setting to generate large notch at 6.25MHz. Fig. 4.16 shows the simulation 

spectrum of the PWPC waveform at this time. From Fig. 4.17, the ripple of the output 

voltage is 20mV (variation: 0.4%) when the current 𝐼𝑜 = 0.5A. The reason for this 

ripple we presumed is that a delay component phase was included in the coding signal 

to control switching. At the same time, no over/under shot was observed for the current 

change ∆𝐼𝑜 = 0.25𝐴, and the response characteristics are considered to be excellent. 

 
Figure 4.16 Spectrum of buck converter with PWPC control. 
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Figure 4.17 Transient response characteristics of PWPC method. 

4.5 Derivation of Theoretical Notch Frequency 

Until now, the formulas were empirically derived from simulation results. Here, we 

analyze the various coding methods and derive the theoretical formula for the notch 

characteristics. In order to get the theoretical formula, we divide the analysis into four 

steps: 1) Define the waveform of pulse coding method. 2) Fourier transform of defined 

waveform. 3) Take the absolute value to get the spectral characteristics of the waveform. 

4) Get zero point derived from spectral characteristics. 

4.5.1 Theoretical Analysis of PWC Method 

First, we analyze the PWC method in the single coding method. As shown in Fig. 4.18, 

we define the PWC signal in one period represent as 𝑇𝑐𝑘 with two different widths (𝑊𝐿 

and 𝑊𝐻 ). The theoretical frequency of the PWC control is derived as Eq. 4.7, 

performing fast Fourier transforms to the pair of the coding pulses. 

 

Figure 4.18 1 period 2 pulse trains of pulse width coding signal.  
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The left and right sides of the equation are square at the same time: 
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Take the absolute value of |𝐹(𝜔)|2 can get the following equation: 
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  It can be confirmed that the spectrum characteristic of the PWC waveform is a sinc 

function depending on the difference of the pulse widths. In Eq. 4.8, 𝜔 = 2𝜋𝑓, and let 

the frequency at sinc function be zero. Then the frequency at zero point is shown as 

follows [41]-[42]: 
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(4.12) 

Here, N is a positive integer. Eq. 4.12 indicates that the notch characteristic is the zero 

point of the sinc function. Notch frequency is decided by the difference of the pulse 

widths of the coded pulses and does not depend on the clock frequency. By adjusting the 

pulse width, the notch frequency can be arbitrarily set. 

Next, the spectrum characteristics of the eight rows of PWC pulses shown in Fig. 

4.19 are calculated using the same calculation method. Assuming that the entire eight 

trains of pulse have a period 𝑇𝑐𝑘, Fourier transform gives Eq. 4.13. 
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Figure 4.19 1 period 8 pulse trains of pulse width coding signal.  
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By taking this absolute value, the following Eq. 4.14 is calculated, and by calculating 

the notch frequency from this equation, the same equation as Eq. 4.12 is obtained. 
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It indicates that the notch characteristics depends only on the “difference in pulse width” 

but it is irrespective of the arrangement and number of pulses. Let 𝜔 = 2𝜋𝑓, and let the 

frequency at sinc function be zero. Then the frequency at zero point is shown as 

follows: 
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(4.15) 

It is the same as Eq. 4.12. Fig. 4.20 shows a comparison between the theoretical formula 

of the sinc function curve and the spectrum of the PWC waveform (pulse width: 

𝑊𝐻=3μs, 𝑊𝐿=7μs, 𝑓𝑛𝑜𝑡𝑐ℎ=250 kHz). From Fig. 4.20, the envelopes of the spectrum are 

the same as the theoretical formula. 

In Eq. 4.8, 𝜔 = 2𝜋𝑓, and let the frequency at sinc function be zero. Then the 

frequency at zero point is shown as follows. 
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Figure 4.20 Comparison diagram between theoretical formula and spectrum. 

4.5.2 Theoretical Analysis of PPC and PCC Method 

Let us analyze the PPC method in the single coding method. As shown in Fig. 4.21, we 

define the PPC signal in one period represent as 𝑇𝑐𝑘 with two different phase pulse 

coding signal (𝜏𝐻 and 𝜏𝐿). The theoretical frequency of the PPC control is derived as 

Eq. 4.16, performing fast Fourier transforms to the pair of the coding pulses. 

 
Figure 4.21 1 period 2 pulse trains of pulse phase coding signal.  
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By taking this absolute value, the following Eq. 4.18 is calculated, 
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Then the frequency at zero point is shown as follows: 
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Here, N is a positive integer. From Eqs. 4.18 and 4.19, the PPC method depends on two 

types of sinc functions and have two types of notch characteristics. This method 

depends not only on “coding phase” but also on “pulse width”. Here, Eq. 4.18 is the 

theoretical equation of the PPC method when alternating coding is used. 

  Next, let us analyze the PCC method in the single coding method. As shown in Fig. 

4.22, we define the PCC signal in one period represent as 𝑇𝑐𝑘 with two different cycle 

coding signal (𝑇𝐿 and 𝑇𝑠). The theoretical frequency of the PCC control is derived as 

Eq. 4.20, performing fast Fourier transforms to the pair of the coding pulses. 

 

Figure 4.22 1 period 2 pulse trains of pulse cycle coding signal. 
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This equation is similar to Eq. 4.18, indicating that the notch characteristic depends on 

the “coding period” and the “pulse width” as in the PPC method. 

4.5.3 Theoretical Analysis of PWPC Method 

In Section 4.5.2, we found that the frequency characteristics of the PPC and PCC 

methods were functions that depend on two types of parameters: pulse phase and width. 

Therefore, the frequency characteristics of the composite coding method, in which two 

parameters are coded simultaneously, are analyzed mathematically. Next, we analyze 

pulse width and phase coding (PWPC method), which simultaneously codes pulse width 

and phase. 

 

Figure 4.23 1 period4 pulse trains of pulse width pulse phase coding signal. 

As shown in Fig. 4.24, we define the PWPC signal in one period represent as 𝑇𝑐𝑘 with 

two types coding signal. The theoretical frequency of the PWPC control is derived as 

Eq. 4.23, performing fast Fourier transforms to the pair of the coding pulses. 
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Eq. 4.24 is the result of taking the absolute value: 
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(4.24) 

In PWPC, it is represented by a sinc function that depends on “pulse width” and “pulse 

phase”. Since there is a high freedom in setting these parameters, two types of notch 

characteristics can be generated arbitrarily. Furthermore, if the notch characteristics is 

set to overlap with 2|𝜏𝐻 − 𝜏𝐿| = 𝑊𝐻 − 𝑊𝐿, a strong notch characteristics as shown in 

Eq. 4.25 can be obtained. 
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Fig. 24 shows a comparison of the notch characteristics of Eqs. 4.25 and 4.11. From this 

figure, it can be confirmed that the vicinity of the zero point (250 kHz) in Eq. 4.25 is 

wider than in Eq. 11. In other words, the composite coding method has the potential to 

increase the notch width and improve the depth as well as the single coding method. 

 

Figure 4.24 Comparison of notch characteristics with PWC method and PWPC method. 

4.6 Summary 

In this chapter we have proposed an EMI spread spectrum technique with the selectable 

notch frequencies using the pulse coding methods for DC-DC switching converters of 

communication equipment. The notches in the spectrum of the switching pulses appear 

at the frequencies obtained from empirically derived equations using many pulse coding 

method, such as the PWC (Pulse Width Coding) method, the PCC (Pulse Cycle Coding) 

method and the PWPC (Pulse Width Pulse Phase Coding) method. We show the 

relationships between the notch frequencies and the coded pulses in the simulation. Also 

we have derived the theoretical formula of the notch characteristics. In PWC method, 

the notch frequency depends only on the difference in the pulse width of the coding 

signal and does not depend on the clock frequency. In PPC method, the notch 

characteristic depends on the twice of difference in pulse phase. In PCC method, the 

notch frequency depends only on the difference in the pulse periods. And in PWPC 

method, the notch frequency depends on “pulse width” and “pulse phase”, and a strong 

notch characteristic can be obtained. 

  In this chapter, we manually set 𝑊𝐻 and 𝑊𝐿 to create notch frequency, in the next 
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chapter, we consider about automatic generation of 𝑊𝐻  and 𝑊𝐿  to realize an 

automatic notch frequency generation with PWC control and PWPC control.
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5. Full-Automatic Notch Generation of PWC 

Switching Converter 

As we mentioned early, in communication devices such as in-vehicle DC-DC converter, 

switching frequency and harmonics should not overlap the receiving frequency bands of 

AM, FM of radio [18]. Let the frequency of the receiving signal from the radio receiver 

be equal to the notch frequency, and it is possible to greatly reduce influences from 

other electronic devices. Using the automatic notch frequency generation with the PWC 

control, the noise near the receiving frequency can be automatically removed. 

Furthermore, when tuning or switching receiving frequency of communication channels, 

using the automatic notch frequency generation with PWC control, the notch frequency 

can be automatically changed. In Chapter 4, we manually set 𝑊𝐻 and 𝑊𝐿 to create 

notch frequency; in this chapter, we consider about automatic generation of 𝑊𝐻 and 

𝑊𝐿 to realize automatic notch frequency generation with PWC control and PWPC 

control. 

5.1 Automatic Notch Frequency Generation with PWC Control 

5.1.1 Best Relationship Between 𝑭𝒄𝒌 and 𝑭𝒏 

Generally speaking, it is the easiest and clearest for the notch frequency 𝐹𝑛 to generate 

at the middle of 𝐹𝑐𝑘  and 2𝐹𝑐𝑘  (as shown in Fig. 4.5). When the received signal 

frequency from a radio receiver is equal to the notch frequency, it is possible to greatly 

reduce influences on adjacent electronic devices. So we set the notch frequency be equal 

to the received signal frequency from the radio receiver, that is the input frequency 𝐹𝑖𝑛. 

The relationship among 𝐹𝑖𝑛, 𝐹𝑛 and 𝐹𝑐𝑘 were shown in Eq. 5.1. Here, P is a positive 

integer, which determines the notch position, it also guarantees that notch frequency can 

be generated at input frequency in the high situation. Accordingly, the relationship 

between the input period 𝑇𝑖𝑛 and the clock period 𝑇𝑐𝑘 is shown in Eq. 5.2. 

( 0.5)in ckF P F    (5.1) 

( 0.5)ck inT P T    (5.2) 
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According to Eq. 5.1, in the case P=1, the notch frequency 𝐹𝑛 can be arbitrarily created 

between 𝐹𝑐𝑘1 and 2𝐹𝑐𝑘1 and equal to 𝐹𝑖𝑛1. In the case P=2, the notch frequency 𝐹𝑛 

can be arbitrarily created between 2𝐹𝑐𝑘2 and 3𝐹𝑐𝑘2 and equal to 𝐹𝑖𝑛2 shown in Fig. 

5.1. 

 

Figure 5.1 Best position of 𝐹𝑛 occurrence. 

On the other hand, the duty ratio D of the PWC signal in the switching converter is 

usually represented, such as by Eq. 2.6. Moreover, original clock signal shown in Fig. 

5.2 means PWC signal with no coded and the pulse width is 𝑇𝑜. It also corresponds to 

Eq. 5.3, here we set 𝐷𝑜  to 0.5. We can create pulse-H and pulse-L respectively 

according to 𝑇𝑜 as shown in Fig. 5.2. It also corresponds to Eq. 5.4; here 𝑇𝑝 is the 

pulse difference between 𝑊𝐻  and 𝑇𝑜  or 𝑇𝑜  and 𝑊𝐿 . The period 𝑇𝑛  of the notch 

frequency was derived from the difference between the pulse widths of 𝑊𝐻 and 𝑊𝐿 

[38]-[39]. In this case, 𝑊𝐻, 𝑊𝐿 and 𝑇𝑜 should have the relation as shown in Eq. 5.5 in 

order to control the output voltage 𝑉𝑜 to be stable. Here 2× 𝑇𝑝 is equal to 𝑇𝑛, which 

means the difference between 𝑊𝐻 and 𝑊𝐿. 
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Figure 5.2 Timing chart of relationship between Pulse-H and Pulse-L of PWM signals.  
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2n H L pT W W T      (5.5) 

5.1.2 Automatic Notch Frequency Generate from Clock Pulse 

In Eq. 5.2, the period of clock 𝑇𝑐𝑘 can be generated by measuring the period of the 

input pulse 𝑇𝑖𝑛. When P=1, the notch frequency can be arbitrarily created between 𝐹𝑐𝑘 

and 2𝐹𝑐𝑘 where we just input 𝑇𝑖𝑛 like Fig. 5.1. In this case, the clock period 𝑇𝑐𝑘 is 

shown in Eq. 5.6. 

(1 0.5)ck inT T    ⇒ 1.5ck inT T  (5.6) 

And it is easy to realize 𝑇𝑐𝑘 with a shifter and a digital adder in digital circuit. Fig. 5.3 

shows the automatic PWC method pulse coding circuit according to Eqs. 5.3-5.5 in 

𝐷𝑜 = 0.5 situation. In this case, 𝑊𝐻 = 0.5𝑇𝑐𝑘 + 0.5𝑇𝑖𝑛 and 𝑊𝐿 = 0.5𝑇𝑐𝑘 − 0.5𝑇𝑖𝑛. 

 



88 

 

 

Figure 5.3 Pulse coding of automatic PWC method in 𝑃 = 1 situation. 

Then, let we consider about P=N situation, here N is a positive integer. The notch 

frequency can be arbitrarily created between N𝐹𝑐𝑘 and (N+1)𝐹𝑐𝑘. In this case, the clock 

period 𝑇𝑐𝑘 is shown in Eq. 5.7. 

( 0.5)ck inT N T     (5.7) 

Fig. 5.4 shows the automatic PWC method in P=N situation. For example when N=2, 

𝐹𝑖𝑛 is set to 1.25MHz, the clock frequency is automatically calculated as 𝐹𝑐𝑘=500kHz 

and we expect the notch frequency appears at 1.25MHz between the 2
nd

 and the 3
rd

 

harmonics of the clock frequency. 
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Figure 5.4 Pulse coding of automatic PWC method in 𝑃 = 𝑁 situation 

5.1.3 Simulation Results with Automatic Notch Frequency Generation 

The simulation of automatic notch frequency generation is based on ideal switches. And 

we use digital circuit to create coding pulse notch generation as shown in Fig. 5.3 when 

𝑃 = 1 situation. Fig. 5.5 shows the simulation waveforms of pulse-H and pulse-L when 

we just set 𝐹𝑖𝑛 equal to 750kHz. The period of the saw-tooth 𝑇𝑐𝑘 can be automatically 

set to 2𝜇s, and comparison between 𝑉𝐿 and 𝑉𝐻 can produce pulse-L and pulse-H 

automatically. We can find 𝑊𝐻 = 1.67𝜇s and 𝑊𝐿 = 0.34𝜇s. According to Eq. 4.2, we 

expect notch characteristics frequency 𝐹𝑛 at the frequency of 750kHz. The spectrum 

generated by PWM signal is shown in Fig. 5.6. The notch characteristics can be 

reflected at 750kHz which is equal to 𝐹𝑖𝑛. The bottom level of the notch frequency is 

1mV. But there is the line spectrum at the frequency of the clock (0.5MHz) which is 

equal to 900mV and there appear many harmonic spectra. So we consider about using 

frequency modulation to reduce EMI noise in coding pulse notch generation circuit. 
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Figure 5.5 Simulation waveforms of Pulse-L and Pulse-H generation in 𝑃 = 1 situation. 

 

Figure 5.6 Simulated spectrum by PWM signal without EMI reduction when 𝑃 = 1 

situation. 

We use frequency modulation of 𝐹𝑐𝑘 to reduce EMI like section 3.1.2. The spectrum 

generated by PWM signal is shown in the Fig. 5.7. The notch characteristics can be 

clearly reflected at 750kHz which is equal to 𝐹𝑖𝑛. The bottom level of the notch 

frequency is 1mV and the spectrum of frequency of the clock (0.5MHz) is equal to 

20mV which is very small. We found the notch also appeared at 4𝐹𝑖𝑛. In principle, 
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3MHz frequency is equal to 6𝐹𝑐𝑘, and also equal to 4𝐹𝑖𝑛, clock signal and input signal 

overlapped, so notch should not appear at 4𝐹𝑖𝑛. But from simulation, we can find that 

there was a big notch at 4𝐹𝑖𝑛. The reason why notch appeared at 4𝐹𝑖𝑛 is still unknown, 

and this will be discussed as future work. 

 

Figure 5.7 Simulated spectrum with EMI reduction in 𝑃 = 1 situation. 

Then we consider about 𝑃 = 2 situation. Fig. 5.8 shows the simulation waveforms 

of pulse-H and pulse-L when we just set 𝐹𝑖𝑛  equal to 1250kHz. We can find 

𝑊𝐻 = 1.39𝜇s and 𝑊𝐿 = 0.6𝜇s. According to Eq. 4.2, we expect notch characteristics 

frequency 𝐹𝑛 at the frequency of 1250kHz. The spectrum generated by PWM signal is 

shown in Fig. 5.9. The notch characteristics can be reflected at about 1270kHz which is 

equal to 𝐹𝑖𝑛 and between the 2
nd

 and the 3
rd

 harmonics of the clock frequency. 
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Figure 5.8 Simulation waveforms of pulse-H and pulse-L generation in 𝑃 = 2 situation. 

 

Figure 5.9 Simulated spectrum with EMI reduction in 𝑃 = 2 situation. 

Then we consider about 𝑃 = 3 situation. Fig. 5.10 shows the simulation waveforms of 

pulse-H and pulse-L when we just set 𝐹𝑖𝑛 equal to 1750kHz. We can find 𝑊𝐻 =

1.29𝜇s  and 𝑊𝐿 = 0.72𝜇s . According to Eq. 4.2, we expect notch characteristic 

frequency 𝐹𝑛 at the frequency of 1750kHz. The spectrum generated by PWM signal is 

shown in Fig. 5.11. The notch characteristics can be reflected at about 1750kHz which 

is equal to 𝐹𝑖𝑛 and between the 3
rd

 and the 4
th

 harmonics of the clock frequency. 
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Figure 5.10 Simulation waveforms of Pulse-H and Pulse-L generation in 𝑃 = 3 situation. 

 

Figure 5.11 Simulated spectrum with EMI reduction in 𝑃 = 3 situation. 

5.1.4 Automatic Setting Notch Frequency According to Input Frequency 

As we mentioned earlier, when tuning or switching communication channels, automatic 

adjustment to the input frequency change is necessary. If the communication of channel 
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1 becomes no good, the frequency of channel 2 is switched. In this part, we discuss the 

automatic adjustment to the input frequency change from channel 1 to channel 2 applied 

in the radio receiver as shown in Fig. 5.12. Here, we set duty 𝐷 = 0.5, 𝑃 = 1 situation. 

If we set the input frequency of channel 1 equal to 750kHz, the output of automatic 

PWC controller can create notch frequency at 750kHz. If 𝐹𝑖𝑛 change to 1250kHz, 

corresponding 𝐹𝑐𝑘, 𝑊𝐻 and 𝑊𝐿 also change. The notch frequency can be created at 

1250kHz automatically. The simulated spectrum of the automatic switching for the 

input frequency 𝐹𝑖𝑛 change from 𝐹𝑛1 =750kHz to 𝐹𝑛2 =1,250kHz is shown in Fig. 

5.13 and Fig. 5.14. The notch characteristics can be clearly reflected at 750kHz and 

1,250kHz respectively which are equal to the input frequency. 

 

Figure 5.12 Block of change channel 1 to channel 2. 

 

Figure 5.13 𝐹𝑖𝑛1 = 750𝑘Hz situation. 
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Figure 5.14 𝐹𝑖𝑛2 = 1,250𝑘Hz situation. 

Response speed and output voltage ripple are also important when tuning or 

switching communication channels. In the simulation, we alternate the input frequency 

𝐹𝑖𝑛 to 750kHz and 1,250kHz at every 250𝜇s. Correspondingly, the peak voltage and 

period of saw-tooth SAW are also changed as shown in Fig. 5.15. When 𝐹𝑖𝑛 changes, 

the transient response of output voltage also changes. The steady output voltage ripple 

𝑉𝑟𝑖𝑝𝑝𝑙𝑒  is about 1m𝑉𝑝𝑝 , when 𝐹𝑖𝑛  changes from 750kHz to 1,250kHz, and the 

overshoot is about 3.8mV. The relationship between 𝑉𝑟𝑖𝑝𝑝𝑙𝑒 and 𝐹𝑐𝑘 in buck converter 

also can be expressed as Eq. 5.8 [43]. From the equation we can find 𝐹𝑐𝑘 is inversely 

proportional to 𝑉𝑟𝑖𝑝𝑝𝑙𝑒. According to the simulation results, we can realize automatic 

switching between two receiving signals with notch characteristics with small output 

voltage ripple. 

2
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Figure 5.15 Automatic switching on transient response and saw-tooth. 

According to the simulation results, we can realize automatic switching between two 

receiving signals with notch characteristics. 

5.2 Automatic Notch Frequency Generation with PWPC Control 

As we discuss in Section 4.5.3, the coding method combined PWC method and PPC 

method have the potential to increase the notch width and improve the depth. Now we 

consider about PWPC method to control switching in order to reduce EMI noise. And 

also we consider about automatic generation of Pulse-H and Pulse-L and Pulse-LD (Fig. 

5.16) to realize automatic PWPC control. 

5.2.1 Automatic Method to Generate PWPC Control 

In PWPC method, the notch frequency can be realized by Eq. 4.2 and Eq. 4.3, these 

two equations are made to obtain a large notch. Fig. 5.16 is the configuration of PWPC 

system. Automatic PWC controller can create 𝑉𝐻 and 𝑉𝐿, in PWPC method, using 𝑉𝐻 

compared with saw-tooth can created Pulse-H. Using 𝑉𝐿  compared with delayed 

saw-tooth can created Pulse-LD. Fig. 5.17 shows designed timing in PWPC method, 

where the phase shift 𝜏 is equal to 0.5𝑇𝑖𝑛 if Eq. 4.2 is equal to Eq. 4.5 in order to 

create big notch. 
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Figure 5.16 Pulse coding of PWPC method. 

 

Figure 5.17 Timing chart of buck converter with PWPC control. 
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  The relationship between 𝐹𝑐𝑘 and 𝐹𝑛 are shown in Eq. 5.1. And according to Eq. 

5.4, the following equations can be obtained (P=1 situation). 𝑃𝐿𝐷 is timing of rear end 

of 𝑃𝐿. 

0.5H o p ck inW T T D T T       

0.5L o p ck inW T T D T T        

0.5LD o p ck inP T T D T T         (5.15) 

5.2.2 Simulation Results with Automatic Notch Frequency Generation with 

PWPC Control 

Fig. 5.18 shows the waveforms of saw-tooth with period 𝑇𝑐𝑘 and delay 𝑇𝑐𝑘. Fig. 5.18 

shows the major signal of Fig. 5.16. The coding pulse 𝑃𝐻, 𝑃𝐿 or 𝑃𝐿𝐷 are generated by 

comparing the voltage 𝑉𝐻 and 𝑉𝐿 with the saw-tooth signal and delayed saw-tooth 

signal. 

  In the proposed system, the input/output voltage are 𝑉𝑖𝑛=10V and 𝑉𝑜=5V, so the 

theoretical duty ratio of the signal is D=0.5. When the frequency of the input signal is 

set at 𝐹𝑖𝑛=750kHz, and in P=1 situation, the frequency of the clock is guided at 

𝐹𝑐𝑘=500kHz. In order to set the notch frequency at 𝐹𝑖𝑛=750kHz, the calculated pulse 

width is 𝑊𝐻=1.67μs,𝑊𝐿 = 0.33μs, 𝜏=0.67μs according to Eq. 5.15. 

 

Figure 5.18 Waveforms of saw-tooth with period 𝑇𝑐𝑘 and delay 𝑇𝑐𝑘. 
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Figure 5.19 Main waveforms of PWPC method. 

Seeing the simulation results, the simulated widths of the coded pulses are set to 

about 𝑊𝐻=1.67μs, 𝑊𝐿=0.33μs, 𝜏=0.67μs as shown in Fig. 5.19. In this case, the 

simulated notch frequency appears at 𝐹𝑛=750kHz shown in Fig. 5.20, which is almost 

equal to the theoretical notch frequency 𝐹𝑖𝑛=750kHz. There appears a big notch at 

F=3.0MHz, which is the 4
th

 harmonic of the fundamental notch frequency 𝐹𝑛. We can 

find double notch creates notch up to high frequencies, and the bottom level of the 

notch frequency is 1mV.  

 

Figure 5.20 Simulated spectrum with EMI reduction using PWPC method. 
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5.3 Automatic Design of Duty Ratio 𝑫  in Full Automatic Notch 

Frequency Generation 

In the previous discussion, we keep setting duty ratio 𝐷 to 0.5 (𝑉𝑖 = 10𝑉, 𝑉𝑜 = 5𝑉) in 

the buck converter. If 𝐷 is not affected by any factor, 𝐷 is accurate, the SEL signal 

(Fig. 4.1) will keep in balance, and the average voltage of the SEL signal 𝑉𝑆𝐸𝐿 =
𝑉𝑐𝑐

2
. 

However, if 𝐷 shifts, the duty of the SEL signal 𝐷 =
𝑉𝑆𝐸𝐿

𝑉𝑐𝑐
 will be affected. Then the 

balance of the inductor current will be shifted and influence the output voltage ripple. 

Moreover, as the power supply IC, it is necessary to automatically detect or set the 

condition for 𝐷 when 𝑉𝑖  and 𝑉𝑜  change. Therefore, we discuss the method of 𝐷 

setting and automatic detection. 

5.3.1 Analysis Relationship Between Conversion Voltage Ration and PWM Duty 

Ratio 

As we mentioned earlier, in the automatic PWC control, just the input frequency 𝐹𝑖𝑛 

can create the clock frequency 𝐹𝑐𝑘 and coding pulses 𝑊𝐻, 𝑊𝐿 automatically using the 

following Eqs. 5.16 and 5.17 according to Eqs. 5.2, 5.4, 5.5 and Fig. 4.2. Here we 

define that in ideal condition 𝐷𝐻 = 𝐷𝐿 = 𝐷𝑃, 𝐷𝑃 is the shift value of 𝐷, and we set 

𝑇𝑖𝑛 =
2

3
𝑇𝑐𝑘 when P=1 in Eq. 5.2. 

1
( ) ( )

2 3

in
H H ck ck ck

T
W D D T DT D T       

 

(5.16) 

1
( ) ( )

2 3

in
L L ck ck ck

T
W D D T DT D T       

 

(5.17) 

  If 𝐷 shifts, the duty of the SEL signal 𝐷𝑠 will be affected and it will influence the 

output ripple ∆𝑉𝑜. When 𝐷 shifts, the shifted duty ratio 𝐷′ can be expressed by Eq. 

5.18. At the time of IC design, the designer fixed 
𝑉𝑜

𝑉𝑖
, that is the designer fixed 𝐷, 𝐷𝐻 

and 𝐷𝐿. Even if IC user changes 𝐹𝑖𝑛, 𝐷𝐻 and 𝐷𝐿 are still generated automatically by 

the designer’s circuit. However, when 𝑉𝑜 is changed, 𝐷 will be changed at present and 

it is different from designed 𝐷. 
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For example, in 𝑇𝑖𝑛 = 0.67𝜇𝑠, 𝑇𝑐𝑘 = 1𝜇𝑠 situation, in our designed circuit, we set 

𝐷 =
𝑉𝑜

𝑉𝑖
=

5𝑉

10𝑉
= 0.5. That is, when 𝑊𝐻 = 0.83 and 𝑊𝐿 = 0.17 according to Eqs. 5.16 

and 5.17, the duty of SEL signal 𝐷𝑠=0.5, the waveform of the select signal select 𝑊𝐻 

and 𝑊𝐿 keep in balance. But when 𝐷 shifts, 𝑊𝐻 changes to 0.86 and 𝑊𝐿 changes to 

0.20; in our designed IC, if the duty of SEL signal 𝐷𝑠 is still 0.5, it will affect the 

increase of 𝑊𝐻 and decrease of 𝑊𝐿. 

In Eq. 5.18, ∆𝐷 is the shift variation of 𝐷. We define the rate of change 𝑥 =
∆𝐷

𝐷
. At 

this time, the shifted 𝑊𝐻
′  and 𝐷𝐻

′ , 𝑊𝐿
′  and 𝐷𝐿

′  can be expressed by the Eqs. 

5.19~5.22. 

' (1 )
D

D D D D D D x
D


       

 

(5.18) 
' ( )H H ckW D D D T    (5.19) 

' (1 )H HD D D D x     (5.20) 

' ( )L L ckW D D D T    (5.21) 

' (1 )L LD D D D x     (5.22) 

Before 𝐷 shifts, 𝐷𝑠=0.5 and 𝐷𝐻: 𝐷𝐿 = 1: 1. That is the select signal select 𝑊𝐻 and 

𝑊𝐿 keep in balance. After 𝐷 shift, 𝐷𝐻
′ : 𝐷𝐿

′  can be expressed by the Eq. 5.23. 

' ': (1 ) : (1 )H LD D x x    (5.23) 

The average voltage of the SEL signal 𝑉𝑆𝐸𝐿 can be expressed by Eq. 5.24. 

(1 )
(1 )

(1 ) (1 ) 2 2

cc
cc cc

SEL

D
V

V V x DV
x x





  

  
 

 

 

(5.24) 

According to Eq. 5.24, we can find 𝑉𝑆𝐸𝐿  will be influenced by ∆𝐷𝑜  and if 𝑉𝑆𝐸𝐿 

change, the output voltage ripple also increases. 

From above discussion we can get that if the duty ratio shifts from 𝐷 to 𝐷′, 𝐷𝐻 will 

be changed to 𝐷𝐻
′  and 𝐷𝐿 will be changed to 𝐷𝐿

′ , the select signal select 𝑊𝐻 and 𝑊𝐿 

do not keep in balance and it will influence 𝑉𝑆𝐸𝐿 from 
𝑉𝑐𝑐

2
 to 

𝑉𝑐𝑐(1−
∆𝐷

𝐷
)

2
, the output 

voltage also be increased. 
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5.3.2 Simulation Result with Influence of 𝑫 Change 

According to Section 5.2.1, we can find if the input voltage 𝑉𝑖 is changed for the fixed 

coding pulse 𝑊𝐻 and 𝑊𝐿, the duty of the SEL signal will change a lot. This change 

causes a large change in the inductor current 𝐼𝐿 and the output voltage ripple ∆𝑉𝑜. In 

the simulation, we set 𝑉𝑟𝑒𝑓 = 𝑉𝑜 =5.0V, and change the value of the input voltage 𝑉𝑖 

to 10V and 15V respectively. Correspondingly, 𝐷 is going to change to 0.5 and 0.33. 

Fig. 5.21 shows the waveforms of the select signal. We can find that when 𝐷 =0.5, the 

waveform of the select signal select 𝑊𝐻 and 𝑊𝐿 keeps in balance. But in 𝐷 =0.33 

situation, the waveform of the select signal becomes out of balance, and the output of 

𝑊𝐿 is more than 𝑊𝐻. Fig.5.22 shows the simulated voltage ripple ∆𝑉𝑜 for 𝐷 changes. 

We can find that if 𝐷 changes, the output voltage ripple will be affected. 

 

Figure 5.21 Waveforms of the SEL signal. 
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Figure 5.22 Change of the output voltage ripple. 

5.3.3 Optimal 𝑫 Setting Method 

Let us consider about 𝐷= 0.28 situation. The simulation result is shown in Fig. 5.23. 

The upper part shows the waveform of the select signal, while the lower part is the 

output voltage ripple. We can find that 𝑉𝑜 increases greatly with one PWM signal on 

𝑊𝐻 pulse and then gradually decreases with many 𝑊𝐿 pulses. The ripple of the output 

voltage is very large (about 15mV). 

 

Figure 5.23 Waveforms of the select signal and ripple of output voltage in 𝐷=0.28 

situation. 
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The relationship between the input frequency 𝐹𝑖𝑛 and the duty ratio 𝐷 is shown in 

Eqs. 5.16 and 5.17. 𝐷 is limited by 𝐹𝑖𝑛. 𝐷 need to satisfy Eq. 5.25, or the select 

signal will be seriously unbalanced and the output voltage ripple will become bigger. 

2

in
o ck ck

T
D T T   

 

0
2

in
o ck

T
D T    

 

0.33 0.67oD   (5.25) 

When the value of 𝐷 is less than 0.33, in control stage, the number of selected signal 

SEL to choose 𝑊𝐿 is increasing. When the value of 𝐷 is greater than 0.67, the number 

of selected signal SEL to choose 𝑊𝐻 is increasing. As the result, the duty of the select 

signal will be seriously unbalanced. Therefore, it is very important to keep 𝐷 between 

0.33 and 0.67. 

5.3.4 Automatic Detection of PWM Duty Method 

According to 𝐷 and Eqs. 5.16 and 5.17, we can create 𝑊𝐻 and 𝑊𝐿 as shown in Fig. 

5.3. At that time, we set 𝐷 = 0.5. After that, if 𝑉𝑖 changes, 𝐷 also changes according 

to Eq. 2.6. If still the original circuit is used, the number of pulses of 𝑊𝐻 and 𝑊𝐿 does 

not change, and it will create error and output ripple. Therefore, using the 𝐷 automatic 

detection method to create new 𝑊𝐻 and 𝑊𝐿 is necessary. 

In 𝐷 automatic detection method, we consider about a method that if the peak 

voltage of the SAW waveform generated from 𝑇𝑐𝑘 can be automatically detected and 

set to the input voltage 𝑉𝑖, using this SAW waveform compared with the reference 

voltage 𝑉𝑟𝑒𝑓. This time, data of sampling is equal to the 𝐷. 

Fig. 5.24 shows 𝐷 automatic detection circuit, the SAW is generated by a current 

source, and the frequency of the SAW is 𝐹𝑐𝑘. A voltage follower can constitute the peak 

hold circuit, and the peak hold voltage 𝑉𝑝𝑒𝑎𝑘  compared with 𝑉𝑖  using an error 

amplifier will create an error voltage. Then using voltage controlled current source lets 

the error voltage change to the error current to feedback to SAW generation. This time, 

the peak voltage of SAW is automatically detected and which is equal to 𝑉𝑖. At the end, 

the comparator generates the 𝐷 detect signal by comparing the SAW and the reference 

voltage 𝑉𝑟𝑒𝑓 (equal to 𝑉𝑜). Fig. 5.25 shows the main signal waveforms of 𝐷 detection 

method. In 𝑉𝑖 = 12𝑉 situation, the peak voltage of SAW will be created at 12V, 

compared with SAW and 𝑉𝑟𝑒𝑓, and the sampling data is equal to the 𝐷1 data. In 

𝑉𝑖 = 10𝑉  situation, the peak voltage of SAW will automatically change to 10V, 
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compared with SAW and 𝑉𝑟𝑒𝑓, and the sampling data is equal to the 𝐷2 data. 

 

Figure 5.24 𝐷 automatic detection circuit. 

 

Figure 5.25 Main signal waveforms of 𝐷 detection method. 

Using this method, we have realized the full automatic notch frequency generation 

technology. In this technology, 𝐷 can be automatically detected when 𝑉𝑖 changes. It 

also can create notch at the input frequency. The simulation result of the full automatic 

notch frequency generation shown in Fig. 5.26. The simulation parameters have not 

been changed in Section 5.1.3 except for 𝑉𝑖 and do not modulate the clock pulse in 

order to noise reduction. This time, change 𝑉𝑖 to 15V, correspondingly, 𝐷 can be 

automatically detected and equal to 0.33. We can find from the simulation results that 

the notch characteristics can be reflected at 750kHz which is equal to 𝐹𝑖𝑛. 
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Figure 5.26 Simulated spectrum with full automatic notch frequency generation without 

EMI reduction. 

The waveform of the select signal is shown in Fig. 5.27. Compared with Fig. 5.21 in 

𝐷 = 0.33 situation, the waveform of the select signal select 𝑊𝐻 and 𝑊𝐿 keeps in 

balance. Output voltage ripple is shown in Fig.5.28. Compared with Fig. 5.22, the 

output ripple decreases from 8.5mV to 1.1mV. 

 

Figure 5.27 Select signal waveform with full automatic notch frequency generation. 

 

Figure 5.28 Output voltage ripple with full automatic notch frequency generation. 
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According to the above discussion, when setting 𝐷 in automatic notch frequency 

generation with PWC control, as long as 𝐷 is satisfied between 0.33 and 0.67 and 

using 𝐷  automatic detection method, 𝐷  can be automatically detected when 𝑉𝑖 

changes, and it can create notch at the input frequency, while the output ripple also gets 

smaller. 

5.4 Summary 

In this chapter, we realized automatic notch frequency generation with PWC control and 

PWPC control. We proposed a technique to generate the notch characteristics at the 

desired frequency in the noise spectrum of the switching converter. The clock pulse and 

the coding pulses are automatically generated and the notch characteristic automatically 

appears at the input frequency where the notch frequency 𝐹𝑛 appears between the clock 

frequency 𝐹𝑐𝑘  and its 2nd harmonic or the 2nd and the 3rd harmonics. We have 

confirmed with simulation that automatic notch generation in noise spectrum of 

switching converters with the PWC method and PWPC method can be achieved. Also 

we have implemented a method of automatic switching between two receiving signals, 

which can realize the automatic adjustment to the input frequency change from channel 

1 to channel 2 applied in the radio receiver.  

Then we discuss the necessity of duty ratio 𝐷, and come up with the 𝐷 automatic 

detection method to create full automatic notch frequency generation technology. As the 

result, when setting 𝐷 in automatic notch frequency generation with PWC control, as 

long as 𝐷 between 0.33 and 0.67 is satisfied and the 𝐷 automatic detection method is 

used, 𝐷 can be automatically detected. When 𝑉𝑖 changes, it can create notch at the 

input frequency, and the output ripple also gets smaller. 

In the next chapter, we will confirm the notch frequency by the prototype circuit 

using the pulse width coding method and implementation of the automatic notch 

frequency generation with the pulse width coding method. 
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6. Implementation Evaluation on Pulse Coding 

Controlled Switching Converter with Notch 

Frequency Generation 

In Chapter 4, the notch in the spectrum of the switching pulses was created by the PWC 

method. In Chapter 5, notch frequency can be automatically set. We have confirmed 

with the simulation that the proposed technique is effective for noise reduction and 

notch generation. Also we have implemented a method of automatic switching between 

two receiving signals, such that if the communication of channel 1 becomes not good, 

the frequency of channel 2 is switched. In this chapter, we will confirm the notch 

frequency experimentally with the prototype circuit. We have implemented PWC power 

supply and confirmed occurrence of notch characteristics by actual measurement. Also 

we have implemented automatic switching between two different input frequencies. 

6.1 Notch Frequency Generation Experimental of the PWC Method 

Switching Converter 

In Chapter 4, we have implemented a method of notch frequency generation using PWC 

control switching converter in simulation. In this section, we have confirmed the notch 

frequency by the prototype circuit. 

6.1.1 Experimental Method of PWC Control Switching Converter 

We have implemented the prototype circuit in converter with PWC control as shown in 

Fig. 6.1.  
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Figure 6.1 Converter with PWC control. 

  We usually use a universal board for implementation experiment. However, using a 

universal board, wiring is difficult and performance is hard to come out. In recently, 

PCB board manufacturing is often used, which can reduce the size of circuit board and 

product costs, improve the quality and reliability of electronic equipment. This time, we 

created the PWC control DC-DC converter using PCB board with KiCad software. 

  Fig. 6.2 shows the flowchart for using KiCad software [44]. It can be roughly divided 

into three parts: Eeschema part, Pcbnew part and Gerbview part. In Eeschema part, we 

will make the circuit created by simulation and set the footprint for each component. In 

Pcbnew part, we need create a layout for the board manufacturing company to actually 

make. When designing DC/DC switching converters, of course their circuit 

configuration and selection of components are important, but the PCB layout is 

comparable in importance. Even if the circuit diagram and component values are 

reasonable, if the PCB layout is not appropriate, not only performance will suffer, but 

even correct operation may not be possible. Problems originating in the PCB layout 

include noise in the output (including spikes and oscillation), worsens regulation, and 

unstable operation. In many cases, these problems can be resolved through appropriate 

layout, so PCB layout is very important. In Gerbview part, we make the data to actually 

order from the board company. The PCB board can be obtained by sending these gerb 

file data to the manufacturer. 
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Figure 6.2 The flowchart for using Kicad software. 
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  In PWC control DC-DC switching converter, the circuit in Eeschema is shown in Fig. 

6.3. Corresponding to Fig. 6.1, circuit is divided into power stage and control stage. The 

SEL signal, 𝑉𝐻, 𝑉𝐿, 𝑊𝐻, 𝑊𝐿 and PWM are shown in Fig. 6.3. Normally, we can 

generate saw-tooth directly through pulse generator. But attention that saw-tooth can 

only output up to 200kHz by pulse generator. So we create saw-tooth with period 

500kHz like red border in Fig. 6.6 by using saw-tooth generator circuit. Than using 

generated saw-tooth waveforms compared with 𝑉𝐻 and 𝑉𝐿 can created 𝑊𝐻 and 𝑊𝐿 

correspondingly. According to SEL signal high and low select 𝑊𝐻  and 𝑊𝐿 , then 

created PWM signal. Fig. 6.4 shows the completed circuit board. Next, we will test the 

performance of this circuit board. 

 

Figure 6.3 PWC control buck converter circuit with Kicad. 
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Figure 6.4 PWC control buck converter PCB board. 

6.1.2 Experimental Result of the PWC Converter 

Table 6.1 shows the parameter values of this switching converter: 

Table 6.1 Parameter values of implementation circuit. 

𝑉𝑖 𝑉𝑜 𝐼𝑜 

12V 5V 0.2A 

𝐿 𝐶 𝑓𝑐𝑙𝑘 

100μH 47μF 500kHz 

We have implemented the circuit and measured the waveforms of 𝑊𝐻 and 𝑊𝐿 as 

shown in Fig. 6.5 as well as spectrum of the PWC control switching converter as shown 

in Fig.6.6. The pulse widths were set by ourselves to 𝑊𝐻 = 1.0𝜇𝑠 and 𝑊𝐿 = 0.4𝜇𝑠. 

Clock frequency appears between the clock and 2
nd

 harmonics of the clock frequency, or 

between 2
nd

 and 3
rd

 harmonics, 3
rd

 and 4
th

 harmonics of the clock frequency. Substitute 

the parameter values into Eq. 4.2, 1.66MHz is calculated, which matches the measured 

result. 
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Figure 6.5 Waveforms of 𝑊𝐻 and 𝑊𝐿 in PWC control buck converter. 

 

 

Figure 6.6 Spectrum of the PWC control switching converter. 

6.2 Experimental of Automatic Notch Frequency Generation 

In Chapter 5, we have implemented a method of automatic switching between two 

receiving signals in simulation. In this section, we have confirmed the notch frequency 

by the prototype circuit. 
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6.2.1 Experimental Method of Automatic Notch Frequency Generation 

In the automatic notch frequency generation method, the circuit of the control stage in 

using Eeschema is shown in Fig. 6.7. Corresponding to the control stage in Fig. 5.3. We 

expect just input 𝐹𝑖𝑛, the notch can be automatically create at the position which is 

equal to 𝐹𝑖𝑛 . The relationship between 𝑇𝑖𝑛  and 𝑇𝑐𝑘  is 𝑇𝑐𝑘 = 1.5𝑇𝑖𝑛 . In 1.5 times 

generation circuit (pink border), just input 𝑇𝑖𝑛 can create 𝑇𝑐𝑘. The waveforms of 𝑇𝑖𝑛, 

𝑇𝑐𝑘 , 𝑄2  and 𝑄𝑅  are shown in Fig. 6.8. Then using saw-tooth with period 𝑇𝑐𝑘 

compared with 𝑉𝐻 and 𝑉𝐿 can created 𝑊𝐻 and 𝑊𝐿 correspondingly. 

 
Figure 6.7 Automatic notch frequency generation circuit with Kicad. 
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Figure 6.8 Main signal waveforms when using 𝑇𝑖𝑛 create 𝑇𝑐𝑘. 

  Combined with PWC control buck converter circuit with Kicad shown in Fig. 6.3 and 

In Fig. 6.7, connect the black point 𝑇𝑐𝑘, PWM and SEL with each other can create 

automatic notch frequency circuit. 

 Fig. 6.9 shows the completed circuit board, where three red wires connect the two 

boards. Just input 𝑇𝑖𝑛 using pulse generator, we expect to create notch at the same 

frequency automatically. Next, we will test the performance of this circuit board. 
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Figure 6.9 Automatic notch frequency generation PCB board circuit. 

6.2.2 Experimental Result of Automatic Notch Frequency Generation 

Table 2 shows the parameter values of this switching converter:  

Table 6.2 Parameter values of implementation circuit. 

𝑉𝑖 𝑉𝑜 𝐼𝑜 

10V 3.5V 0.16A 

𝐿 𝐶  

141μH 570μF  

In case 1, we set 𝑃 = 1 in Eq. 5.1, which means that we expect notch to be created 

between the clock and 2
nd

 harmonics of the clock frequency. We just input 𝐹𝑖𝑛 =

400𝑘𝐻𝑧, the clock frequency 𝐹𝑐𝑘  can be automatically about 267kHz (𝑇𝑐𝑘 = 3.7𝜇s), 
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and the pulse widths automatically to be 𝑊𝐻 = 3.0𝜇𝑠 and 𝑊𝐿 = 0.7𝜇𝑠 respectively as 

shown in Fig. 6.10. PWM signal and SEL signal are shown in Fig. 6.11. According to 

Eq. 4.2, notch can be calculated to 435kHz. From simulation, notch frequency generated 

at 415kHz shown in Fig. 6.12. From experimental spectrum of automatic notch 

frequency generation circuit, the appeared notch frequency is about 425kHz, which is 

fairly equal to the theoretical result in Eq. 4.2, and this notch appears between the clock 

and 2
nd

 harmonics of the clock frequency. 

 

Figure 6.10 Experimental waveforms of 𝑊𝐻 and 𝑊𝐿 (𝐹𝑖𝑛 = 400𝑘𝐻𝑧). 

 

Figure 6.11 Experimental waveforms of PWM and SEL signals (𝐹𝑖𝑛 = 400𝑘𝐻𝑧). 
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Figure 6.12 Simulation spectrum of PWM signal (𝐹𝑖𝑛 = 400𝑘𝐻𝑧). 

 

Figure 6.13 Experimental spectrum of PWM signal (𝐹𝑖𝑛 = 400𝑘𝐻𝑧). 

In case 2, we still set 𝑃 = 1. By just changing input 𝐹𝑖𝑛 = 600𝑘𝐻𝑧, the clock 

frequency 𝐹𝑐𝑘   can be automatically about 400kHz (𝑇𝑐𝑘 = 2.5𝜇s), and the pulse 

widths automatically to be 𝑊𝐻 = 2.1𝜇𝑠 and 𝑊𝐿 = 0.6𝜇𝑠 respectively, as shown in 

Fig. 6.14. PWM signal and SEL signal are shown in Fig. 6.15. According to Eq. 4.2, 

notch can be calculated to 666kHz. From simulation, notch frequency generated at 

610kHz shown in Fig. 6.16. From experimental spectrum of automatic notch frequency 

generation circuit, the appeared notch frequency is about 666kHz as shown in Fig. 17, 

which is fairly equal to the theoretical result in Eq. 4.2; this notch appears between the 

clock and 2
nd

 harmonics of the clock frequency. 



119 

 

 

Figure 6.14 Experimental waveforms of 𝑊𝐻 and 𝑊𝐿 (𝐹𝑖𝑛 = 600𝑘𝐻𝑧). 

 

Figure 6.15 Experimental waveforms of PWM and SEL signals (𝐹𝑖𝑛 = 600𝑘𝐻𝑧). 

 

Figure 6.16 Simulation spectrum of PWM signal (𝐹𝑖𝑛 = 600𝑘𝐻𝑧). 
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Figure 6.17 Experimental spectrum of PWM signal (𝐹𝑖𝑛 = 600𝑘𝐻𝑧). 

Fig. 6.18 shows the output voltage ripple in case 1; it shows the ripple at 0.16A and 

the transient response characteristics at 0.41A. The ripple is about 150m𝑉𝑝𝑝 and 2% of 

the output voltage and the overshoot is about 60mV. 

 

Figure 6.18 Transient response characteristics of the PWC method. 

6.3 Summary 

In this chapter we have confirmed the notch frequency by the prototype circuit using the 

pulse width coding method, and we have implemented automatic notch frequency 
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generation with the pulse width coding method. In radio receiver, if the communication 

of channel 1 becomes not good, the frequency of channel 2 is switched. So we also 

implemented automatic switching between two different input frequencies. 

When designing DC/DC converters, of course the circuit configuration and selection 

of components are important, but the PCB layout is comparable in importance. Even if 

the circuit diagram and component values are reasonable, if the PCB layout is not 

appropriate, not only will performance suffer, but correct operation may not even be 

possible. Moreover, improper layout will cause problems such as noise and instability. 

In many cases, these problems can be resolved through appropriate layout. So 

appropriate layout is very important.
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7. Conclusion 

7.1 Conclusion 

This dissertation describes the results of research on an electromagnetic interference 

(EMI) reduction in the DC-DC switching converter. Simultaneously, a novel EMI 

spread spectrum technology is proposed, that does not distribute the switching noise 

into some specified frequency bands. 

  In Chapter 1, we introduce the research background of EMI reduction. Based on the 

background, we describe that the predecessors noticed the notch characteristics appears 

in the spectrum of the output pulse in the pulse coding system in digital-to-time 

converter (DTC) circuit. We proposed the objectives of this research are using spread 

spectrum techniques for EMI reduction with suppressing diffusion of power supply 

noise and using spread spectrum technique for clock pulse with suppressing diffusion of 

power supply noise by pulse width coding method. 

  In Chapter 2, we review the function and operation of basic DC-DC switching 

converter. Moreover, the principle of the state-space averaging method required to 

derive the transfer function of the power stage in the buck converter is described. Then, 

derivation of the transfer function of the power stage in the buck converter using the 

state-space averaging method. We conclude here that the merit of buck, boost and 

buck-boost converters are high efficiency, low cost and compact. On one hand, the noise 

generation is a major disadvantage of the basic DC-DC converter. Also for the 

hysteretic control, the response is fast, but there are some demerits such as large output 

voltage ripple and big EMI noise. Soft switching has the great advantage of suppressing 

switching loss and harmonic noise. On the other hand, since soft switching is realized 

using the L and C resonance phenomena, increase in conduction loss due to resonance 

current is an issue. 

Chapter 3 found that there are the line spectra at the frequency of clock and many 

harmonic spectra in the spectrum of the PWM signal in the basic buck converter. So 

EMI reduction is needed. Then for the basic buck converters, hysteretic control 

converter and soft switching converter, we proposed new EMI reduction technologies. 

EMI noise reduction with clock frequency modulation is used by shaking the frequency 

of the saw-tooth generator. But the output ripple becomes very large with this 



123 

 

modulation. Then we created EMI reduction & ripple improvement with saw-tooth 

correction method by correcting the duty change of the PWM pulse to solve this 

problem. For the clock-less hysteretic control converter, it is difficult to shake the PWM 

pulse. We have modified the width of the COT pulse to shake the frequency of the 

operating pulse to reduce EMI noise, and created the method by shift the phase of 

comparator output to cancel the output voltage ripple. Similarly, soft switching 

converter is also clock-less converter. EMI reduction with soft switching converter is 

used by modulating the time shift of the resonance end edge. At this time, modulation of 

the resonant operation adversely affects the ZVS operation, and the output ripple also 

increases. Along with this ripple cancellation circuit, the ZVS operation is also 

improved to reduce the EMI spectrum. Furthermore, the output modulation ripple can 

be suppressed. 

  In Chapter 4, we propose an EMI spread spectrum technique with the selectable notch 

frequencies using the pulse coding methods for DC-DC switching converters of 

communication equipment. We show the relationships between the notch frequencies 

and the coded pulses in the simulation. Also we derived the theoretical formula of the 

notch characteristics. In the PWC method, the notch frequency depends only on the 

difference in the pulse width of the coding signal and does not depend on the clock 

frequency. In the PPC method, the notch characteristic depends on the twice of 

difference in pulse phase. In the PCC method, the notch frequency depends only on the 

difference in the pulse periods. In the PWPC method, the notch frequency depends on 

“pulse width” and “pulse phase”, and a strong notch characteristic can be obtained. In 

Chapter 4 , we manually set 𝑊𝐻 and 𝑊𝐿 to create notch frequency. 

  In Chapter 5, we consider about automatic generation of 𝑊𝐻 and 𝑊𝐿 to realize 

automatic notch frequency generation with PWC control and PWPC control. Also we 

have implemented a method of automatic switching between two receiving signals, 

which can realize the automatic adjustment to the input frequency change from channel 

1 to channel 2 applied in the radio receiver. Then we discuss the necessity of conversion 

voltage ratio 𝐷, and come up with the 𝐷 automatic detection method to create full 

automatic notch frequency generation technology. 

  In Chapter 6, we have confirmed the notch frequency by the prototype circuit using 

the pulse width coding method, and we have implemented automatic notch frequency 

generation with pulse width coding method. We have also implemented automatic 

switching between two different input frequencies.  
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7.2 Items for the Future Study 

  As we mentioned in Section 5.1.3, using automatic notch frequency generation with 

PWC control method, the notch characteristics can be clearly reflected at 750kHz which 

is equal to 𝐹𝑖𝑛. We found that the notch also appeared at 4𝐹𝑖𝑛. The reason why notch 

appeared at 4𝐹𝑖𝑛 is still unknown, and this will be discussed as future work. 

  It was understood that the noise component of a specific frequency could be 

suppressed by using spread spectrum technology. We just consider about letting the 

frequency of the receiving signal from the AM radio receiver be equal to the notch 

frequency, and it is possible to greatly reduce influences from other electronic devices. 

We also need to consider about high frequency notch generation such as FM radio 

receiver situation (frequency: 76-95MHz). From Eq. 4.2, notch is created at the 

difference of coding pulse parameters. For example, the broadcast of FM is 90MHz, that 

is we need create pulse in 10nS. Here, how to create high accuracy pulse is important. 

Normally, we set 𝐹𝑖𝑛 < 1.5MHz, otherwise the accuracy degrades. To generate a notch 

in the FM radio frequency band, divide the input frequency 𝐹𝐹𝑀 and then generate a 

notch with 𝐹𝑖𝑛 = 𝐹𝐹𝑀/64 as the input frequency; this method can generate a notch with 

high accuracy up to about 100MHz until now. Higher multiplication notch frequency 

creation method is under way.  
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