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Abstract

This dissertation proposes a method to derive explicit circuit parameter
conditions for stability and phase margin of the operational amplifier circuit
with various circuit topology. Based on the derived conditions, the circuit
designer knows which parameter value should be increased and which one
should be decreased to obtain its stability with enough margin. First, the
small signal equivalent circuit model of the operational amplifier is derived
and its transfer function is obtained. Then the Routh-Hurwitz stability
criterion is applied and the explicit circuit parameter conditions for the
stability are obtained, which were not obtained before. In the theoretical part,
the equivalence between Nyquist and Routh-Hurwitz stability criteria under
some conditions is shown. Next the relationship between parameters of
Routh-Hurwitz stability criterion and phase margin of the operational
amplifier are deduced. Then explicit circuit parameter conditions for the
operational amplifier stability with enough margin are obtained, which are
useful for operational amplifier analysis and design, and which could not
have been obtained with the conventional methods. In the verification part,
the above statement is confirmed with SPICE simulations at transistor level
operational amplifier circuits.

In the later part of this dissertation, an additional method is proposed to
obtain the open loop characteristics directly without opening up loop and not
need to insert any extra circuit element. This operation is called as a closed-
open conversion method to obtain the open loop characteristics with
corresponding closed loop measurement. Its principle is introduced and
simulation verification is shown. When this method reveals that the phase
margin is not sufficient for the designed operational amplifier, some
parameter values are increased or decreased based on the results obtained by
the above-mentioned Routh-Hurwitz method so that its enough phase margin
should be gained. In addition, we discuss the application of Nyquist plot for
judging the stability which is not often used by circuit designer, including
discussion on its advantages and disadvantages.

Chapter 1 introduces the research background and research objective, and
the outline of this dissertation. Chapter 2 reviews control theory and
introduces Nyquist stability criterion and Routh-Hurwitz stability criterion.
At first, we introduce the concept of feedback control system through
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practical examples, and then the transfer function and Laplace transform are
also introduced in detail. Chapter 3 briefly introduces transistor circuit and
small signal model of the operational amplifier. In this chapter we present
detailed derivation process of the proposed criterion with application to the
small signal models of the three selected amplifiers. Chapter 4 deduces
respective mathematical foundations of these criteria, and the equivalency is
demonstrated, and then, we deduce the relationship between Routh-Hurwitz
stability criterion parameters with PM (phase margin). In Chapter 5, we
select some amplifiers to verify our proposed method with theoretical
analysis and SPICE simulations. In Chapter 6, we introduce an idea for
obtaining the open loop characteristics from the closed loop measurement of
the operational amplifier. We explain its principle and our simulations have
verified the effectiveness of the proposed method by compared with the
conventional methods. Chapter 7 presents some discussions, and also
provides the future work. Chapter 8 summarizes conclusions obtained
through this research.
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CHAPTER 1
INTRODUCTION

1.1 Research background and Research objective

The operational amplifier is an important circuit that plays a crucial role
in analog signal conditioning. Examining the stability of operational
amplifier circuits has been a concern since the negative feedback circuit was
invented. The purpose of this dissertation is to use the Routh-Hurwitz
stability criterion for operational amplifier stability analysis and design, to
obtain explicit stability conditions for operational amplifier circuit
parameters [1-4]; this has not been described in any operational design
book/paper, to the best of our knowledge [5-13]. In this dissertation, we
demonstrate that the respective mathematical foundations of Nyquist and
Routh-Hurwitz stability criteria are equivalent, and we deduce the
relationship between Routh-Hurwitz stability criterion parameter with phase
margin of the operational amplifier as theoretical support and perfection for
the proposed method. Then, we verify our proposed method with some
amplifier models. Our SPICE simulation results show good agreements with
our theoretical analysis based on the proposed method.

In the control theory field, there are many criteria for judging the stability
of the feedback system [13]. For example, Nyquist stability criterion and
Routh-Hurwitz (R-H) stability criterion are widely utilized. The Nyquist
stability criterion is a graphical technique for determining the stability of
a dynamical system, and the Bode plot and Nyquist plot which are well
known and used in all application examples based on the principle of Nyquist
stability criterion. In the electronic circuit design field, Bode plot for the
open-loop frequency characteristic is the most frequently used by circuit
designers [5-12], while Nyquist plot is occasionally used [14]. However,
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strangely enough, according to our survey of the related texts about analog
electronic circuits [1-9], the Routh-Hurwitz method [12-14] is rarely
mentioned in analysis and design of the operational amplifier stability. It
seems that even some mature analog designers are not familiar with the R-H
stability criterion. On this account, we have made attempts to introduce the
R-H stability criterion into electronic circuit design field and begin with
usage for judging stability of operational amplifier.

1.2 Outline of this dissertation

The outline of this dissertation is as follows:

Chapterl
This chapter introduces the research background and research objective in
detail, and the outline of this dissertation.

Chapter 2

This chapter reviews control theory and introduces Nyquist stability
criterion and Routh-Hurwitz stability criterion. At first, we introduce the
concept of feedback control system through practical examples, and then the
transfer function and Laplace transform are also introduced in detail.

Chapter 3

This chapter briefly introduces transistor and small signal model of the
operational amplifier. In this chapter we present detailed derivation process
of the proposed criterion with application to the small signal models of the
three selected amplifiers.

Chapter 4

This chapter deduces respective mathematical foundations of these criteria,
and the equivalency is demonstrated. We also deduce the relationship
between Routh-Hurwitz stability criterion parameters with PM (phase
margin).

Chapter 5

15



In this chapter we select some amplifiers to verify our proposed method
with theoretical analysis and SPICE simulations.

Chapter 6
In this chapter we introduce a closed-open conversion method to obtain
the open loop characteristics from the closed loop measurement of the
operational amplifier without opening up the loop.

Chapter 7
This chapter presents discussions and also provides the future work.

Chapter 8
This chapter summarizes conclusions.

CHAPTER 1I
CONTROL THEORY

Control system exists in every corner of our life, not only the automatic
production line in practical industry, but also including individual human,
collectivity even more the operation of the whole human society. All these
can be viewed as control system. For example, our brains are constantly
controlling our bodies to do what we want to do, from getting up in the
morning to going to bed at night to rest.

Control system is divided into feedback control system and feed forward
control system. This chapter introduces the fundamental structure, principle
and classification of the feedback control system, which are extensively
applied to every aspect of modern industrial society, and the stability criteria
which are often used in control theory field are also introduced. Before
knowing these stability criteria, related mathematical derivation is necessary
so that we preparatory study transfer function and Laplace transform and so
on.

16



2.1 Feedback control system

2.1.1 Principle and structure

Car driving is often used as an example to explain the definition of a
control system. When we want to go to destination by driving a car, we will
operate gear, steering wheel, throttle and brake. In this case, gear operation,
brake operation and throttle operation are necessary control operations for
arriving at the destination by driving the car. As one control system, the car
is an object manipulated by our operation; the speed and position are physical
quantities in the target which we want to change and adjust.

In the control theory field, the target is called as controlled system and the
physical quantity is called as controlled variable, while the necessary
operations are called as manipulated variables. While driving, we will
encounter many disturbing factors, for example, traffic coming from the
opposite direction, animals and pedestrians which cross the street, and wind
and snow in bad weather; all of these will influence our driving, influence
the control system, and these disturbing factors are called disturbance. The
control system used in equipment and machinery without manual labor is
called as automatic control, contrast to the manual control.

]

d | reference input | T ,| adjustment | © | controlling “ | controlled Y,
element element element system
b

4{ feedback element I

v: disturbance

d: desired value

r: reference value

e efror b: feedback variable

u: manipulated variable y: controlled variable

Fig. 2.1 Feedback control system

The block diagram of the feedback system which can express the relation
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of each element and the procession is shown in Fig. 2.1. The controlled
variable that we hoped at first is called as desired value; in the driving case,
it is the definition. When we want to arrive somewhere, we will plan a route
whether it can be obtained by electronic navigation using internet or our
memories of the past and this route is the reference value. Then the
consciousness will be produced by our brain that can control our limbs to
make a series of operations that are called as manipulated variable, our brain
and our body is called as adjustment element and controlling element
respectively. If we go the wrong way, electronic navigation or our nervous
system will sense this mistake, and these perceptual actions are called
detecting element which is to be included at feedback element in Fig. 2.1[15].

Based on the feedback information, our brain or electronic navigation will
make a series of calculations and judgments, and at this moment error will
be produced:

e=r—>b (2.1)
This error will be as basis for new manipulated variable production. Above
consideration is the feedback control system. The corresponding relationship

between driving control system and human is shown as Table. 2.1.

Table. 2.1 Corresponding relationship
between driving control system and human

Control System Human

adjustmentelement brain
controlling element limbs
detecting element sense organ

18



2.1.2 Classification

At first, positive feedback and negative feedback are the most basic
classification. We introduce this classification by using the feedback circuit
that can amplify a voltage signal as shown in Fig. 2.2. Output voltage signal
v, of amplifier A through attenuation F, obtains feedback signal Fv,. Then,
the sum or difference of signal Fv, with input voltage signal v, again
inputs to the amplifier. This transformation can be expressed using the
following equations:

172 == Av1
v; =v; * Fv, (2.2)

Erase v; and obtain the voltage gain:

1% A
G = i = 1F4F (2:3)
Plus or minus sign in Eq. (2.3) is in the same order as Fig. 2.2. The condition
of plus and minus shown in Fig. 2.2 is regarded as positive feedback and
negative feedback respectively.

Under the positive feedback condition, the circuit will be unstable
when AF > 1, so the positive feedback is not much used except for oscillator
and latch circuit, whereas the negative feedback is often used in amplifier
circuit. By using the negative feedback technology, many performance
improvements can be made in amplifiers, such as suppression of gain
fluctuation, expansion of frequency band and reduction of noise and
distortion.
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Fig. 2.2 Feedback circuit

In the control system, adjustment element corresponds to the human brain,
and in this element, analog mode calculation or digital mode calculation is
processed. Based on the process mode, the control system can be classified
into analog control and digital control. As we know, only finite word length
operation such as 16 bits can be processed in the microprocessor of digital
control, so we must use an analog-digital-converter (ADC) for transforming
analog quantity into digital quantity at digital control. Conversely, the digital
quantity must be transformed into analog quantity by a digital- analog-
converter (DAC) for being used as manipulated variable [16].

Before 1960 year, the control theory which is called as classical control
theory mainly based on the transfer function method. In the classical control,
we make Laplace transform to a linear differential equation which expresses
the characteristics of the control system, and the one input-one output form
the linear time-invariant system where system parameters are invariable
regardless of time as the control system. The control element focuses only
on the input and output of the control object, but it does not consider the
internal state, and regards it as a black box. Frequency response method is
well used in the classical control.

Since 1960, in order to control an artificial satellite with high precision
and following the appearance of movement which can be expressed by a
dynamic system using a state vector, new control theory which is called as
modern control theory appeared. The modern control theory based on the
state section that departs from expressing by a state equation and an output
equation, and can correspond to multiple input multiple output form
multivariable system. Not only linear time-invariant system, but also time-
variant system and nonlinear system can be handled. In addition to the input
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and output of the system, the control element also includes state variables
that represent the internal state of the system at each time, and it is possible
to perform an evaluation analysis on the internal state of the system.

Table. 2.2 Main differences between classical control and modern control

ltem Classic control Modern control

Multiple input-multiple output form
Controlled object Qne inp.ut—or.we oqtput form Linear time-invariant system
Linear time-invariant system Time-variant system

Nonlinear system

Design & analysis domain Frequency domain Time domain

Mathematical model

Transfer function State function
Control element Only input and output Multi-input and Multi-output
of control target of control target, Internal state

Classical control theory and modern control theory own their respective
advantages; the former has rapidity and easy to operate or calculate, whereas
the later can statement and dispose the complex system. Furthermore, due to
the rapid spread of microcomputers in recent years, the theory is further
developing greatly. The main differences between classical control and
modern control are shown as in Table. 2.2.

In later chapters, we will talk about Routh-Hurwitz stability criterion and
Nyquist stability criterion which belongs to the classical control theory.

2.2 Transfer function

2.2.1 Composition of block diagram

The composition of block diagram includes signal, block, calculation and
branch. We will introduce these composition elements in turn.
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® Signal and block

X y

— A I—

Fig. 2.3 Signal and block

The variables are shown in Fig. 2.3, where x is input signal, y is output
signal, and the output signal is the input signal’s A multiples. In other words,
this symbol can be express relation as the following:

y = Ax (2.4)

Signal is expressed as arrow, the relation between two signals is expressed
as a box. In comparison with Eq. (2.4), Fig. 2.3 can clearly express the
relation between input signal and output signal, and which is the input signal

and which is output signal also can be identified obviously.

® Calculation

A\ J

Y1

Fig. 2.4 Addition symbol
The addition symbol as shown in Fig. 2.4, can express the processing, or
two signals addition into one signal and output, and this relationship also can
be expressed as the following equation:

X1+ =71 (2.5)
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Fig. 2.5 Block diagram of Eq. (2.4)

Using the addition symbol as shown in Fig. 2.5, we can also express the
processing that two signals is transformed into one signal by subtraction
calculation, and the corresponding expression equation is shown as
following:

Xo = Y2 =2 (2.6)

But in practical applications, we usually use the subtraction symbol to
express the subtraction calculation directly as shown in Fig. 2.6 after
simplification.

A\ J

Y2

Fig. 2.6 Subtraction symbol

® Branch

As shown in Fig. 2.7 (a), when the signal is needed into two-addition point,
or the condition in Fig. 2.7 (b), signal need into branch for other process such
as observation. These symbols are called as a branch symbol.
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observation

(b)

Fig. 2.7 Branch symbol

The diagram which combines above introduced signals, blocks,
calculations and branches, is called as a block diagram.

2.2.2 Differential equation and transfer function

The operation of each system in the electrical circuit, mechanical system,
and thermal system is a phenomenon that is completely different from each
other, and there is no relation between them. However, if we abstract the
various quantities that appear in these and view it as a mere signal conversion
process, these phenomena are all expressed by differential equations of the
same form. Take a first-order transfer element for example, which can
describe rotating motion, thermal system and electric circuit. Its differential
equation of the first transfer element is given by:
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dy(t) —
dt

ay(t) + bx(t) (2.7)

In Eq. 2.7, x(t)is the input applied to the system from the outside, and y(t)
Is the resulting system state. If we want to directly solve differential equation
that like Eq. (2.7), complex procedure is required and the general solution is:

y(©) = y(0)e® + [ be®™ =D (r)dr (2.8)

The second term of the equation is the convolution integral. All the
inputs x(7)(0 < T < t) from the past to the current time are involved in the
state y(t) at the current time t. However, a weight corresponding to the
elapsed time t — t from that time is applied to u(7) at the past time .

Input sine wave x(t) into the first-order transfer element as shown in
Eq.2.7 can be expressed as follows:

x(t) = |X| sin(wt + @) =5 {Xe/ot + Xe~Jot} (2.9)

Here, X = |X|e/® is a complex quantity that can express amplitude and
phase, X is conjugate complex quantity of X.

After enough time, the output signal will only include sine wave which
has the same angular frequency with the input signal:

y(£) = >{Yelot + Ve jot}) (2.10)
Substitute Eqg. (2.9) and Eq. (2.10) into Eq. (2.7) and we have as follows:

joYel®t — joVe It = a(Ye/®t + Ve /@) + b(Xe/®t + Xe™/0t)

(2.11)

Because they are equal on both sides, we can obtain:
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jwY = a¥ + bX (2.12)

Organize Eqg. (2.12), and we can obtain expression function of the element
as follows:

b
jw—a

Y =

X (2.13)

As shown in Fig. 2.8, the input signal x(t) into this transfer element and
the output signal y(t), frequency transfer function is as follows:

b
jw—a

At the dynamic system, G(jw) is the complex quantity and various
following with the input signal, and in general it is function of jw. About the
calculation method of the frequency transfer function, used the function
which can express the characteristic of the system, and mechanically instead
of d/dt into jw is satisfied. Not only the first-order linear stationary
system, the high order system also can use this thinking method about
frequency transfer function.

Xeja)t Yeja)t

v -
G(jw) >

Fig. 2.8 Frequency response
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Fig. 2.9 Four-terminal network

As a specific example, Fig. 2.9 shows the four-terminal network, the input
any voltage v;, to the terminal 11’ and the output voltage v,,;, the
following differential equations setup:

di o 1 .
vout=LE+Rl+EJldl

Vi = = [ idi (2.15)
If the input voltage is a sine wave and its angular frequency is w, we have

R
Vout = JwLi + Ri +ja)_Cl
Vi = —i (2.16)

- jwC

Therefore,

Yout _ ! (2.17)

Vin  1+jwRC—w2LC

Eq. (2.17) can express the voltage transformation characteristic of this four-
terminal network. In general control system, not only voltage and current
signal can be handled, there are many other type control systems, for
example, temperature, pressure, speed and displacement control system.
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Different types of transformation characteristics are also very much, the
input side and the output side, that is, the dimensions are often different. In
these conditions, the transformation characteristic generic name is given as
transfer function. In Fig. 2.9, the transfer function of voltage to voltage is:

G(jw) =2 = :

in  1+jwRC—w?2LC

(2.18)

The first term of Eq. (2.8) shows the influence of the initial value y(0) of
the state quantity y on the subsequent time. The second term means the
change that the input x(t) gives tox. If a < 0, the first term decays with
time, and only the second term remains after sufficient time. If the influence
of the initial value can be ignored, Eq. (2.7) can be written as:

Y(s) =—=U(s) (2.19)

Focusing on only the component of the output y(t) that is directly
influenced by the input x(t), the ratio of both Laplace transforms is taken
and defined as the transfer function of this element.

_Ys _ b
G()=15=1 (2.20)

Q

This transfer function can be obtained only set s in place of d/dt inthe
original differential equation. Moreover, the frequency transfer function
G(jw) can be obtained by setting jw instead of s in G(s).

For example, let the input voltage be x(t) and the output voltage be y(t)
in the circuit of Fig.2.9. Then, since the current flowing through the capacitor
becomes i = Cdy(t)/dt and also the current flowing through the
capacitor, the back electromotive force of the capacitor becomes L di/dt =
LC d?y(t)/dt?. Therefore,

a?y(®) dy (8) _
LCF + RCT + y(t) = x(t) (2.21)
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Here, under the initial condition y (residual voltage of the capacitor)
and y() (0), if both sides are Laplace transformed and arranged in the same
manner as the previous item, the following equation can be obtained:

_ (SLC+RC)y(0) + LC y™(0) N 1
B LCs? + RCs + 1 LCs? + RCs + 1

Y(s)

The first term in the above equation affects the output of the initial value,
and the second term represents the portion where the input affects the output,
and it can be seen that the superposition theory holds for both. Especially
when the initial values are all zero, we have the following:

Y(s) = (2.23)

LCS2+RCs+1 X(S)

The input / output relationship is represented by the block diagram of Fig.
2.10. Therefore, it can be said that the block diagram shows the input / output
ratio in the Laplace transform region when all the initial values in the system
are considered to be zero.

X(s) 1 Y(s)
LCs2+ RCs+ 1 .

\ 4

Fig. 2.10 Block diagram of LCR circuit

In a circuit using a capacitor or an inductor, the voltage-current
characteristic is expressed by a differential equation. Therefore, in order to
obtain the response of the circuit, it is necessary to solve the differential
equation. The Laplace transform converts a time domain function into a
complex frequency domain function, and the Laplace transform converts the
differential equation into an algebraic equation. Once Laplace transform is
performed, not only the time response but also the frequency response can
be easily obtained. It is also possible to determine the stability of the system
from the position of the poles of the transfer function.
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2.2.3 Laplace transform

As described in the previous section, the solving differential equation
requires complicated calculation. However, if it is limited only to the steady
state response to the sinusoidal input as described in the previous section, it
can be easily solved by the method of AC theory regardless of any frequency
value.

Input for any waveform, and without solving the differential equation,
whether the method that finds out the solution of differential equation is not?
If x(t) only has one frequency, we can use Fourier transform to expand
x(t). It can be decomposed into fundamental wave and each high harmonic
component, and then calculate the corresponding output of each high
harmonic with the frequency transfer function, and at last synthesize these
outputs. But when we use the Fourier transform, depending on the waveform
of x, it may be difficult to determine the integral value.

To overcome above trouble and question, we select to use Laplace
transform for applying to wider range of input signal wave. Laplace
transform is also an integral transform named after its discoverer Pierre-
Simon Laplace. It takes a function of a real variable t (often time) to a
function of acomplex variable s (complex frequency). The Laplace
transform is very similar to the Fourier transform, but the former is
more complicated than the later. While the Fourier transform of a function is
a complex function of a real variable (frequency), the Laplace transform of
a function is a complex function of a complex variable. Laplace transforms
are usually restricted to functions of t with t = 0. A consequence of this
restriction is that the Laplace transform of a function is a holomorphic
function of the variable s.

The Laplace transform is invertible on a large class of functions. The
inverse Laplace transform takes a function of a complex variable s (often
frequency) and yields a function of a real variable ¢t (time). Given a simple
mathematical or functional description of an input or output to a system, the
Laplace transform provides an alternative functional description that often
simplifies the process of analyzing the behavior of the system, or in
synthesizing a new system based on a set of specifications [17]. So, for
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example, Laplace transformation from the time domain to the frequency
domain transforms differential equations into algebraic equations
and convolution into multiplication [18].

Laplace transform has many applications in the sciences and technology.
At electronic circuit design field, since the voltage-current characteristics are
represented by differential equations in circuits using capacitors and
inductors, so it is necessary to solve the beautiful sentence equation in order
to obtain the response of the circuit. Once Laplace transform is performed,
not only the time response but also the frequency response can be easily
obtained. It is also possible to judge the stability of the system from the
position of the pole of the transfer function. The Routh-Hurwitz method is
based on the characteristics equation of transfer function that in s field.

Time function

(Time domain)

Input Transfer function

x(t) (Differential equation) y(t)

L[‘Tt)] Lly(®)]
X(s) Transfer function Y (s)
—_— G(s) = Y(s) >

X(s)

Complex function

(Frequency domain)

Fig. 2.11 Input / output relationship by transfer function

From frequency transfer function Eq. (2.14), Laplace transform uses s,
instead of jw, which is not limited to pure imaginary numbers and extends
it to multiple general areas.

f(t) isone function of time ¢, using complex number s as operator, and
rewrite as follows:
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F(s) = [ f(De~stdt (2.24)

F(s) = L[f(t)] is called as Laplace transform of f(t), and is written as:

F(s) = LIf ()] (2.25)
Inverse Laplace transform returns F(s) into time function:

Cc+oo

f(© = LTFO] = 5 [ F(s)etds (2.26)

The condition of Laplace transform existence is that f(t) must be a
monovalent functionat ¢ > 0 area. That is to say, there is a real number g,
that makes the following formula true:

I1f®leo0tdt < oo (2.27)

However, this condition is always satisfied whichever control system that
physically exists. The parameter ¢ in Eq. (2.26) is one real number which
IS much bigger than a.

1. Unit step function

The unit step function u(t) which is shownas in Fig. 2.12, is always used
when closing the switch in a certain circuit system for applying a constant
voltage at electronic circuit filed.
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u(t)

\ 4

—t 0 +t

Fig. 2.12 Unit step function
Unit step function is defined as follows:

1, t=0
u(t) = {0, t<0 (2.28)

The corresponding Laplace transform is as follows:

U(s) = Llu(®)] = f, u(®)e™tdt = ["1-e~stdt = [-~e™*]§ =

= lim (—le—st) +o=2 (2.29)

t—oo S S

2. Unit impulse function
Unit impulse function &(t) is always used for solving system’s function
that can express the inherent properties of the system.

5(t) = {°3 i - 8, [Z8(tdt =1 (2.30)
Use Eq. (2.24):
8(s) = L[3(D)] = [, 8(t)e~Stdt = 1 (2.31)

3. Exponential function
Using Eq. (2.24) for the Laplace transform of exponential function e4:
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F(s) = L[e™]
= [Tetestdt =[ e (TNt = [-—e DR = —  (2.32)

S—a S—a

Laplace transform of exponential function is important and used to find
solutions to differential equations. At the processing of sine wave or cosine
wave Laplace transform, Laplace transform of the exponential function is
also used after using Euler's formula to transform the sine wave or cosine
wave.

4. Sine wave function and cosine wave function.
Using Euler's formula to transform the cosine wave function and sine
wave function.

tiwt

e = coswt t jsinwt (2.33)

ejwt+e—jwt ejwt_e—jwt

coswt = ——, sinwt = ——— (2.34)
2 2j

So, we can obtain the Laplace transform of cosine wave and sine wave:

1 1 1
cos(s) = L[coswt] = 3 (S_jw + S+jw) = sszwZ (2.35)
. . 1 1 1
sin(s) = L[sinwt] = T (S_jw — S+jw) = Sszz (2.36)
5. Integral
Laplace transform of first order integral:
d
K(s) =L [%] = sF(s) — f(0) (2.37)

Laplace transform of second-order integral and third-order integral:

£[HLO) = 52F(s) - s£(0) - £(0) (2.38)

dat?
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L[] = $2F(s) = O —sf @~ f(0) (239

dat3

Laplace transform of nth-order integral:

L[EL9) = snF(s) — Bty s™ frk (2.40)

atn

6. Differential
Laplace transform of differential:

K(s) = £|[', f(0)dt] =22+ 12 (2.41)

Here, q(0) = [ f(£)dt]i=

7. Time delay wave
k(t) isthe one time wave that from wave f(t) after T time delay:

k(t) =g(t—T)u(t—T) (2.42)

The Laplace transform of k(t) is as the following:
K(s) = LIk®)] = [ gt — Tu(t — T)e stdt = e=TF(s) (2.43)

This transform is the connection bridge between time continuous analog
signal with time discretion digital signal, so its applicability is very important.
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Table. 2.3 Laplace transform of typical functions

i f(t)
Function name F =
f(t) =0,att < 0 (s) =LIf(®)]
: : 1
Unit step function u(t) _
S
Unit impulse function 8(t) 1
E tial functi 1
xponential function Fat
€ sta
. 1
-« —
te (s + a)?
. . w
Sine wave function sinwt S
s?+w?
. . S
Cosine wave function coswt S—
52+ w?
w
e *tsinwt
(s + a)? + w?
— S a
e coswt +
(s +a)? + w?

2.2.4 Basic element transfer characteristics
Simply loop block diagram of feedback linear system is shown as Fig.

2.13. G(jw) and H(jw) are transfer functions of transfer element and
feedback element respectively.
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— O 6w

H(jw)

Fig. 2.13 First-order lag element

A

In the feedback amplifier condition, the transfer function is as follows:

Y(jw) _ G(jw)
RGw)  1+G(w)HGw) (2.44)

Here, G(jw) and H(jw) are frequency spectrum of the controlled variable
y(t) and the reference value r(t) respectively.

In the feedback control system, there are proportional element, integral
element, differential element, first-order lag element, second-order lag
element and dead time element as shown in Table. 2.4.
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Table. 2.4 Basic elements of transfer function

Transfer function Transfer function
element name
Proportional element G(s)=K
Differential element G(s)=Tps
Integral element G(s) !
§)=——
T;s
First order lag element G(s) =
9 ) =157
K!
Second order lag element G(s)=———"—
s2+as+b
2
(Standard type) G(s) = Kon
s2+2{w, + w?
Dead time element G(s) = et

In automatic control and negative feedback circuits, responses to step
wave and impulse wave are important. These responses are called unit step
response and impulse response. The unit step response is sometimes called
the indicial response. In this section, we will introduce first-order lag element,
second-order lag element and dead time element, and their response for
corresponding input signal.

1, First-order lag element

K
1+ sT

\ 4

A\ J

Fig. 2.14 First-order lag element
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As shown in Fig. 2.14, an element having a transfer function whose
denominator is a linear expression with respect to s is referred to as a first-
order lag element. This transfer function itself is called a first-order lag
transfer function. When the first-order lag transfer function is expressed in
the form shown in Fig.2.14, K is called a gain constant and T is called a
time constant.

R
o N\ 0
x(t) cT y(@®)

Fig. 2.15 RC integration circuit

As shown in Fig.2.15, a circuit that includes only a resistor and a capacitor
or a resistor and an inductor, and does not include the capacitor and the
inductor at the same time is a first-order lag system. The unit step response
of this circuit is:

y(t) = L1 E . G(s)] = L-l{ K } - K (1 - e‘§) (2.45)

s(1+Ts)

The waveform of step response and impulse response are shown in Fig.2.16.
The time constant T is a parameter indicating the speed of response. At step
response, a time constant is given by extending the slope of the response
waveform at time zero as it is and intersecting the final value. The response
waveform at this time is becoming 1 — 1/e = 0.63, which is the final value.
In the circuit shown in Fig.2.16 (a) T is equal to RC. At the first-order lag
system, there are no vibration components generated.
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Fig. 2.16 Transient response of first-order lag element

2, Second-order lag element

As mentioned in the previous section, the circuit as shown in Fig. 2.9 is one
second-order lag element, and its frequency transfer function and transfer
function be expressed as Eq. (2.18) and Eqg. (2.23) respectively. In general,
the transfer function of the quadratic element can be written as:

G(s) = —Ken__ (2.46)

2420 wp+w?

Here, w,is called natural frequency, and ¢ is called damping factor. Its

characteristic equation is s? + 2{w,, + w2 = 0, anditsrootsare p; = p, =

(—( /7% — 1)wn. Therefor the unit step response is given by

_ -1 K(i)%
y(t) =4 {S(S—p1)(S—P2)} (247)

Calculated as Laplace inverse transform, and the unit step response is
classified as follows, according to the damping factor ¢:

® (> 1(p, and p, are different real roots)
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(2.48)
(2.49)
(2.50)

-1
t)e_w”t

-1

12

_ o pont sinh(y/{? — 1w,t +y)

y(t)

tanhh™1

'}/:

® ( =1(p, and p, are double roots)

Y(t)=1_(1+wn

are complex conjugate roots)

® (<1(p, and p,

V% —1lw,t + @)

sinh(

y(t) =1—e ¢nt

PR R R

1.5

t

n
Fig. 2.17 Unit step response waveform of the second-order lag system

w
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Fig.2.17 shows the response waveform when w,t is the horizontal axis
and the damping factor ¢ is a parameter. If the value of ¢ is small, the
waveform shows oscillation which is difficult to converge. On the other hand,
if it is too large, the response becomes slow and it takes time to converge.
Therefore, it can be seen that the attenuation coefficient is an important
parameter in designing the system. Generally, in order to improve settling it
is often set to about ¢ = 0.7.

3. Dead time element

x(t) y(O[=x(t - L)]

——| Go—

x(t) 4 x(t) 4

/\/ 1\ /\y/cr):x(r—m
| \ y
YA

[

0 t 0 L t

[
L

Fig. 2.18 Dead time element
As shown in Fig.2.18, an element that generates y(t) = e(t — L) as an
output signal when x(t) is added as an input signal is referred to as a dead

time element. Let us find the transfer function G(s) of the dead time
element. If the Laplace transform X(s) of the input signal x(t) is:

X(s) = [, e(Destdt (2.51)

Then the Laplace transform Y (s) of the output signal y(t) is obtained as
follows:

Y(s) = [ y(D)e tdt = e~LX(s) (2.52)

Here, taking the ratio of the input and output signals, the transfer function
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G(s) is obtained as follows:

G(s) =e st (2.53)

2.3 Stability criterion

2.3.1 Conditions for stability

It is effective to have a closed loop as shown in Fig.2.1 in order to reduce
the influence of fluctuations in parameters of the control target and control
device or various disturbances entering each part and to reduce the control
deviation. When the initial values of all integral elements included in such a
feedback control system may be regarded as 0, it is convenient to analyze
using a transfer function. Consider a system in Fig.2.19.

r(t) e(t) o) y(f)
R T B L2 Y(s)
b(t)
B(s)
H(s)

Fig. 2.19 Unit step function

If the transfer function of the forward transfer path is G(s), the transfer
function of the feedback circuit is H(s), and the Laplace transform of the
reference amount r(t), the control amount y(t), the deviation e(t), and the
feedback amount b(t) are R(s),Y(s),E(s),and B(s) respectively. Then
the following relational expression is obtained:

Y(s) = G(s)E(s) (2.54)
E(s) = R(s) — B(s) (2.55)
B(s) = H(s)Y(s) (2.56)
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Substituting Eq. (2.55) and Eq. (2.56) into Eq. (2.54), we have

Y(s) =G(s)R(s) — G(s)H(s)Y(s) (2.57)
Therefore,
Y(s) = %R(s) (2.58)
And then set:
_ G(s)
Then we have:
Y(s) = W(s)R(s) (2.60)

W (s) is the combined transfer function for the closed loop, and it is called
the closed loop transfer function. On the other hand, G(s)H(s) is atransfer
function along the loop from one end of the cut to the other end when it is
assumed that the cut is made somewhere in the loop, and G(s)H(s) is
called open loop transfer function.

When a finite arbitrary input is added to the control system, this system is
said to be stable if its output is always rooted. If the inverse transformation
of the closed-loop transfer function W (s) expressed by Eq. (2.60) is w(t),
then the necessary and sufficient condition for y(t) to be finite for any
finite r(t) is:

J, ly(@©ldt = finite (2.61)

Let us consider this condition in the s region. In Eq. (2.60), assuming that
the poles of W(s) and R(s) are all different from each other and if we
put them into p,, py, -+ -+ ,Pn, @Nd qq,qy, - , dn., then it can be expanded
into the following form:
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!

V() = Ko + Tty 7 + Xy (2.62)

]:1 S—qj

Apply inverse Laplace transform and return to the time domain:

y(6) = Ko8(0) + Xity KieP¥ + Xi_; KjeV* (2.63)

When p; or q; is a real number, and if these are positive, ePior e%*

increases with time and eventually becomes infinite as shown in Fig. 2.20. If
it is negative, it gradually decreases with time and eventually approaches
Zero.

\ 4

0 t

Fig. 2.20 Case of with real number pole p

When p; or g; is acomplex number, and if it is divided into a real part

and an imaginary part and set toa + j£, since the complex pole must be a
conjugate pair, a — jB is another pole. A combination of the terms a + jS
and a — jf# makes the system oscillatory as shown in Fig. 2.20, and if the
real part a is positive, the amplitude gradually increases with time as shown
in Fig. 2.21 (a), whereas if « becomes negative, it gradually attenuates as
shown in Fig. 2.21 (b).

45



)| y(©)]

A\ | N
\/

t t

@ a>0 (b) a<0
Fig. 2.21 Case of with conjugate complex number poles a + jB

From the above considerations, it can be seen that if at least one of p; and
q; has a non-negative real part, f0°°|y(t)|dt Is no longer finite. Since the

input r(t) is considered as a finite arbitrary input, none of the poles
q1, Gz, ,qn, Of R(s) has a non-negative real part. Therefore, the
condition for y(t) to be finite is that the real parts of the poles
D1, D1, ,pn, Of W(s) are all negative. Therefore, the condition for the
control system to be stable is that all the poles of W (s) are negative in the
real part.

As is clear from Eqg. (2.59), the pole of W(s) is the root of the
characteristic equation:

1+G(s)H(s) =0 (2.64)

Now, when these roots are drawn on the complex plane representing s as
shown in Fig. 2.22, the system is stable if all the roots exist only in the left
half plane of the imaginary axis. If there is even one root on the right half, it
becomes unstable. Also, if the root is just above the imaginary axis, it
continues to vibrate with a certain amplitude, so it is difficult to say that it is
stable.
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Fig. 2.22 Position of the pole on the s plane

A special case where the transfer function H(s) of the feedback path
becomes 1 in the feedback system of Fig. 2.23 is called a unity feedback
system. Such a configuration is called a voltage follower in the electrical and
electronic circuit area.

R(s)+=Q ES) [ 6o Y(s)

3

Y(s)

Fig. 2.23 Unity feedback system

In the unity feedback system as shown in Fig. 2.23, its transfer function is:

_ G()
W(s) = 14+G(s)

(2.65)

Then its characteristic equation is:

47



14+ G(s) =0 (2.66)

2.3.1 Routh-Hurwitz stability criterion

When designing a feedback control system, the first requirement is that
the system should be stable. If it is likely to become unstable, it is a
predecessor to take some measures to stabilize it. In the time domain analysis
of the control system theory, the Routh—Hurwitz stability criterion is a
mathematical test that is the necessary and sufficient condition for
the stability of a linear time invariant control system [13]. It uses the ideas
above to determine whether a given polynomial has roots in the right half-
plane.

If the control system is made up of a finite number of lumped elements,
G(s) is expressed by a rational function with respect to s. Therefore, the
denominator of the closed-loop transfer functionWW (s) can generally be
expressed by the following real coefficient polynomial:

D) =a,s"+a,_s" 1+ t+a;s+a;=0 (2.67)

Therefore, determining the stability can be attributed to the problem of
finding out whether the real part of the root of the characteristic equation
D(s) = 0 is positive or negative. When the order n is 2", 3" or 4" order,
it is sufficient to actually solve the characteristic equation and examine the
real part of the root. However, as the order becomes higher, it is troublesome
to find the root. Therefore, the existence of a root whose real part is not
negative may be determined by the following method.

For convenience, the coefficient in the first term is considered to be
positive. If it is negative, each term of D(s) multiplied by -1 can be
considered as a characteristic equation. If any one of the
coefficients a,,_1, Ap_o, «v .. , 01, Ay 1S negative or zero, some of the roots of
the characteristic equation have a non-negative real part. Therefore, a
necessary condition for the system to be stable is that the coefficients of all
terms of the characteristic equation are present and all are positive. However,
this is not a sufficient condition for stability. According to Hurwitz's stability
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determination, in addition to this, it is a necessary and sufficient condition
for stability that all of the Hurwitz determinants described below are positive.

The coefficients of Eq. 2.67 are arranged as Fig. 2.24, first row first
column, second row second column, third row third column, in order from
the upper left corner of this sequence. The n — 1 determinants made by
taking the above are called Hurwitz determinants. However, in some higher-
order determinants, the subscript a; of k is negative, but these are all set
to zero.

Fig. 2.24 Coefficient of characteristic equation

D D An—1 an On-1 an 0
= On— = —
1 n-1 27 |ap_z  p_y D3 =[an-3 an-z QAn—
An-5 @p-g4 An-3
an_l an 0 ............... 0
a’n_g an_z (Zn_l (xn ...... 0
Dn—l -
[ I 0 (o) a,

Fig. 2.25 Hurwitz determinant

The necessary and sufficient condition for all roots of the characteristic
equation p(s) to be real parts is that all of «a,,_4, a,_5, ... ... , a1, @y and
D,,Ds, ... ... ,D,_, are positive.

Routh’s discriminant method is equivalent to the Hurwitz method, but is
convenient for actual calculations and has the advantage of knowing the
number of unstable roots. Necessary and sufficient condition of the stability

49



is that all real parts of the solutions of characteristic equation are negative,
which is equivalent to the following:

a; > 0 fori=0, 1, ..., n, and all values of the first column parameters
in Routh table (Table. 2.5) are positive.

Table. 2.5 Routh table

sn an [+ Un—4 | Ap—g
gnt Un—1 an—3 Un-s5 | An—7
gn-2 _Op10p—p — Oply 3 _Opn-10p—y — Only_5 B
)81 - EZ - 3 34-
an-1 In-1
gn-3 Bray 5 —an 1B, _ Bran-s — an_1Ps
ypp=———— | 2= ——— | V3 Ya
ﬁl ﬁl
§0 @

In the first column of the Routh table, the number of times for the
coefficients sign changes is equal to the number of the system characteristic
equation solutions with the positive real part.

2.3.2 Nyquist stability criterion

Routh discriminant method and Hurwitz discriminant method can be used
only when the characteristic equation is given by a polynomial of s. It cannot
be applied if the coefficient value is not mathematically clear or the
characteristic equation includes a transcendental function. On the other hand,
the Nyquist stability discriminant has a feature that can be determined
graphically based on the frequency characteristic of the round transfer
function G (s).

In the feedback system, if the transfer function is G(s), the value of s
satisfying the characteristic equation as 1 + G(s) = 0 is stable if there is
no value on the right half or imaginary axis of the s plane. Therefore, as
shown by I' in Fig. 2.26(a), consider a trajectory that makes a round on the
s plane. In other words, starting from the original point 0, proceeding upward
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on the imaginary axis and reaching +joo, from there, goingto —joco around
the right side along the semicircle of infinity radius, and further upward on
the imaginary axis. Let I be the closed path that returns to zero. The system
is stable if there is no root of 1 + G(s) = 0 inside the I'. Now, as shown in
Fig. 2.26(b), consider a plane in which the real part of the round transfer
function G(s) is represented on the horizontal axis and the imaginary part
IS represented on the vertical axis. If the value of s is moved along the
trajectory I' on the s plane, the corresponding G(s) value also draws a

closed path I’ onthe G(s) plane.

+jw7 s plane +j G(s) plane
r .
b3 - F’
' —1.im ¢
| 7 (L9 \,///j“i /\\1 w=0
—a 0 I[ ta - Q /7 e I +
I /
7 N /L
N 1" jw
—jw WL _
(@) (b)

Fig. 2.26 Correspondence between s plane and G(s) plane

In other words, I’ is the conformal mapping of the trajectory I' on the

s plane by the mapping function G(s). The part surrounded by I on the s
plane is always on the right side of the orbital direction. Therefore, the
portion of the G(s) plane that is wrapped to the right in the direction of

travel of '’ corresponds to the right half of the s plane.

In Fig. 2.26(b), Q is a point on the negative real axis at a distance of 1
from the original point. The value of G(s) matches the point Q. It means
that the value of s is the root of characteristic equation 1 + G(s) = 0. From
the above considerations, it can be said that the system is stable if the

trajectory of I " does not wrap around point Q.

Nyquist plot: The Nyquist plot is a frequency response plot in
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Gaussian plane, widely used in automatic control and signal processing (Fig.
2.27(a)) [14]. The most common usage of the Nyquist plot is for assessing
the stability of the system with feedback.

Necessary and sufficient condition for the closed-loop system stability is
given as follows:

P
when,w = 0 — oo, N:E

Here, N is the number of Nyquist plot anti-clockwise encircle point (-1,
jO), and P is the number of positive roots of the open-loop characteristic
equation.

As shown in Fig. 2.27(a), if the vector locus of G(jw) passes through the
left side of the point (—1,j0) when w changes from 0 to oo, it is stable,
whereas it is unstable if it passes on the right side. In many cases, this
inference is sufficient.

t)

h

le =20
K5
] |
t 0 >
\\ ()
N | fAGw)

(a) Nyquist plot of an open-loop system
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(b) Bode plots of the loop gain for stable system
Fig. 2.27 Nyquist plot and Bode plot

Bode plot: In electrical engineering and control theory, the Bode plots
are graphs of the frequency responses (gain and phase) of the open-loop
characteristics of the feedback system, and they can show gain margin and
phase margin (Fig.2.27(b)) required to maintain feedback system stability
under variations in circuit characteristics [5-13]. Also they provide visual
representations of the operational amplifier transfer response and its
potential stability, and they can be obtained by measurements as well as the
mathematical model (small signal model) of the operational amplifier. This
principle has been widely applied to design many feedback control systems.
Circuit designers can routinely use the Bode plots to determine the
bandwidth and frequency stability of the operational amplifier circuits. We
can see from Fig. 2.27, that we can also obtain the gain margin and phase
margin from Nyquist plot.
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Fig. 2.28 Bode plots of the loop gain for unstable system
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Fig. 2.29 Bode plots of the loop gain for stable system

The frequencies at which the magnitude and phase of the loop gain are
equal to unity and —180°, respectively, play a crucial role in the stability and
they are called the “gain crossover point” (GX) and the “phase crossover
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point” (PX) respectively. In a stable system, the gain crossover must occur
well-before the phase crossover. As shown in Fig 2.29, if the magnitude plots
are shifted down, the gain crossover moves closer to the origin which makes
the feedback system more stable.

To ensure stability, |fA(jw)| must drop to unity before 2fA(jw)
crosses —180°. As shown in Fig. 2.30(a), GX is only slightly below PX, and
in Fig.2.30 (b), GX precedes PX with a greater margin. Therefore, the greater
the spacing between GX and PX (while GX remains below PX), the more
stable the feedback system is.

GX only slightly below PX
[fAGw)| T
) \/

—180° }—— —— -7 B'\

LfA(j)Y  PM

(a) Small margins
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GX precedes PX by a great margin
IfAGw)|T

GX
. J
0 BN
—180° | —___ e

LfA(w) PM

(b) Large margins
Fig. 2.30 Open-loop frequency responses for various margins between gain and
phase crossover points. GX= gain crossover point, PX= phase crossover point.

Alternatively, the phase of fA(jw) at the gain crossover frequency can
serve as a measure of stability: the smaller |fA(jw)| at this point, the more
stable the system. This observation leads us to the concept of “phase margin”
(PM), defined as:

PM =180° + £fA(w = w;) (2.68)

Here, w, is the gain crossover frequency.
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Fig. 2.31 Skeleton Bode plot

The skeleton Bode plot which is shown as in Fig. 2.31 is an approximation
of the Bode plot by a straight line when the board or zero is a real number.
By using the skeleton Bode plot, drawing is becoming easier for circuit
design and analyses. 6dB/oct is means gain 6dB increase when frequency
doubles, and 20dB/dec is means gain 20dB increase when frequency is 10
times. Drawing the phase is a little complicated than drawing the gain: in the

case of zero point, it approximates linearly to 45%t w = w,, 0%t w =

0.1w,, 90%t w = 10w,; in the case of pole point, it approximates linearly
to—45%t w = w,, 0%t w = 0.1w,,—90%t w = 10w,. Fig. 2.31 shows
how to create a skeleton Bode plot of gain and phase when there is one zero
point and one pole point.

Stability and many response characteristics are mutually restricted. For
example, in relation to response seed, if there is a good phase margin in the
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frequency analysis, the speed will be slower in the response of the feedback
system. On the contrary, if the speed of response is increased, the phase
margin is hard to guarantee and the system will perform poorly in terms of
stability.

2.4 Summary

In this chapter, we have introduced the stability criterion, including Routh-
Hurwitz stability which is unpopular in electronic field, and Nyquist stability
criterion which is widely used for judging stability by circuit designer.
Before doing this, we first introduced the principle, composition and
classification of the feedback control system in details. And then, we
introduced the related knowledge that is needed when we derive the transfer
function, including differential equation and Laplace transform. All of those
are basic theoretical knowledge, but are very important and indispensable for
carrying out research and learning in many subjects.
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CHAPTER III
OPERATIONAL AMPLIFIER AND
SMALL SIGANAL MODEL

Electronic circuits are configured using semiconductor devices such as
diodes, bipolar transistors, and MOS transistors. In the former section of this
chapter, we talk about the basic knowledge of electronics, including the
constructions and principles as well as the voltage-current characteristic of
transistors and its small signal equivalent circuit. In the later of transistor, we
duce the small signal model of several examples of operational amplifiers.
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3.1 Transistor and amplifier circuit

The most important purpose of electronic circuits is the amplification of
electrical signals. Resistors, capacitors, and coils are called passive elements
and do not function to amplify electrical signals. Active elements are
required to amplify electrical signals. Until around 1960s, vacuum tubes
were mainly used as active elements, but small and lightweight active
elements called transistors later became the mainstream, and at present,
vacuum tubes are used only in very special cases. This section describes the
basic concept of what amplification is, focusing on the transistor operating
principle and its equivalent circuit.

3.1.1 Bipolar transistor and MOS transistor

Emitter Base Collector

Fig. 3.1 npn transistor

As shown in Fig. 3.1, bipolar transistors are formed by sandwiching PN
junctions, and there are two types, npn transistors using npn junctions and
pnp transistors using pnp junctions. Fig. 3.1 shows an npn transistor.

The collector current I. varies exponentially with the base-emitter
voltage Vgg:

aVBE

IC = ISe kT (31)
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Since the base current Iz also varies exponentially with base-emitter
voltage Vgg, so the relationship between collector current I and base
current I is given by:

Iy = % (3.2)

Here, Bgis called forward current gain. Since the emitter current is the sum
of the base current and the collector current, and considering the polarity, we
have the following:

Ig=—-(g+1Ic) =— (IC +%) = —é—i (3.3)

Here, 0z is called forward current transfer rate. The collector current I, of
the bipolar transistor is determined by the base-emitter voltage Vz; and
varies exponentially with respect to the base-emitter voltage Vg . It is
basically independent of the collector voltage.

Fig. 3.2 is a plot of the collector current I, against the collector-emitter
voltage Vce using the base current Iz as a parameter. The collector current
I has little dependency on the collector-emitter voltage Vg, and is mostly
determined by the base current Iz or the base-emitter voltage Vg . This
characteristic can be expressed by a voltage controlled current source.
However, the collector current rapidly decreases in the region where V¢ is
lower than about 0.3V. This region is called a saturation region. Normally,
this saturation region should not be used as the operation region of the
bipolar transistor.
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Fig. 3.2 Collector-emitter voltage and collector current

It can be seen that the collector current I, changes with a change in the
collector-emitter voltage Vg, although it is slight. This effect is called the
Early effect. Considering the Early effects, we have the followings:

qV
I, = Ige & (1+5) (3.3)
A

The MOS transistor has a gate formed on a semiconductor with an
insulator such as silicon dioxide SiO2 and a metallic material such as
polysilicon. When the substrate is a p-type semiconductor, the drain-source
region is formed of an n-type semiconductor. Consider that a positive voltage
Vps 1S applied between the drain and source, and a voltage Vs is applied
between the gate and source. Then the current I, flows between the drain
and source when the voltage Vs is higher than a certain voltage, and when
the voltage V;s is lower than a certain voltage, the current [, does not
flow.
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Fig. 3.3 Channel in the linear region. L= the channel length.
A path through which carriers flow is called a channel. As shown in
Fig.3.3, a carrier is induced across the entire region between the drain and

the source forming a channel by the gate, and a linear region is formed. Drain
current is expressed as:

w 1%
Ip = uCpy T (Vos = Vr — %)VDS (3.4)

Here, W is the channel width, L is the channel length, V; is the threshold
voltage.
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Vv

Fig. 3.4 Channel in saturation region.

When V¢ > Vg — V7, the charge induced in the channel near the drain
disappears as shown in Fig.3.4. Drain current is obtained as:

Cox W
Ip = ﬂz T (Ves — VT)Z (3-5)

The drain current I, is determined by the gate-source voltage V;s and it
does not depend on the drain-source voltage Vs. Such a region is called a
saturation region, and often is used as the operating region of MOS
transistors.

6 4



.W./L = 4/0.4

120 ; T : — Vgs = 0.8V
linear|regipn | . satutatidn region
< 1 =|‘7| 1 | | | | 1 =V65:0'7V
E
S 7% S e e S A e S
! : ! ' ' ; : : i Vgs = 0.5V
O AL R 14
—40 R S N S S S S S
0 0.4 0.8 1.2 1.6 2.0
Vps[V]

Fig. 3.5 Voltage-current characteristics in saturation region. W= the channel
width, L= the channel length.

Fig.3.5 shows the characteristics of the drain current I, with respect to
the drain-source voltage V,s when the gate-source voltage Vs is used as
a parameter. In an actual MOS transistor, when the drain voltage changes
even in the saturation region, the drain current I, changes. One reason for
this is a change in the depletion layer thickness between the channel and the
drain. This is called a channel length modulation effect. Considering the
channel length modulation effect, the drain current Iy, is:

Cox W 1%
Ip = =2 = Vas — V)? (L + -2 (3.6)
A

Here, V, isa voltage representing the channel length modulation effect and
is called as Early voltage. Fig. 3.6 shows the voltage-current relationship of
bipolar transistors, and Fig. 3.7 shows voltage-current relationship of MOS
transistors.
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Fig. 3.7 Voltage-current relationship of MOS transistors

3.1.2 Small signal equivalent circuit of transistor

Signal amplification is possible by using bipolar transistors and MOS
transistors. For this purpose, it is necessary to obtain a change in the output
signal voltage when the transistor is kept in an appropriate operating state in
terms of DC, and the input signal voltage is changed around the operating
point. What is required in circuit design is a response to a small signal, which
is a slight change in voltage, not the voltage value itself. A small voltage
change is an input and the output voltage change is taken out as an output.
Therefore, characteristics of the output change with respect to the input
change are required, and a small signal equivalent circuit that is a circuit
focused only on the signal change is required.

In the bipolar transistor circuit, the collector current I is a function of
the base-emitter voltage Vg and the collector-emitter voltage V.
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Ic = Ic(Vgg, Vcg) (3.7)

Taylor expansion of Eq. (3.7) is given by:

a1
Ic + Al = Ic(Vgg, Veg) + ﬁAVBE T,

ole_ Ay, (3.8)
CE

Proportional coefficient of collector current I change Al to base-emitter
voltage Vgzr change AVye is called as transconductance:

dl¢ _Ic

AVgE m =y

(3.9)

Proportional coefficient of collector current I change Al. to collector-
emitter voltage V.z change AV, is called as collector conductance:

Ol _, 1 (3.10)

oVcE o go To

Proportional coefficient of base current Iz change Alz to base-emitter
voltage Vgzr change AVyg is called as input conductance:

_ AIB _ g_m
Ir = == 5 (3.11)

Small signal equivalent circuit of the bipolar transistor is as shown in Fig.
3.8. The parameter 1, is base spreading resistance, when the current flows
through the base, the voltage applied to the base-emitter junction decreases.

r=— 1, = — (3.12)
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Fig. 3.8 Small signal equivalent circuit of bipolar transistor

In the small signal equivalent circuit of the MOS transistor as shown in
Fig. 3.9, it is necessary to consider the back gate effect. Since the drain
current I, is a function of the gate-source voltage Vs, the drain-source
voltage V)¢, and the body-source voltage Vi, it is expressed as follows:

Ip =1p (VGS' Vps, VBS) (3-13)

The state when the gate-source voltage Vs, the drain-source voltage Vg,
and the body-source voltage V3¢ change slightly is expressed as follows by
Taylor expansion:

al

d B
AV,
dVps BS

al I
Ip + Al = I (Vgso, Vpsor Veso) + _aVD AVgs + _VD AVps +
GS DS

d
(3.14)

dlp dlp dlp
= —= = —_— = 3.15
aVGS m» aVGS D> s gmb ( )

v
mvas ImbVBs

Go—r o—>

B
EGSTF UBST Tp =£

Fig. 3.9 Small signal equivalent circuit of MOS transistor
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3.2 Small signal model

The operational amplifier is a high gain amplifier originally used in an
analog electronic computer, and performs addition / subtraction, calculus,
and other operations. With the progress of integrated circuit technology,
operational amplifiers have also been integrated, and very high performance
operational amplifiers have become available at low cost. By using an
operational amplifier, various operational amplifiers including an amplifier
circuit can be easily realized with high performance. Sometimes a simpler
and better circuit is obtained than when individual components are used.

This section shows several examples of operational amplifiers and
applications of the proposed stability criterion to them.

3.1.2 Two-pole operational amplifier with C

compensation.
"I VDD
Vb iaso—_l = E
Vin
ff—_' o _'_Vl;.out

in IC |
lr_l s

(a) Transistor level circuit.
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(b) Small-signal model.
Fig. 3.10 Two-pole amplifier with inter-stage capacitance. Ry, R,= equivalent
resistors, €4, C,= equivalent capacitances, G,,;, G,,>= transconductances, and
C,1= compensation capacitance.

Consider the two-pole amplifier in Fig. 3.10 whose open-loop transfer
function is given by:

G(s) = K —221° (3.16)

1+a,s+a,s?’

Cr1

Here, bl - - y K = GmleleRz,

Gmz
a1 - R1C1 + RzCz +(R1 + Rz + RleZRZ)CT1 y

C
az = R1R2C2 [Cl + (1 + C_:) Crl] (3.17)

Fig. 3.11 (b) (c) show feedback amplifiers using the operational amplifier
in Fig. 3.10(a), and their closed-loop transfer function is obtained as follows:

G(s) _ K(1+bys)
1+/G(s)  14fK+(ar+/Kby)s+ass? (3.18)

R,
R{+R,

Here f =

for Fig. 3.11 (b) and f =1 for Fig. 3.11 (c).
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A 4

A(s)

f

(a) Block diagram

(b) Circuit example 1 with f = R,/(R; + R,).
74 D_K Vout
mn A(/S) O

(c) Circuit example 2 with f = 1 voltage follower
Fig. 3.11 Feedback systems

Application of the proposed criterion
Then we set a parameter 6 as follows:
0 =a, + fKb, (3.19)
Using Eq. (3.17), the parameter 6 is obtained as follows
0 = Ry Cy + RyCoH(Ry + R3)Cry + (Gz — fGmi)RiR, Gy (3.20)
Based on the R-H stability criterion, we can obtain the following as the
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necessary and sufficient condition for the operational amplifier feedback
circuit stability:

0>0 (3.21)
Note that the explicit stability condition in Eqg. (3.20), Eqg. (3.21) cannot
be found out in any analog circuit design book [6-13], to the best of our

knowledge. We can see from Eq. (3.20), Eq. (3.21) which parameter values
should be increased or decreased to obtain the feedback stability.

3.2.2 Two-pole operational amplifier with R, C

compensation.

VDD
I
V+

Vaut

(a) Transistor level circuit.
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(b) Small-signal model
Fig. 3. 12 Two-pole amplifier with compensation of Miller right-half-plane zero.
R4, R,= equivalent resistors, €4, C, = equivalent capacitances, G,,1, Gn2=
transconductances, C,;= compensation capacitance, and R,= compensation
resistor.

The closed-loop transfer function of the feedback amplifier using the
operational amplifier in Fig. 3.12 is given by

G(s) _ K(1+b,5)
14fG(s)  1+fK+(a;+fKby)s+a,s? (3.22)

C
Here, b, = — (G”

- Rr Crz);

K = Gpn1GmaR1R2, a3 = RiRyR,.C1C,C,,
a1 - R1C1 + chz + (Rl + RZ + R-r + RleG'mz)Crz,
a; = RiRy(C3C; + GGy + C1Cr) +R.Cry(R1Cy + R,C5) (3.23)

m2

Then we can obtain the parameter a; as follows:

o, = (ay + fKby) = R1C; + RyCot(Ry + Ry + R )Gy + (Gz =[Gy +
meleZRr)RlRZCTZ- (324)

and the Routh table’s parameter f3; is given by

_ (a; + fKby)a, — as(1 + fK)
a

b1
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=R1C; + RyC+(Ry + R, + R)Cop + (G — fGpy +
R1RC1CoRyCrp(14f Gin1 GmaR1R7)

f Gm1 Gz Rr )RRz Cra = Ry R;(C2Crp+Cy Co+Cy Crp)+RyCra (RyCr +R2C5)
(3.25)
The stability condition is as follows:
>0, BrL>0 (3.26)

Again, the explicit stability condition in Eq. (3.24), Eq. (3.25), Eq. (3.26)
cannot be found out in any analog circuit design book [6-13], to the best of
our knowledge, and we understand from Eg. (3.24), Eq. (3.25), Eq. (3.26)
which parameter values should be increased or decreased to obtain the
feedback stability.

3.2.3 Three-pole operational amplifier.

(a) Transistor level circuit.
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(b) Small-signal model
Fig. 3.13 Three-pole amplifier with inter-stage capacitance.R4, R,, R3=
equivalent resistors, €4, C,, C3= equivalent capacitances, G,,1, Gmz2, Gmz=
transconductances, and C,3, C,,= compensation capacitances.

The closed-loop transfer function of the feedback amplifier using the
operational amplifier in Fig. 3.13 is given by

G(s) _ K(1+b,s+b,s?)
1+fG(s)  1+fK+(ai+fKby)s+(az+fKby)s2+ass3’

(3.27)

Where, K = Gmle2Gm3R1R2R3,

Cr3 Cra Cr3Cra
by = _(G tg ), by = Gz G
m2 m3 m2Yms3

a; = 7‘3(R1 + RZ + GmZRlRZ) + Cr‘4—(R2 + R3 + Gm3R2R3) + R1C1 +

R,C, + R5Cs.
aZ = CTS(Gm2R1R2R3C3 + (R1+R2)R3C3 + RlRZ(Cl + CZ)) +

CT4-(Gm3R1R2R3C1 + (R2+R3)R1C1 + R2R3(C2 + C3)) + CT'3C7"4((Gm2 +

Gms)RiR,R; + RyR, + RyR; + R1R3) + R R,C,Cy, + RyR3C,C5 +

R,R3C,Cs.
as = RiRyR3[Cr3(CoC5 + C1C3) + Crp(C1Co + € C3) + Gy Gy (€1 + G5 +
Cs) + C,C,Cs]. (3.28)

Then we can obtain the parameter d,:
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62 = aq +be1 = CT‘3(R1 + RZ + szRle) + Cr4(R2 + R3 +

Cr Cr
GmaRzRs) + RiCy + RyCy + RaCs = f Gy Gz GmsRy RoR3 (22 + 5.
(3.29)
and the Routh table’s parameter f,:
B, = (a1+fKby )(az+fKby )—az(1+fK) (3.30)
L a2+be2 )
The stability condition is as follows:
a,>0, B, > 0. (3.31)

Again, the explicit stability condition in Eg. (3.29), Eqg. (3.30), and Eq.
(3.31) cannot be found out in any analog circuit design book [6-13], to the
best of our knowledge.

In this section, we select three circuit configurations as examples for
deducing the explicit stability condition based on proposed method. For
other circuit configuration, the R-H method would can be applied at the
condition that if we can derive its characteristic equation of closed-loop
transfer function and Routh table.

3.3 Summary

A circuit that amplifies a signal voltage and/or current whose amplitude is
sufficiently smaller than the DC device voltage and current is called a small
signal amplifier. In the small signal amplifier, the DC device voltage, current
and the signal voltage, and the current can be calculated separately, and the
signal component can be analyzed by a linear equivalent circuit. In this
chapter, we introduce the transistor and its small signal equivalent circuit.
Combining with practical examples, we deduce the small signal model of
several examples of operational amplifiers, we will explore the relationship
that between R-H stability criterion with Nyquist stability criterion using
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these small signal models in the next chapter.
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CHAPTER IV
THEORETICAL
DEMONSTRATION

In the research of science and engineering, we lay emphasis on the
calculation and analysis of simulation and experimental data, but the
theoretical part of the research is also important. Formula derivation and
numerical analysis are the premise and guarantee of experiment. The
theoretical feasibility can help us better analyze the experimental results and
make our experimental data more convincing.

This chapter shows the equivalency between the Nyquist stability criterion
and the R-H stability criterion in some conditions and the relationship
between R-H parameters and phase margin, as the verification of theoretical
part for this dissertation. For finding out if there is a connection between R-
H stability criterion and Nyquist stability criterion, we deduce the stability
conditions based on the R-H stability criterion and Nyquist stability criterion
respectively, and then we compare and judge these stability conditions. We
analysis three transfer function examples from simple to complex of the pole
and zero. For finding out the relationship between R-H parameters and
stability index phase margin, we have also conducted corresponding data
analysis using examples.

4.1 Equivalence at mathematical foundations

78



(—1,70) A _/m =0

(a) Sketch of Nyquist plot
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(b) Sketch of Bode plot
Fig. 4.1 Sketch diagram

Example 1: Select one amplifier whose open-loop transfer function is
given by

K(1+b15)
1+a;5+a,s?

G(s) = (4.1)

Fig. 3.11 (c) shows a feedback amplifier (voltage follower) using this
operational amplifier, and its closed-loop transfer function can be obtained

79



as follows:

G(s) _ K+Kbqs
1+G(s) 1+K+(a,+Kbq)s+a,s?

H(s) = (4.2)

Based on the R-H stability criterion, we can also deduce the stability
condition as following:

1+4K>0, a,+Kb, >0, a, >0 (4.3)

We can obtain stability condition:

K<—%, incase b, <0
1

K > —%, in case b; >0 (4.4)

1

In frequency domain, Eq. (4.1) is represented as:

G(ja)) _ K(1+b(jw))

T 1tay(jw)+ay(jw)?

K (1-a,0? +bja w?)+jK(byw-a,w—a b w?) (4.5)

(1-a,w?)2+a?w?

According to the explanation of Nyquist plot that has been introduced in
previous chapter, and based on the sketch Nyquist plot as shown in Fig.
4.1(a), we can find out that if the open-loop system is stable (P = 0), the
Nyquist plot must not encircle the plot (—1,j0). So the stability condition is
given as follows:

LG(jwy) = —1 (4.6)
|GGwz)| <1 (4.7)

Here, w, is the frequency at point A.
Also according to the explanation of Bode plot that has been introduced
in the previous chapter, and based on the sketch bode plot as shown in Fig.
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4.1(b), we can find out that if the open-loop system is stable, the Bode plot
should satisfy the following conditions:

LG(jw,) = —T (4.8)
GM = 0 — 20lg|G(jw,)| > 0 (4.9)

By simple derivation, we can found out the stability condition that
respective based on Nyquist plot and Bode plot as shown in Eq. (4.6), Eq.
(4.7) and Eq. (4.8), Eq. (4.9) is actually identical.

Considering that Eq. (4.5), Eq. (4.6) and Eq. (4.8), we can obtain:

1
w3 = —(1- Z— (4.10)
Hence, the amplitude value of the point A is:

1,81,y _ |
. K|b1+a2(b1 ap)

=K
(b1-ay)|

_ 2 2
G (wp)| = |[Faazoe cied) (4.12)

2 2, 2
(1-aw%)?*+ajws

b,
a

P aiay
|GH2 it

by azbyq 1

Based on calculation of Eg. (4.11) and condition Eqg. (4.7) and Eq. (4.9),
we can obtain the following inequality expression ultimately:

— A <K< incase a;b; >0
by by

% <K< —%, incase a,;b; <0 (4.12)
1 1

Clearly, inequality expressions Eq. (4.4) and Eq. (4.12) are equivalent
under some conditions. So, we can say that mathematical foundations of
Nyquist and R-H stability criteria are equivalent.

Example 2: Select one amplifier whose open-loop transfer function is
given by
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K(1+b4s)
1+a,s+a,s?+azss

G(s) = (4.13)

Fig. 3.11 (c) show a feedback amplifier (voltage follower) using this
operational amplifier, and the closed-loop transfer function is obtained as
follows:

H(S)_ G(s) K+Kbqs
1+G(s) 1+K+(a;+Kbq)s+a,s?+azs3

(4.14)

Based on the R-H stability criterion, we also can deduce the stability
condition as following:

1+4K>0, a; +Kb; >0, a, >0, az >0,
a(aq1+Kb)—az(1+K) >0 (4.15)

az

We can obtain stability condition:

K>Z"22 incase a,b—az; >0
azb—ag

K <=2 incase a,b—az; <0 (4.16)
azb—ag

In frequency domain, Eq. (4.14) is represented as:

K(l + bl(ia)))
1+a,(jw)+a,(jw)? + az(jw)?3

G(w) =

_ K[(1-aw?+aib;w?—azbw®)+j(biw—abiw3-a;w+azw?)] (4.17)

(1-a,w?)2+(a,w—azw3)?

According to the explanation of Nyquist plot that has been introduced in
the previous chapter, and based on the sketch Nyquist plot as shown in Fig.
4.1(a), we can find out that if the open-loop system is stable (P = 0), the
Nyquist plot should not encircle the plot (—1,j0), so the stability condition
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Is given as follows:

£G(jws) = —T (4.18)
1G(ws)| < 1 (4.19)

Here, w; is the frequency at the point A.

Also according to the explanation of Bode plot that has been introduced
in the previous chapter, and based on the sketch bode plot as shown in Fig.
4.1(b), we can find out that if the open-loop system is stable, the Bode plot
should satisfy the following conditions:

LG(jw,) = —T (4.20)
GM = 0 — 201g|G(jw,)| > 0 (4.21)

By simple derivation, we can found out the stability condition that
respective based on Nyquist plot and Bode plot as shown in Eqg. (4.18), Eq.
(4.19) and Eq. (4.20), Eq. (4.21) is actually identical.

Considering Eq. (4.17), Eqg. (4.18) and Eqg. (4.20), we can obtain:

w? = _Gamby (4.22)

az—azbq
Hence, the amplitude value of the point A is:

az—azbq

. _ |K(-a,w3+a;b;wi—-azbiw3)
Gw3)| = |——— —
(1-axw3)*+(a;w—-azw3)

(4.23)

asz—aqa;

Based on calculation of Eq. (4.23) and condition Eq. (4.19) and Eq. (4.21),
we can obtain the following inequality expression ultimately:

az—a,a; az—a a, -
P <K< p——— incase (a3 — a,a,)(az — ayb) >0
az—a,a; az—a,a, -

ey <K <pa in case (a3 — a;0,)(a3 — azb) <0 (4.24)

Clearly, inequality expressions Eq. (4.24) and Eq. (4.16) are equivalent
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under some conditions. So, we can say that mathematical foundations of
Nyquist and R-H stability criteria are equivalent.

Example 3: Select one amplifier whose open-loop transfer function is
given by

K(1+b15+b252)
1+a,s+a,s2+ass3

G(s) = (4.25)

Fig.3.11(c) show a feedback amplifier (voltage follower) using this
operational amplifier, and the closed-loop transfer function is obtained as
follows:

H(s) = G(s) K+Kb;s+Kb,s?
1+G(s) 1+K+(a;+Kbq)s+(a,+Kby)s2+azs3

(4.26)

Based on the R-H stability criterion, we also can deduce the stability
condition as follows:

(az + sz)(al + Kbl) - a3(1 + K) > O (427)
Let set one function:

f(K) = (a; + Kby)(ay + Kb,) — az(1 + K)
- bilbz + Ka1b2 + Ka2b1 - Ka3 + a1a2 - a3 (428)

® Domain of definition K € (0, +o0)
® Initial value:
f(0) =aja;, —a; (4.29)
® Derived function:
f,(K) == 2Kb1b2 + a1b2 + a2b1 - a3 (430)
For getting to the stability condition Eq. (4.27), the following conditions

should be satisfied:
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f(0)>=0,and f'(K) >0 (4.31)
Thus, the stability condition yields to the following:

2Kb;b, + a,b, + ab; —a; >0 (4.32)
at condition: a,a, —as > 0.

In frequency domain, Eq. (4.25) is represented as:

K1+ b,(jw) + b,(jw)?)

G(jw) = 1+a,(jw) +a,(jw)? + az(jw)?3 -

K (1—ayw?-b,w?+aybyw*+a;byw?—azbiw*)+jK(azw3—a,w+a;byw3—azb,w®+biw—a, by w?)

(1—a,w?)2+(a,w—azw?3)?2

(4.33)

According to the explanation of Nyquist plot that has been introduced in
the previous chapter, and based on the sketch Nyquist plot as shown in Fig.
4.1(a), we can find out that if the open-loop system is stable (P = 0), the
Nyquist plot must not encircle the plot (—1,j0), so the stability condition as
follows:

LG(jw,) = —T (4.34)
1G(w,)| < 1 (4.35)

Here, w, is the frequency at point A.

Also according to the explanation of Bode plot that has been introduced
in the previous chapter, and based on the sketch Bode plot as shown in Fig.
4.2(b), we can find out that if the open-loop system is stable, the Bode plot
should satisfy the following conditions:

LG(jw,) = —T (4.36)
GM = 0 — 201g|G(jw,)| > 0 (4.37)

By simple derivation, we can find out the stability condition that
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respective based on Nyquist plot and Bode plot as shown in Eq.(4.34),
Eq.(4.35) and Eq.(4.36), Eq.(4.37) is actually identical.
Considering Eq. (4.33), Eqg. (4.34) and Eq. (4.36), we can obtain:

aga)z - ala)4 + albza)z - agbzwf + b1(I)4 - azblwg = 0 (438)
After transformation, we can obtain:

_ 2 _ 2
1 - qy0f = Co2elth o) (4.39)
1

Hence, the amplitude value of point A is:

|G(](U )l _ |Kl—azwﬁ—bzwi+a2b2wf{+a1b1wﬁ—a3b1wﬁ _ _ Kbl
4 (1-a,w5)?+(a1ws—az w3)? la;—azw}|
(4.40)

From Eq. (4.38), we have
a3b2(1)f1_} + (azbl - albz - a3)w42 + Cl1 - bl = O (4.41)

Solution of Eq. (4.41):

2 _ a3+a1b2—a2bli\/(a2b1—a1b2—a3)2—4a3b2(a1—b1) ~ a3+a1b2—a2b1

o 2a3b2 2a3b2 (4.42)
From Eq. (4.42), Eq. (4.40) and condition Eq. (4.27):
. _ K|bq| K|b,| _ K|2b,b,|
|G(](U4-)| - |a1—a3wﬁ| - |a1_a3%| - |ayby+aybi—as| < 1 (443)

By calculation we can obtain the following inequality expression ultimately:
as - a1b2 - a2b1 < 2Kb1b2 < a1b2 + azbl - a3
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|n Case a1b2 + azbl - a3 > O

albz + azbl - a3 < 2Kb1b2 < a3 - albz - a2b1
|n case a1b2 + a2b1 - a3 < 0 (444)

Clearly, inequality expressions Eq. (4.32) and Eq. (4.44) are equivalent
under some conditions. So, we can say that mathematical foundations of
Nyquist and R-H stability criteria are equivalent.

4.2 Relationship between R-H parameters and

phase margin

Examplel: Consider the two-pole amplifier as shown in Fig. 3.10.
Accordingly, Fig. 3.11 (b) shows a feedback amplifier using this operational
amplifier, and its closed-loop transfer function is shown in Eqg. (3.18). Based
on the R-H stability criterion, we can obtain the explicit stability condition
is shown in Eq. (3.21).

Table. 4.1 Data collection

/=0.01
Cyq [fF] 10 20 30 40 50 60 70 80 90

0 [uS] 0.11 10.18 10.25) 0.32 ] 0.39 | 0.46 | 0.53 | 0.60 | 0.67
PM [degree]| 16 19 22 24 27 29 31 33 34
GM [dB] 91 [ 76 | 70 [ 66 | 64 [ 63 | 62 | 6.0 | 8.0

Fgm [GHz] | 45 | 34 [ 29 | 26 | 23 | 21 | 20| 19| 18

FymiGHzl| 26 | 214 | 18| 15| 14 | 12|11 ]| 10| 94

We define the R-H parameter 6 as one time dimension parameter. Using
the parameter values of short-channel CMOS devices, and calculating the
values of parameter 6 and the corresponding operational amplifier system

phase margin (PM), gain margin (GM), F,,,, and F,,, at various feedback
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factor f conditions, using MATLAB. F,,, is the frequency where the gain

margin is measured, which is a —180° phase crossing frequency in Bode

plot, and F,,, is the frequency where the phase margin is measured, which

isa 0dB gain crossing frequency in Bode plot. For example, when feedback
factor f = 0.01, we can obtain the values as Table. 4.1.

Using the polyfit function of MATLAB, we can obtain the fitted curve
which can indicate the relationship between parameter 6 with phase margin
as shown in Fig. 4.2 in variation feedback factor conditions. In feedback
factor f = 0.01 condition, we can obtain the fitted curve as shown in Fig.
4.3, and its corresponding relation function is given as follows:

PM = 2.601e%805 — 5.616e230* + 4.683e1803 — 1.915e1362 +

4.076e280 + 13.38 (4.45)
60 PM VS theta
50
o
S0}
=
o 30
20 | | | | | |
0 1 2 3 4 5 6 7
thetals] %1078

Fig. 4.2 Relationship between PM and parameter 0 in various feedback factor
conditions. PM= phase margin, theta= parameter 0.
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+ PM vs. theta
—curve fitting

PM[degree]

20

| | | |

0 1 2 3 4 5 6 7
thetals] %107°

Fig. 4.3 Relationship between PM and parameter 0 at feedback factor f =
0. 01 condition. PM= phase margin, theta= R-H parameter 0.

As shown in Fig. 4.2 and Fig. 4.3, the PM and the R-H parameter 6 have
the monotonic relationship, following with increase of the parameter value,
the phase margin increases, in other words, the feedback system becomes
more stable.

We can calculate the required value of the compensation capacitor, for a
given operational amplifier PM, based on the calculated value of the
parameter 0.

Example2:  Consider the two-pole amplifier as shown in Fig. 3.12,
whose open-loop transfer function is given by

1+a,5+a,s2+azs3

(4.46)

Accordingly, Fig. 3.11 (b) shows a feedback amplifier using this
operational amplifier, and its closed-loop transfer function is shown as Eq.
(3.22). Based on the R-H stability criterion, we can obtain the stability
condition is shown as Eq. (3.26).

We also define the R-H parameter a4, 3; as time dimension parameters.
Using the parameter values of short-channel CMOS devices, and calculating
the values of parameters a,, f;and the corresponding feedback system PM,
in variation feedback factor f conditions by MATLAB. In feedback factor
f = 0.01 condition, we can obtain the relation function in Fig. 4.4, when
parameters a4, ; as independent variables and PM as dependent variable
by using interpolation function in curve fitting tool of MATLAB.
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Fig. 4. 4 Relationship between PM with parameter a4, 8 in feedback factor
f = 0.01 condition. PM= phase margin, a4, ;= R-H parameters.

As shown in Fig. 4.4, the relationship between R-H parameter a4, 8; with
PM is monotonic one, and following with increase of the parameter value,
the phase margin increases, in other words, the feedback system becomes
more stable.

4.3 Summary

During our derivation using various examples, we can find out that the
inequality expressions respective based on Nyquist and R-H stability criteria
are equivalent under some conditions. So, we can say that mathematical
foundations of Nyquist and R-H stability criteria are equivalent. Through the
analysis of the data in the software we found that the relationship that
between R-H parameter with phase margin is monotonic one, and following
with increase of the parameter value, the phase margin increases, in other
words, the feedback system becomes more stable.
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CHAPTER V
VERFICATION WITH
SPICE SIMULATION

In this chapter, we describe the verification of our theoretical analysis and
derivation results obtained in the previous chapter. The simulation is
performed with LTspice (Linear Technology Simulation Program with

Integrated Circuit Emphasis) software which is one of SPICE simulators for
free.

5.1 Equivalence verification

Table. 5.1 Parameter values of the amplifier 1

Parameter values R_H Bode plot
criterion
SPICE
case| R; Cy R, G, Gmi | Omz | G 0 simulation
(W) | 50k | 10f |10k | 0.1p| 0.01 | gm 1p | <0 unstable

(2) | 50k 1f 10k 101 | 0.01 8m | 0.1p <0 unstable

(3) | 100k | 100f | 10k 1f | 9m | 4m |[01p | <O unstable

(4) | 100k | 5f |90k 3f | 8m | 75m |09p | =~ |criticalstable
(5) {100k | 3f |50k | 1f | 85m| 8m |[05p | =0 |critical stable
() |1meg | 6f |500k| 05f| 80u | 70u | 1f | =0 |critical stable
(M| sok | 10f | 100 | 01p| 001 | 8m | 1p >0 stable
(8) | 100k | s5f |90k | 3f | 80u | 70u|09p| >0 stable

(9) | 150k | 6f | 100k | 15| 8ou | 70u |05P | >0 | stable

We calculate the values of the parameters 6, oy, 8, asshown in Eq. (3.20),
Eq. (3.24), Eq. (3.25) and depict Bode plots using SPICE for judging stability
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of the amplifier with the voltage follower configuration (Fig. 3.11(c)) for
amplifiers 1, 2 . See Table. 5.1, Figs. 5.1, 5.2, 5.3 as amplifier 1, Table. 5.2,
Figs. 5.4, 5.5, 5.6 as amplifier 2.

Table. 5.2 Parameter values of the amplifier 2

R-H
Parameter values criterion | Bode plot
SPICE
e G R, Co | Gm |Gmz | Br| Go | % | P simulation

(1) [115k| 5f | 100k | 80f [9m | 8m | 5 | 05p [ <0 [ <0 | unstable

(2) | 50k | 57 | 10k | 10f | 9m | gmu | 2 | 02p | <0 | <0 | unstable

(3) [150k | 5f | 100k| 10f | 9m | 8m 1 08y |<0|<0 | unstable

(4) [110k | 10f | 10k 3f 0.01 | gm 5 0.5 | = ~ critical

(5) [115k | 10f | 100k | 3f | 001 | gy | 5 | 05f | =0 | =0 | critical

(6) |150k| 8f |100k| 50f | 7m | 8m | 10 |0.6p |>0 | >0| stable

(7) 1100k | g | gok | 50f | 6m | 8m | 5 [ 06p |>0 | >0| stable

(8) |200k| 5f 150k | 10f 5m | 7m |25 | 06p [ >0 > 0| stable

Then we show analysis between their simulation results and the parameter
values of 6, a; and ;. We found out the following: when 6, a, and f;
are greater than 0, less than 0 and approximate to 0, then the corresponding
amplifier with the voltage follower configuration in Fig. 3.11 (b) is stable,
unstable and critical stable respectively.

We can distinctly find that the amplifier stability depends on the
parameters 0, a,, 1, and the feedback system is stable if and only if the
parameters 6, o; and [; are positive.
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Fig. 5.1 Bode plots for case (1) of unstable amplifier 1. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.2 Bode plot for case (6) of critical stable amplifierl. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.3 Bode plot for case (7) of stable amplifier 1. GX= gain crossover point,
PX= phase crossover point.
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Fig. 5.4 Bode plot for case (3) of unstable amplifier2. GX= gain crossover point,
PX= phase crossover point.
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Fig. 5.5 Bode plot for case (5) of critical stable amplifier 2. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.6 Bode plots for case (8) of the stable amplifier 2. GX= gain crossover
point, PX= phase crossover point.
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5.2 Application verification

Using the parameter values of short-channel CMOS devices (Appendix),
and calculating inequality expressions Eq. (3.21) and Eg. (3.26), we can
obtain the value range of the compensation capacitor C,.; :

C,, > 79.57fF (5.1)
We also obtain the following inequality expression:
3.5x 1078 +3.7 x 101°C,, + R,C,, + 831.7R, >

4.3x1078R,Cpy
5.1%x10717+4.3X1073C,+3.5X1078RCyy

(5.2)

Let,
X =35%x107% 4+ 3.7 x 10*°C,, + R, C,, + 831.7R,
4.3X1078R,Cpy

Y = (5.3)

 5.1x10717+44.3X1073C;2+3.5X10"8R,-Cyy

We select several values of the parameters in Eqg. (5.1), Eq. (5.2) and depict
their Bode plots using SPICE (LTspice) for judging stability of the amplifier
with the voltage follower configuration. See Table. 5.3, Fig. 5.7~Fig. 5.12 as
amplifier 3, Table. 5.4, Fig. 5.13~Fig. 5.18 as amplifier 4. The frequency in
these transient analysis simulations is 1 x 10°Hz.

Table. 5.3 Parameter values of the amplifier 3

case Cr SPICE

(1) 2.4pF stable

(2) 79.57fF critical stable

(3) 10fF unstable
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Fig. 5.7 Bode plot for case (1) of the stable amplifier 3. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.8 Bode plot for case (2) of the critical stable amplifier 3. GX= gain
crossover point, PX= phase crossover point.
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Fig. 5.9 Bode plot for case (3) of the unstable amplifier 3. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.10 Pulse response for case (1) of the stable amplifier 3
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Fig. 5.11 Pulse response for case (2) of the critical stable amplifier 3
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Fig. 5.12 Pulse response for case (3) of the unstable amplifier 3

Table. 5.4 Parameter values of the amplifier 4
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Bode plot
Parameter values R-H P

criterion SPICE
Case| R, C X Y simulation

(1) | 6.5k |2.4p | 1.41x 107> 6.13x1078 | X>Y | stable
(2) | 1 |24p | 1.10x107% | 994x10712 | X>VY | stable

(3) | 7k | 10f 9.8 x 1078 3.10 x 1078 X=Y critical
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Fig. 5.13 Bode plot for case (1) of the stable amplifier 4. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.14 Bode plot for case (2) of the stable amplifier 4. GX= gain crossover
point, PX= phase crossover point.
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Fig. 5.15 Bode plot for case (3) of the critical stable amplifier 4. GX= gain
crossover point, PX= phase crossover point.
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Fig. 5.16 Pulse response for case (1) of the stable amplifier 4

524m\- :‘u'[wn] : : V(vout?

520m\V/—
516m\V/—
512mV/+
508m\V/+

504m\V/—

500mV/—

496mV=

492mV=

488mV-

484mV- T I T T
0.0us 0.2us 0.4us 0.6us 0.8us 1.0us

Fig. 5.17 Pulse response for case (2) of the stable amplifier 4
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Fig. 5.18 Pulse response for case (3) of the critical stable amplifier 4

Consider the two-pole amplifier in Fig. 5.19. Based on the principle and
processing represented in the previous chapter, we obtain the parameter 6
as shown in Eg. (3.20). We can calculate the required value of the
compensation capacitor, for a given operational amplifier phase margin (PM),
based on the calculated value of the parameter 8. Using the polyfitt function,
we can obtain the curves which can indicate the relationship between
capacitor C,, and phase margin as Fig. 5.20.

Vinn Ml M2 I_vinp C

VSS

(a) Transistor level circuit
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(b) Small-signal model
Fig. 5.19 Two-pole amplifier with inter-stage capacitance. R,, R,= equivalent
resistors, C;,C,= equivalent capacitances, G,,;, Gy,= transconductances, and
C,,= compensation capacitance.
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PM(degree)
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Cri[F] w10 M

Fig. 5.20 Relationship between PM with compensation capacitor C,; in
variation feedback factor f conditions.
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(a) Compensation capacitor C,; as independent variable and PM as
dependent variable.
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(b) PM as independent variable and compensation capacitor C,,; as
dependent variable.
Fig. 5.21 Relationship between PM with compensation capacitor C,, at
feedback factor f = 0.01 condition.

In feedback factor f = 0.01 condition, we can obtain the fitted curve as
Fig. 6.21 and the relation function between PM with capacitor as following:

PM = —1.026€3°C,,> + 1.52e?*C,,* + 4.488e'%C,, + 7.24 (5.4)

Crl = 6.343e715PM3 — 2.091e 13PM? + 2.493e712PM — 9.822¢712
(5.5)

If we want to obtain 45° phase margin, the needed corresponding
capacitor value is 0.25694nF by calculation from function Eqg. (5.5).

For verifying this result, we have performed simulation using amplifier
circuit shown in Fig. 5.19, the feedback system circuit shown in Fig. 3.11(b)
when the feedback factor f = 0.01, and compensation capacitance
IS 0.25694nF. The simulation result is shown in Fig. 5.22. The phase margin
result is 180° — 133" = 47" obtained from LTspice simulation, and it is
similar to the result 45 from function Eq. (5.5).
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Fig. 5.22 LTspice simulation result with conditions: feedback factor
f = 0.01, compensation capacitor of 0.25694nF.

Although the relationship between Crl and the phase margin
(corresponding to Fig. 5.19) can be obtained by using the small equivalent
circuit which can indicate the variation tendency of stability following the
circuit parameter variation. But as we see, this relationship only can reflect
the impact from single circuit parameter on stability. The advantages of the
proposed method are through the explicit stability condition Eqg. (3.21), Eq.
(3.26), Eq. (3.31) and relationship between parameter and phase margin
(corresponding function Eq. (4.54) and Fig. 4.3), we can overall consider
consideration multiple circuit parameters one time as well as the trade-off
analysis between the influences on system stability from every single circuit
parameter.

5.3 Summary

In this chapter, we have performed simulation to verify our theoretical
analysis and derivation results obtained in previous chapter. By observing
our simulation results, we can clearly see that the conclusion of the R-H
method is the same as that of the traditional Bode plot method.
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CHAPTER VI
CLOSED-OPEN CONVERSION

The operational amplifier is an important circuit that plays a central role
in analog circuits, and it is a high gain amplifier originally used in an analog
electronic computer, and performs addition / subtraction, calculus, and other
operations. With the progress of integrated circuit technology, operational
amplifiers have also been integrated, and very high performance operational
amplifiers have become available at low cost. By using an operational
amplifier, various operational circuits including an amplifier circuit can be
easily realized with high performance. Sometimes a simpler and better
circuit is obtained than when individual components are used.

v,
Uino—_i_» " : —o Vout
KUZ

K +—

Fig. 6.1 Feedback control system

In this chapter we propose an idea to obtain the open loop characteristics
by using corresponding closed loop results. We explain its principle and
select operational amplifiers for verifying the proposed method, and compare
with conventional method including LPF (Low pass filter) method and null
double injection method. Our simulations have verified the effectiveness of
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the proposed method by comparison with the conventional methods. The
proposed method can be accurate because the open loop gain around the
frequency where phase and gain margins are evaluated would not be very
high. When this method reveals that the phase margin is not sufficient for the
designed operational amplifier, some parameter values are increased or
decreased based on the results obtained by the Routh-Hurwitz method
described in previous chapters so that its enough phase margin should be
gained. In addition, we discuss the application of Nyquist plot for judging
the stability which is not often used by circuit designer, including discussion
on its advantages and disadvantages.

6.1 Closed loop characteristic locus in open loop

Nyquist plot

VOU,
v L [he>——a—"
Vin Q)

e | K

77

Fig. 6.2 Inverting operational amplifier

Examining the stability of operational amplifier circuits has been a
concern since the negative feedback circuit was invented. In control theory,
the system is stable if the poles of the closed-loop transfer function are all on
the left plane of the complex plane. There are many difficulties when this
stability criterion be applied to circuits, for example, knowing the positions
of the poles and zeros is difficult because the questions of equivalent circuit
and numerical calculation. As a method for practically dealing with this
problem, the frequency characteristic of the transfer function is widely used.
From the viewpoint of stability, the input signal V;,, can be regarded as a
disturbance factor of the loop, and the error signal V. indicates the
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reverberation when it returns around the loop. The expression of error signal
;. is given by

1

r = 1+KA(s) ' in (6.1)
Since the coefficient 1+ KA(s) is an important factor indicating the
quantitative relationship, let's call it a stability factor. Another problem when
applying the stability theorem to circuits is that it is difficult to find the
stability factor by simulation. Because the error signal V,. does not exist in
practical circuit, Eq. (6.1) cannot be used. Also V. can be obtained as a
difference between the real signals V;,, and V. However, in real circuits the
input offset inevitably exists and generates an error.

We propose an idea to obtain the open loop characteristics KA(s) with
corresponding closed loop results and we call this operation as a closed-open
conversion method. The reason why the closed-open conversion method has
not been used so far is that the numerical error greatly affects the result
because the gain of operational amplifier is large. Considering the feedback
control system, and the transfer function of closed-loop is as follows:

A(s)

Vout _ _
Vin Wi(s) = 14+KA(s) (62)
By calculation we can obtain the transfer function of open loop:
A(s) = — (6.3)

1/W(s)-K

As we know, the gain of opamp |A(s)| is very large in the low frequency
region, so W(s) = 1/K in Eq. (6.2). Therefore, the resulting A(s) will
largely change with a small error in W (s), since 1/W (s) is so close to K
that the denominator of Eq. (6.3) becomes very small in magnitude.
Simulations yield precision results even in the low-frequency region,
however, this is not true for the measurement results, and this leads to the
erroneous result for A(s).This is why the closed-open conversion method
has not been used, because the gain of the opamp is too large, especially for
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low frequencies.

However, which has an effect on stability is that the Nyquist diagram is
close to the origin point, and at this moment, the gain is much smaller. In a
portion on the Nyquist plot places where the gain is small, the numerical
accuracy of the closed-open transformation increases, making the proposed
closed-open conversion method practical, and it may be used for
measurement results. The low frequency gain is almost independent of
stability. As the operational amplifier gain decreases at high frequencies, it
approaches the -1 point (Nyquist diagram). Around this point, the closed-
loop gain is also small, so that it is easy to obtain the accuracy of mutual
conversions.

An error signal can be obtained in a region where the stability is
meaningful by using the actual signal of the operational amplifier.

y)ut
A(S) j
Vin

I

Fig. 6.3 Buffer configuration

This time, we select the unity gain buffer connection configuration
(feedback factor is K = 1) as shown in Fig. 6.3 to introduce our proposed
closed-open conversion method. The buffer connection is the easiest to see
when looking at the open loop characteristics from the closed loop, and when
the gain is 1, the system is most likely to be unstable. Generally, KA(s) is
used as the open loop characteristics, and is instead of A(s) in this
condition. The closed loop characteristics is as follows:

A(S)

Vout __ _
Vin W(s) = 1+KA(S) (6.4)
and by calculation, we can obtain the open loop characteristics:
O]
A(s) = e (6.5)
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Since the transfer function depends on the load, discussion on the loop
stability should be considered as a round transfer function including the load
condition. W (s) can be easily obtained by AC analysis. If AC analysis is
performed with an actual load on the buffer, it is not necessary to change the
load conditions for simulation.

Fig. 6.4 shows the Bode plot which is often used for judging the stability,
and the frequency domain which is encircled by the green border. In this area,
we can obtain the phase margin and gain margin to determine the stability

[6].

r
20log|A(jw)|

0dB

Im| logw

&

|
|
0° \ wCi :wg log w
I
—180°L — — — ;QME EI

2A(jw)

Fig. 6.4 Bode plot and effect area on stability
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Fig. 6.5 Nyquist plot

Fig. 6.5 shows the Nyquist plot in the high frequency domain
corresponding the green border area in Fig. 6.4. Stability is defined by
characteristics at around the unit circle (brown broken line), where |A(s)]is
small. Nyquist diagram also can show phase margin and gain margin, and
minimum distance to —1 point is a better indicator to determine stability
[14]. In order to introduce and verify this theory, we select one operational
feedback amplifier whose configuration is as shown in Fig. 6.3 and the
transfer function of the operational amplifier is given by

10
(145)(1+0.35)(1+0.065)

A(s) = (6.6)

Depict the Nyquist plot of open loop transfer function KA(s) by using
Mathematica software at different feedback factor conditions, as shown in
Fig. 6.6. Fig. 6.7 shows the Bode plot of stability factor 1/(1 + KA(s)),
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Fig. 6.7 Bode plot of stability factor 1/(1 + KA(s))

By comparison of Fig. 6.6 and Fig. 6.7, we can find out that the closest
points T',T",T"" with the -1 point appear as peak in the Bode plot of the
stability factor, and the magnitude is the reciprocal of the closest approach
distance. The stability factor peak value is a direct stability index rather than
a gain margin or a phase margin.
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Fig. 6.8 Nyquist plane of open loop transfer function A(jw)

Fig. 6.8 shows a complex plane where A(jw) is represented and point
P shows the Nyquist locus of the open loop transfer function. Also the
length of vector OP indicates the absolute value of A(jw), and the
inclination angle indicates the phase angle of A(jw). If we choose the point
Q at —1+j0, the vector QP represents 1+ A(jw). The closed loop
transfer function is given by
A(jw) OP

W(jw) =———== = Me/? (6.7)

T 1+1+A(jw) QP
The squared of the length of W (jw) is expressed by:

2 |OP |2 _ x24y?
QP12 (x+1)2+y2

(6.8)

By rearranging Eq. (6.8), we can obtain the trajectory equation of M as
follows:

M? M

X+ P+ y? = (o)’ (6.9)

This is a circumference equation with a center at (—M?/(M? — 1) + j0)
on the real with radius M /(M? — 1). Fig. 6.9 shows a circle group of M =
const. with a solid line. The locus of ¢ = const. isanarc passing through
the origin O and the point Q. This is clear from the QPO = ¢ relation
and the geometrical theorem that the circumference angle is constant [19].
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equi-M
(amplitude)

Fig. 6.9 Closed loop M - ¢ locus in open loop Nyquist plot

By using different axes on the same complex plane, closed loop and open
loop characteristics become a single plot. M trajectory and ¢ trajectory are
orthogonal. Next, we will talk about why it is orthogonal. At first, consider
the reciprocal of the closed-loop transfer function W (jw) as follows:

= l4——=—e P (6.10)

W(w) AGw) M

When the angular frequency w is changed from 0 to oo, the vector locus of
1/A(jw) is drawn on the complex plane, which is an inverse Nyquist plot
as shown in Fig. 6.10.
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Fig. 6.10 Inversion Nyquist plane of open loop transfer function A(jw)

Vector OP indicates 1 + A(jw). If a point with a distance of 1 from the
original point is determined on the negative real axis, the vector QP
is1/(1+ A(jw)), and its magnitude is equal to 1/M, and its phase angle
indicates — . If we draw the same circle centered at (—1, jO) with radius
of 1/M, it will be a locus of points where M = constant. Also, as shown by
the dotted line in the figure, when radiation with a tilt angle of - ¢ is drawn
from point Q, this is trajectory of ¢ = constant.

—J

Fig. 6.11 Closed loop M - ¢ locus in open loop inverse Nyquist plot

Obviously, the M locus and ¢ locus are orthogonal as show in Fig. 6.11.
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The Nyquist plot and the inverse Nyquist plot are reciprocal relationship with
each other. In the inverse Nyquist plot, M = constant locus is a concentric
circle, and the map which obtained by taking the inverse of this circle group
is the M locus in the Nyquist plot. Since this locus is an inversion with
respect to the origin of the circumference having the center on the real axis,
it is also a group of circles having the center on the real axis. The ¢ =
constant locus is straight line on the inverse Nyquist plot, but the locus on
the Nyquist diagram which is inversion with it, is represented by a circle
group. The M locus and the ¢ locus are orthogonal to each other on the
inverse Nyquist plot, so the two locus are also orthogonal to each other on
the Nyquist plot, which is an equiangular map.

6.2 Verification and comparison

Conventional low pass filter (LPF) method is often used for checking the
open loop characteristics by inserting a LPF with a very low cutoff frequency
into the feedback circuit to ensure the DC operating point, the circuit diagram
as shown in Fig. 6.12(b). About the LPF method there are two disadvantages:
first one is that we need to replace the feedback section with another circuits;
this operation is inescapable influence simulation result. Another
disadvantage is that we need to measure the transfer characteristics from the
positive input due to the loop has been disconnected, but which affects the
stability is the transfer characteristic from the negative input.

+° Vout
Vin

;1001‘?‘

(a) Proposed method (b) LPF method
Fig. 6.12 Closed loop system circuits

The internal circuit of the operational amplifier is as shown in Fig.
6.13[10], and the values of bias voltage V451 and Vs, are 546.88mV

117



and 366.99mV respectively. At the process of the proposed method, we run
the circuit with LTspice and read the output file (text editor) in which the
closed loop characteristics are written in a format like {frequency, real part,
imaginary part}. Using these data, we can calculate and get open loop
characteristics by Eq. (6.5). We also depict the plot using the data from the
LPF method for comparison with the proposed method at one same graph.

VDD VDD VDD

Ms ] P
[
vq M, C. 1 Vout
Vbiast |[~ Ms [ M,
"= |

Vbi.asz II_ Mg I Mg

Fig. 6.13 Internal circuit of the opamp

Using the obtained data of the open loop characteristics, we can depict the
Bode plot of the open loop transfer function A(jw) as the blue line shown
in Fig. 6.14. The red line shown in Fig. 6.14 is the simulation result from the
LPF method. We also depict the Nyquist plot using the data from two
methods as shown in Fig. 6.15, and we can see that two results are consistent.
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Fig. 6.15 Nyquist plot of open loop transfer function

In the high frequency domain, especially around the unit circle, the
simulation results are consistent. In the low frequency region, the difference
of DC gain is caused by the difference of operation point.

We also have performed simulations by using ‘“Null double injection”

method taken from an article by R. D. Middlebrook, and the circuit is shown
in Fig. 6.16 [24]. The loop gain is equivalent to the following:
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G, =2 G =2 (6.11)
v 2 .

Here v, and i, denote the feedback signals, while v; and i; are the

input. G, is the open loop voltage gain, and G; is the open loop current
gain, and they are related through the following equation:

G+1=(G,+ DG +1)

G = Gixbv=1 (6.12)

Gi+Gy+2

As shown in Fig. 6.16(a), we inject two batteries and the independent
current source I; for measuring the open loop gain. The current source is
defined as 'AC 1' so that it will provide a 1A small signal current in the AC
analysis. The two batteries are used to measure the current in each direction.
They are given a voltage of 0 so that they don't affect simulation results. The
battery V, measures the current i; and the battery V; measures the

current i,. We inject two batteries and the independent voltage source Vs

for measuring the open loop gain as shown in Fig. 6.16(b). The voltage
source is defined as 'AC 1' so that it will provide a 1V small signal voltage
in the AC analysis. The batteries are again given a voltage of 0, not to affect
the simulation. The circuits need to be analyzed at the same time in order to
produce the total gain as the total gain relies on both the open loop current
gain and the open loop voltage gain.

S I T,
Vs <

(a) Measurement of current gain (b) Measurement of voltage gain
Fig. 6.16 Null double injection method
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Fig. 6.17 Bode plot of open loop transfer function

We select an LT1128 amplifier, perform its simulations and compare the
three simulation results. We depict the Bode plot and Nyquist plot using the
data from the proposed method, and traditional method include LPF method
and null double injection method for comparison at one same graph as shown
in Fig. 6.17 and Fig. 6.18.
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Fig. 6.18 Nyquist plot of the open loop transfer function

By comparison, we can find out that the proposed method can be used for
obtaining the open loop characteristics from the closed loop measurement.
In the low frequency region, the simulation results are consistent. But in the
high frequency domain, especially around the unit circle, the simulation
results are not consistent. The LPF method need to open up the loop, and that
the DC bias point of the circuit will be altered. Since the circuit is linearized
around the DC bias point in AC analysis, this will influence the simulation
results. Considering the proposed and null double injection methods which
can both make measurement without opening up the loop, the proposal
approach is simpler and less time-consuming.

6.3 Summary

In this chapter, we have tried the closed-open conversion method for
obtain the open loop characteristics (opamp stability etc.) from closed loop
operation results. The effectiveness of this method was demonstrated by
practical example. Since the traditional LPF method need to open up the loop,

122



this will influence the simulation results. The null double injection method
also does not need opening up the loop although, but compared with the
proposed method, the later one is simpler and less time-consuming.

CHAPTER VII
DISCUSSION

7.1 Discussion

In this dissertation, our work can be divided into two parts: application of
R-H stability criterion in judging the stability of operational amplifier, and
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one try of closed-open conversion method that to obtaining open loop
characteristics. The former is the main body of this article, we used Chapter
3 and Chapter 4 for introductory principle and simulation respectively. And
we talk about the closed-open conversion method in Chapter 5 including
principle and simulation result.

According to the above consideration, we have proposed the following for
operational amplifier stability analysis and design

® Depict a small signal equivalent circuit for the operational amplifier

circuit in open-loop structure.

® Derive its open-loop transfer function.

® Derive its closed-loop transfer function and obtain its characteristic

equation.

® Apply the R-H stability criterion and obtain the relation function

between the R-H parameter with phase margin. (which is not easy to
obtain with Bode plot)

® Then use this relation function for circuit parameters.

The R-H method would be effective especially for multi-stage operational
amplifiers (high-order systems).

It may be true that one might ponder the derivation of precise explicit
transfer function with polynomials of S is difficult due to many parasitic
components in the operational amplifier circuit. However, even if the derived
equivalent circuit or transfer function uses only major components and
neglects parasitic components, the R-H method provides the information
whose major parameter values should be increased or decreased for stability.

Since the coefficients of Routh table are polynomials, the parameter value
modification processing would be complicated. Then we can only modify
one dominant parameter whereas the other parameters are fixed each time
and observe the change of stability brought by the modification.

The R-H method can judge with simple calculation for given parameter
values whether the operational amplifier circuit with feedback configuration
is stable or not, but it cannot obtain gain and phase margins directly. On the
other hand, Bode plot can obtain them. Then the usage of the proposed
method together with the Bode plot would be more effective.

Regarding to the closed-open conversion method, although cluster theory
analysis shows that our method is feasible, and our simulation also has good
results, however there are only slight difference between traditional method
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and proposed method on the details. Analyzing and finding out what causes
these differences is what we should be doing.

7.2 Future work

Although we have achieved good simulation results, there is still a long
way to go before it can be well applied to the actual circuit design, and there
are still many difficulties to be overcome, as well as many areas to be
improved and considered. Validation in more examples and application in
real circuits is the next step we want to take. We hope that this method will
be familiar and used by more circuit designers, researchers from enterprises,
schools and other research institutions. We also want to provide an easy-to-
use tool to obtain the open loop characteristics from the closed loop operation
results as our target.
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CHAPTER VIII
CONCLUSION

This dissertation proposes a stability analysis and design method for the
operational amplifier feedback circuit based on the equivalent small signal
circuit model of the operational amplifier and the Routh-Hurwitz stability
criterion. We summarize our work as the following aspects:

® In terms of innovation.

This proposed method can lead to obtain explicit stability conditions for
operational amplifier circuit parameters that have not been described in any
operational design book/paper, to the best of our knowledge.

® [n the theoretical proof.

We have shown the equivalence between Nyquist and Routh-Hurwitz
stability criteria for analysis and design of the operational amplifier stability
under some conditions, and have deduced the relationship between Routh-
Hurwitz stability criterion parameters with phase margin of the operational
amplifier. We have shown that they are monotonic relationship.

® [n the verification and simulation parts.

We have confirmed with SPICE simulation that this method is equivalent
to the Bode plot method, and satisfactory results have been obtained with
LTspice simulations at transistor level circuit. Also the acquisition and
application of the relationship between R-H stability criterion parameters
with phase margin demonstrate the feasibility of the proposed method on
both sides of theory and practice.

® In comparison with the conventional method.

Compared to the conventional Bode plot method which only can judge the
stability qualitatively, the proposed method not only can judge the stability
but also can further perform quantitative analysis; this clarifies which circuit
parameters influence the operational amplifier stability, and we know
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whether these circuit parameters should be increased or decreased. The R-H
method has an advantage of being able to obtain explicit stability condition
for circuit parameters; hence the R-H method can be practically used
together with the Bode plot method.

® Supplement method.

In the later part of this dissertation, an additional method is proposed to
obtain the open loop characteristics directly without opening up the loop and
not need to insert any extra circuit element. Our simulation results show the
practical usage feasibility of this proposed closed-open conversion method.
When this method reveals that the phase margin is not sufficient for the
designed operational amplifier, some parameter values are increased or
decreased based on the results obtained by the above-mentioned Routh-
Hurwitz method so that its enough phase margin should be gained.
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APPENDIX

Table | Short-channel COMS parameters

Parameter NMOS | PMOS
Ton» Top 167k 333k
Imn» Gmp |150uA/V | 150pA/V
Cgan+ Cgap | 1.56fF 3.7fF
Cgsn: Cgsp | 4.17fF 8.34fF
Coxn, Coxp 6.25fF 12.5fF

w/L 50/2 100/2
Ves: Vs | 350mv 350mV
Vruns Vrap | 280mv 280mV
Vpp = 1V Scale Factor=50nm

BARKER)
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Source from “CMOS Circuit Design, Layout, and Simulation” 3" Edition, R.JACOB
( gn, Lay

Table 1l small signal equivalent circuit parameters




Rl = ron”rop = 111kQ

R, = ropllRocasn = Top = 333k0

G1 = Gmn = 150 uA/V

G = Cdg4 + Cdgz + Cgs? = 13.6fF

Cy = Cp + Cyag ~ C; + 1.56fF = 101.56fF
(€, = 100fF)
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