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Abstract 
This dissertation proposes a method to derive explicit circuit parameter 

conditions for stability and phase margin of the operational amplifier circuit 

with various circuit topology. Based on the derived conditions, the circuit 

designer knows which parameter value should be increased and which one 

should be decreased to obtain its stability with enough margin. First, the 

small signal equivalent circuit model of the operational amplifier is derived 

and its transfer function is obtained. Then the Routh-Hurwitz stability 

criterion is applied and the explicit circuit parameter conditions for the 

stability are obtained, which were not obtained before. In the theoretical part, 

the equivalence between Nyquist and Routh-Hurwitz stability criteria under 

some conditions is shown. Next the relationship between parameters of 

Routh-Hurwitz stability criterion and phase margin of the operational 

amplifier are deduced. Then explicit circuit parameter conditions for the 

operational amplifier stability with enough margin are obtained, which are 

useful for operational amplifier analysis and design, and which could not 

have been obtained with the conventional methods. In the verification part, 

the above statement is confirmed with SPICE simulations at transistor level 

operational amplifier circuits.  

In the later part of this dissertation, an additional method is proposed to 

obtain the open loop characteristics directly without opening up loop and not 

need to insert any extra circuit element. This operation is called as a closed-

open conversion method to obtain the open loop characteristics with 

corresponding closed loop measurement. Its principle is introduced and 

simulation verification is shown. When this method reveals that the phase 

margin is not sufficient for the designed operational amplifier, some 

parameter values are increased or decreased based on the results obtained by 

the above-mentioned Routh-Hurwitz method so that its enough phase margin 

should be gained. In addition, we discuss the application of Nyquist plot for 

judging the stability which is not often used by circuit designer, including 

discussion on its advantages and disadvantages. 

Chapter 1 introduces the research background and research objective, and 

the outline of this dissertation. Chapter 2 reviews control theory and 

introduces Nyquist stability criterion and Routh-Hurwitz stability criterion. 

At first, we introduce the concept of feedback control system through 



XIII 

 

practical examples, and then the transfer function and Laplace transform are 

also introduced in detail. Chapter 3 briefly introduces transistor circuit and 

small signal model of the operational amplifier. In this chapter we present 

detailed derivation process of the proposed criterion with application to the 

small signal models of the three selected amplifiers. Chapter 4 deduces 

respective mathematical foundations of these criteria, and the equivalency is 

demonstrated, and then, we deduce the relationship between Routh-Hurwitz 

stability criterion parameters with PM (phase margin). In Chapter 5, we 

select some amplifiers to verify our proposed method with theoretical 

analysis and SPICE simulations. In Chapter 6, we introduce an idea for 

obtaining the open loop characteristics from the closed loop measurement of 

the operational amplifier. We explain its principle and our simulations have 

verified the effectiveness of the proposed method by compared with the 

conventional methods. Chapter 7 presents some discussions, and also 

provides the future work. Chapter 8 summarizes conclusions obtained 

through this research. 
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CHAPTER Ⅰ 

INTRODUCTION 

 

1.1 Research background and Research objective  

The operational amplifier is an important circuit that plays a crucial role 

in analog signal conditioning. Examining the stability of operational 

amplifier circuits has been a concern since the negative feedback circuit was 

invented. The purpose of this dissertation is to use the Routh-Hurwitz 

stability criterion for operational amplifier stability analysis and design, to 

obtain explicit stability conditions for operational amplifier circuit 

parameters [1-4]; this has not been described in any operational design 

book/paper, to the best of our knowledge [5-13]. In this dissertation, we 

demonstrate that the respective mathematical foundations of Nyquist and 

Routh-Hurwitz stability criteria are equivalent, and we deduce the 

relationship between Routh-Hurwitz stability criterion parameter with phase 

margin of the operational amplifier as theoretical support and perfection for 

the proposed method. Then, we verify our proposed method with some 

amplifier models. Our SPICE simulation results show good agreements with 

our theoretical analysis based on the proposed method. 

In the control theory field, there are many criteria for judging the stability 

of the feedback system [13]. For example, Nyquist stability criterion and 

Routh-Hurwitz (R-H) stability criterion are widely utilized. The Nyquist 

stability criterion is a graphical technique for determining the stability of 

a dynamical system, and the Bode plot and Nyquist plot which are well 

known and used in all application examples based on the principle of Nyquist 

stability criterion. In the electronic circuit design field, Bode plot for the 

open-loop frequency characteristic is the most frequently used by circuit 

designers [5-12], while Nyquist plot is occasionally used [14]. However, 

https://en.wikipedia.org/wiki/Stability_criterion
https://en.wikipedia.org/wiki/Dynamical_system
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strangely enough, according to our survey of the related texts about analog 

electronic circuits [1-9], the Routh-Hurwitz method [12-14] is rarely 

mentioned in analysis and design of the operational amplifier stability. It 

seems that even some mature analog designers are not familiar with the R-H 

stability criterion. On this account, we have made attempts to introduce the 

R-H stability criterion into electronic circuit design field and begin with 

usage for judging stability of operational amplifier. 

1.2 Outline of this dissertation  

The outline of this dissertation is as follows: 

 

Chapter1  

This chapter introduces the research background and research objective in 

detail, and the outline of this dissertation. 

  

Chapter 2 

This chapter reviews control theory and introduces Nyquist stability 

criterion and Routh-Hurwitz stability criterion. At first, we introduce the 

concept of feedback control system through practical examples, and then the 

transfer function and Laplace transform are also introduced in detail.  

 

Chapter 3  

This chapter briefly introduces transistor and small signal model of the 

operational amplifier. In this chapter we present detailed derivation process 

of the proposed criterion with application to the small signal models of the 

three selected amplifiers.  

 

Chapter 4  

This chapter deduces respective mathematical foundations of these criteria, 

and the equivalency is demonstrated. We also deduce the relationship 

between Routh-Hurwitz stability criterion parameters with PM (phase 

margin). 

 

Chapter 5 
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In this chapter we select some amplifiers to verify our proposed method 

with theoretical analysis and SPICE simulations.  

 

Chapter 6 

 In this chapter we introduce a closed-open conversion method to obtain 

the open loop characteristics from the closed loop measurement of the 

operational amplifier without opening up the loop.  

 

Chapter 7  

This chapter presents discussions and also provides the future work. 

 

Chapter 8  

This chapter summarizes conclusions. 

 

CHAPTER Ⅱ 

CONTROL THEORY 

 

Control system exists in every corner of our life, not only the automatic 

production line in practical industry, but also including individual human, 

collectivity even more the operation of the whole human society. All these 

can be viewed as control system. For example, our brains are constantly 

controlling our bodies to do what we want to do, from getting up in the 

morning to going to bed at night to rest.  

Control system is divided into feedback control system and feed forward 

control system. This chapter introduces the fundamental structure, principle 

and classification of the feedback control system, which are extensively 

applied to every aspect of modern industrial society, and the stability criteria 

which are often used in control theory field are also introduced. Before 

knowing these stability criteria, related mathematical derivation is necessary 

so that we preparatory study transfer function and Laplace transform and so 

on.  
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2.1 Feedback control system 

2.1.1 Principle and structure 

Car driving is often used as an example to explain the definition of a 

control system. When we want to go to destination by driving a car, we will 

operate gear, steering wheel, throttle and brake. In this case, gear operation, 

brake operation and throttle operation are necessary control operations for 

arriving at the destination by driving the car. As one control system, the car 

is an object manipulated by our operation; the speed and position are physical 

quantities in the target which we want to change and adjust.  

In the control theory field, the target is called as controlled system and the 

physical quantity is called as controlled variable, while the necessary 

operations are called as manipulated variables. While driving, we will 

encounter many disturbing factors, for example, traffic coming from the 

opposite direction, animals and pedestrians which cross the street, and wind 

and snow in bad weather; all of these will influence our driving, influence 

the control system, and these disturbing factors are called disturbance. The 

control system used in equipment and machinery without manual labor is 

called as automatic control, contrast to the manual control. 

   

 

Fig. 2.1 Feedback control system 

 

The block diagram of the feedback system which can express the relation 
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of each element and the procession is shown in Fig. 2.1. The controlled 

variable that we hoped at first is called as desired value; in the driving case, 

it is the definition. When we want to arrive somewhere, we will plan a route 

whether it can be obtained by electronic navigation using internet or our 

memories of the past and this route is the reference value. Then the 

consciousness will be produced by our brain that can control our limbs to 

make a series of operations that are called as manipulated variable, our brain 

and our body is called as adjustment element and controlling element 

respectively. If we go the wrong way, electronic navigation or our nervous 

system will sense this mistake, and these perceptual actions are called 

detecting element which is to be included at feedback element in Fig. 2.1[15]. 

Based on the feedback information, our brain or electronic navigation will 

make a series of calculations and judgments, and at this moment error will 

be produced: 

 

                      𝑒 = 𝑟 − 𝑏                        (2.1) 

 

This error will be as basis for new manipulated variable production. Above 

consideration is the feedback control system. The corresponding relationship 

between driving control system and human is shown as Table. 2.1.   

 

Table. 2.1 Corresponding relationship  

between driving control system and human 

 

 



１９ 

 

2.1.2 Classification  

At first, positive feedback and negative feedback are the most basic 

classification. We introduce this classification by using the feedback circuit 

that can amplify a voltage signal as shown in Fig. 2.2. Output voltage signal 

𝑣2 of amplifier 𝐴 through attenuation 𝐹, obtains feedback signal 𝐹𝑣2. Then, 

the sum or difference of signal 𝐹𝑣2  with input voltage signal 𝑣1  again 

inputs to the amplifier. This transformation can be expressed using the 

following equations:  

 

𝑣2 = 𝐴𝑣1 

                       𝑣𝑖 = 𝑣1 ± 𝐹𝑣2                    (2.2) 

 

Erase 𝑣𝑖 and obtain the voltage gain: 

 

                      𝐺 =
𝑣2

𝑣1
=

𝐴

1∓𝐴𝐹
                       (2.3) 

 

Plus or minus sign in Eq. (2.3) is in the same order as Fig. 2.2. The condition 

of plus and minus shown in Fig. 2.2 is regarded as positive feedback and 

negative feedback respectively. 

Under the positive feedback condition, the circuit will be unstable 

when 𝐴𝐹 ≥ 1, so the positive feedback is not much used except for oscillator 

and latch circuit, whereas the negative feedback is often used in amplifier 

circuit. By using the negative feedback technology, many performance 

improvements can be made in amplifiers, such as suppression of gain 

fluctuation, expansion of frequency band and reduction of noise and 

distortion. 
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Fig. 2.2 Feedback circuit 

 

In the control system, adjustment element corresponds to the human brain, 

and in this element, analog mode calculation or digital mode calculation is 

processed. Based on the process mode, the control system can be classified 

into analog control and digital control. As we know, only finite word length 

operation such as 16 bits can be processed in the microprocessor of digital 

control, so we must use an analog-digital-converter (ADC) for transforming 

analog quantity into digital quantity at digital control. Conversely, the digital 

quantity must be transformed into analog quantity by a digital- analog-

converter (DAC) for being used as manipulated variable [16]. 

Before 1960 year, the control theory which is called as classical control 

theory mainly based on the transfer function method. In the classical control, 

we make Laplace transform to a linear differential equation which expresses 

the characteristics of the control system, and the one input-one output form 

the linear time-invariant system where system parameters are invariable 

regardless of time as the control system. The control element focuses only 

on the input and output of the control object, but it does not consider the 

internal state, and regards it as a black box. Frequency response method is 

well used in the classical control. 

Since 1960, in order to control an artificial satellite with high precision 

and following the appearance of movement which can be expressed by a 

dynamic system using a state vector, new control theory which is called as 

modern control theory appeared. The modern control theory based on the 

state section that departs from expressing by a state equation and an output 

equation, and can correspond to multiple input multiple output form 

multivariable system. Not only linear time-invariant system, but also time-

variant system and nonlinear system can be handled. In addition to the input 



２１ 

 

and output of the system, the control element also includes state variables 

that represent the internal state of the system at each time, and it is possible 

to perform an evaluation analysis on the internal state of the system. 

 

Table. 2.2 Main differences between classical control and modern control 

 

 

Classical control theory and modern control theory own their respective 

advantages; the former has rapidity and easy to operate or calculate, whereas 

the later can statement and dispose the complex system. Furthermore, due to 

the rapid spread of microcomputers in recent years, the theory is further 

developing greatly. The main differences between classical control and 

modern control are shown as in Table. 2.2. 

In later chapters, we will talk about Routh-Hurwitz stability criterion and 

Nyquist stability criterion which belongs to the classical control theory. 

   

2.2 Transfer function 

2.2.1 Composition of block diagram  

The composition of block diagram includes signal, block, calculation and 

branch. We will introduce these composition elements in turn. 
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 Signal and block 

 

 

Fig. 2.3 Signal and block 

 

The variables are shown in Fig. 2.3, where 𝑥 is input signal, y is output 

signal, and the output signal is the input signal’s A multiples. In other words, 

this symbol can be express relation as the following: 

 

                      𝑦 = 𝐴𝑥                          (2.4) 

 

Signal is expressed as arrow, the relation between two signals is expressed 

as a box. In comparison with Eq. (2.4), Fig. 2.3 can clearly express the 

relation between input signal and output signal, and which is the input signal 

and which is output signal also can be identified obviously. 

 

 Calculation  

 

Fig. 2.4 Addition symbol 

 

The addition symbol as shown in Fig. 2.4, can express the processing, or 

two signals addition into one signal and output, and this relationship also can 

be expressed as the following equation: 

 

                      𝑥1 + 𝑦1 = 𝑧1                      (2.5) 
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Fig. 2.5 Block diagram of Eq. (2.4)  

 

Using the addition symbol as shown in Fig. 2.5, we can also express the 

processing that two signals is transformed into one signal by subtraction 

calculation, and the corresponding expression equation is shown as 

following: 

 

𝑥2 − 𝑦2 = 𝑧2                     (2.6) 

 

But in practical applications, we usually use the subtraction symbol to 

express the subtraction calculation directly as shown in Fig. 2.6 after 

simplification. 

   

Fig. 2.6 Subtraction symbol 

 

 Branch  

As shown in Fig. 2.7 (a), when the signal is needed into two-addition point, 

or the condition in Fig. 2.7 (b), signal need into branch for other process such 

as observation. These symbols are called as a branch symbol. 
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(a) 

 

 

(b) 

Fig. 2.7 Branch symbol 

 

The diagram which combines above introduced signals, blocks, 

calculations and branches, is called as a block diagram.  

 

2.2.2 Differential equation and transfer function  

The operation of each system in the electrical circuit, mechanical system, 

and thermal system is a phenomenon that is completely different from each 

other, and there is no relation between them. However, if we abstract the 

various quantities that appear in these and view it as a mere signal conversion 

process, these phenomena are all expressed by differential equations of the 

same form. Take a first-order transfer element for example, which can 

describe rotating motion, thermal system and electric circuit. Its differential 

equation of the first transfer element is given by: 
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𝑑𝑦(𝑡)

𝑑𝑡
= 𝑎𝑦(𝑡) + 𝑏𝑥(𝑡)                   (2.7) 

 

In Eq. 2.7, 𝑥(𝑡)is the input applied to the system from the outside, and 𝑦(𝑡) 

is the resulting system state. If we want to directly solve differential equation 

that like Eq. (2.7), complex procedure is required and the general solution is: 

 

𝑦(𝑡) = 𝑦(0)𝑒𝑎𝑡 + ∫ 𝑏𝑒𝑎(𝑡−𝜏)𝑥(𝜏)𝑑𝜏
𝑡

0
            (2.8) 

 

The second term of the equation is the convolution integral. All the 

inputs 𝑥(𝜏)(0 ≤ 𝜏 ≤ 𝑡) from the past to the current time are involved in the 

state 𝑦(𝑡) at the current time 𝑡. However, a weight corresponding to the 

elapsed time 𝑡 − 𝜏 from that time is applied to 𝑢(𝜏) at the past time τ.    

Input sine wave 𝑥(𝑡) into the first-order transfer element as shown in 

Eq.2.7 can be expressed as follows: 

 

𝑥(𝑡) = |𝑋| sin(𝜔𝑡 + 𝜑) =
1

2
{𝑋𝑒𝑗𝜔𝑡 + �̅�𝑒−𝑗𝜔𝑡}         (2.9) 

 

Here, 𝑋 = |𝑋|𝑒𝑗𝜑  is a complex quantity that can express amplitude and 

phase, �̅� is conjugate complex quantity of 𝑋.  

After enough time, the output signal will only include sine wave which 

has the same angular frequency with the input signal: 

 

𝑦(𝑡) =
1

2
{𝑌𝑒𝑗𝜔𝑡 + �̅�𝑒−𝑗𝜔𝑡}                       (2.10) 

 

Substitute Eq. (2.9) and Eq. (2.10) into Eq. (2.7) and we have as follows: 

 

𝑗𝜔𝑌𝑒𝑗𝜔𝑡 − 𝑗𝜔�̅�𝑒−𝑗𝜔𝑡 = 𝑎(𝑌𝑒𝑗𝜔𝑡 + �̅�𝑒−𝑗𝜔𝑡) + 𝑏(𝑋𝑒𝑗𝜔𝑡 + �̅�𝑒−𝑗𝜔𝑡)     

(2.11) 

 

Because they are equal on both sides, we can obtain: 
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𝑗𝜔𝑌 = 𝑎𝑌 + 𝑏𝑋                     (2.12) 

 

Organize Eq. (2.12), and we can obtain expression function of the element 

as follows: 

 

𝑌 =
𝑏

𝑗𝜔−𝑎
𝑋                      (2.13)                        

    

As shown in Fig. 2.8, the input signal 𝑥(𝑡) into this transfer element and 

the output signal 𝑦(𝑡), frequency transfer function is as follows: 

 

𝐺(𝑗𝜔) =
𝑏

𝑗𝜔−𝑎
                      (2.14) 

 

At the dynamic system, 𝐺(𝑗𝜔)  is the complex quantity and various 

following with the input signal, and in general it is function of 𝑗𝜔. About the 

calculation method of the frequency transfer function, used the function 

which can express the characteristic of the system, and mechanically instead 

of 𝑑/𝑑𝑡  into 𝑗𝜔  is satisfied. Not only the first-order linear stationary 

system, the high order system also can use this thinking method about 

frequency transfer function. 

 

 

Fig. 2.8 Frequency response 
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Fig. 2.9 Four-terminal network 

 

As a specific example, Fig. 2.9 shows the four-terminal network, the input 

any voltage 𝑣𝑖𝑛  to the terminal 11′  and the output voltage  𝑣𝑜𝑢𝑡 , the 

following differential equations setup: 

 

𝑣𝑜𝑢𝑡 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 +

1

𝐶
∫ 𝑖𝑑𝑖 

𝑣𝑖𝑛 =
1

𝐶
∫ 𝑖𝑑𝑖                   (2.15) 

 

If the input voltage is a sine wave and its angular frequency is 𝜔, we have 

 

𝑣𝑜𝑢𝑡 = 𝑗𝜔𝐿𝑖 + 𝑅𝑖 +
1

𝑗𝜔𝐶
𝑖 

𝑣𝑖𝑛 =
1

𝑗𝜔𝐶
𝑖                    (2.16) 

 

Therefore,  

 

𝑣𝑜𝑢𝑡

𝑣𝑖𝑛
=

1

1+𝑗𝜔𝑅𝐶−𝜔2𝐿𝐶
                    (2.17) 

 

Eq. (2.17) can express the voltage transformation characteristic of this four-

terminal network. In general control system, not only voltage and current 

signal can be handled, there are many other type control systems, for 

example, temperature, pressure, speed and displacement control system. 
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Different types of transformation characteristics are also very much, the 

input side and the output side, that is, the dimensions are often different. In 

these conditions, the transformation characteristic generic name is given as 

transfer function. In Fig. 2.9, the transfer function of voltage to voltage is: 

 

𝐺(𝑗𝜔) =
𝑣𝑜𝑢𝑡

𝑣𝑖𝑛
=

1

1+𝑗𝜔𝑅𝐶−𝜔2𝐿𝐶
              (2.18) 

 

The first term of Eq. (2.8) shows the influence of the initial value 𝑦(0) of 

the state quantity 𝑦 on the subsequent time. The second term means the 

change that the input 𝑥(𝑡) gives to 𝑥. If 𝑎 < 0, the first term decays with 

time, and only the second term remains after sufficient time. If the influence 

of the initial value can be ignored, Eq. (2.7) can be written as: 

 

𝑌(𝑠) =
𝑏

𝑠−𝑎
𝑈(𝑠)                       (2.19) 

 

Focusing on only the component of the output 𝑦(𝑡)  that is directly 

influenced by the input 𝑥(𝑡), the ratio of both Laplace transforms is taken 

and defined as the transfer function of this element. 

 

𝐺(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝑏

𝑠−𝑎
                    (2.20) 

 

This transfer function can be obtained only set 𝑠 in place of 𝑑 𝑑𝑡⁄  in the 

original differential equation. Moreover, the frequency transfer function 

𝐺(𝑗𝜔) can be obtained by setting 𝑗𝜔 instead of 𝑠 in 𝐺(𝑠). 

For example, let the input voltage be 𝑥(𝑡) and the output voltage be 𝑦(𝑡) 

in the circuit of Fig.2.9. Then, since the current flowing through the capacitor 

becomes 𝑖 = 𝐶 𝑑𝑦(𝑡) 𝑑𝑡⁄  and also the current flowing through the 

capacitor, the back electromotive force of the capacitor becomes 𝐿 𝑑𝑖 𝑑𝑡⁄ =

𝐿𝐶 𝑑2𝑦(𝑡) 𝑑𝑡2⁄ . Therefore,  

 

𝐿𝐶
𝑑2𝑦(𝑡)

𝑑𝑡2
+ 𝑅𝐶

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑦(𝑡) = 𝑥(𝑡)          (2.21) 
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Here, under the initial condition y (residual voltage of the capacitor) 

and 𝑦(1)(0), if both sides are Laplace transformed and arranged in the same 

manner as the previous item, the following equation can be obtained: 

 

𝑌(𝑠) =
(𝑠𝐿𝐶 + 𝑅𝐶)𝑦(0) + 𝐿𝐶 𝑦(1)(0)

𝐿𝐶𝑠2 + 𝑅𝐶𝑠 + 1
+

1

𝐿𝐶𝑠2 + 𝑅𝐶𝑠 + 1
𝑋(𝑠) 

(2.22) 

 

The first term in the above equation affects the output of the initial value, 

and the second term represents the portion where the input affects the output, 

and it can be seen that the superposition theory holds for both. Especially 

when the initial values are all zero, we have the following: 

 

𝑌(𝑠) =
1

𝐿𝐶𝑠2+𝑅𝐶𝑠+1
𝑋(𝑠)               (2.23) 

 

The input / output relationship is represented by the block diagram of Fig. 

2.10. Therefore, it can be said that the block diagram shows the input / output 

ratio in the Laplace transform region when all the initial values in the system 

are considered to be zero. 

 

 

Fig. 2.10 Block diagram of 𝑳𝑪𝑹 circuit 

 

In a circuit using a capacitor or an inductor, the voltage-current 

characteristic is expressed by a differential equation. Therefore, in order to 

obtain the response of the circuit, it is necessary to solve the differential 

equation. The Laplace transform converts a time domain function into a 

complex frequency domain function, and the Laplace transform converts the 

differential equation into an algebraic equation. Once Laplace transform is 

performed, not only the time response but also the frequency response can 

be easily obtained. It is also possible to determine the stability of the system 

from the position of the poles of the transfer function. 
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2.2.3 Laplace transform 

As described in the previous section, the solving differential equation 

requires complicated calculation. However, if it is limited only to the steady 

state response to the sinusoidal input as described in the previous section, it 

can be easily solved by the method of AC theory regardless of any frequency 

value. 

Input for any waveform, and without solving the differential equation, 

whether the method that finds out the solution of differential equation is not? 

If 𝑥(𝑡) only has one frequency, we can use Fourier transform to expand 

𝑥(𝑡). It can be decomposed into fundamental wave and each high harmonic 

component, and then calculate the corresponding output of each high 

harmonic with the frequency transfer function, and at last synthesize these 

outputs. But when we use the Fourier transform, depending on the waveform 

of x, it may be difficult to determine the integral value. 

To overcome above trouble and question, we select to use Laplace 

transform for applying to wider range of input signal wave. Laplace 

transform is also an integral transform named after its discoverer Pierre-

Simon Laplace. It takes a function of a real variable 𝑡  (often time) to a 

function of a complex variable 𝑠  (complex frequency). The Laplace 

transform is very similar to the Fourier transform, but the former is 

more complicated than the later. While the Fourier transform of a function is 

a complex function of a real variable (frequency), the Laplace transform of 

a function is a complex function of a complex variable. Laplace transforms 

are usually restricted to functions of 𝑡 with 𝑡 ≥ 0. A consequence of this 

restriction is that the Laplace transform of a function is a holomorphic 

function of the variable 𝑠.  

The Laplace transform is invertible on a large class of functions. The 

inverse Laplace transform takes a function of a complex variable 𝑠 (often 

frequency) and yields a function of a real variable 𝑡 (time). Given a simple 

mathematical or functional description of an input or output to a system, the 

Laplace transform provides an alternative functional description that often 

simplifies the process of analyzing the behavior of the system, or in 

synthesizing a new system based on a set of specifications [17]. So, for 

https://en.wikipedia.org/wiki/Integral_transform
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Complex_frequency
https://en.wikipedia.org/wiki/Fourier_transform
javascript:;
javascript:;
https://en.wikipedia.org/wiki/Complex_function
https://en.wikipedia.org/wiki/Holomorphic_function
https://en.wikipedia.org/wiki/Holomorphic_function
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Laplace_transform#cite_note-1
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example, Laplace transformation from the time domain to the frequency 

domain transforms differential equations into algebraic equations 

and convolution into multiplication [18].  

Laplace transform has many applications in the sciences and technology. 

At electronic circuit design field, since the voltage-current characteristics are 

represented by differential equations in circuits using capacitors and 

inductors, so it is necessary to solve the beautiful sentence equation in order 

to obtain the response of the circuit. Once Laplace transform is performed, 

not only the time response but also the frequency response can be easily 

obtained. It is also possible to judge the stability of the system from the 

position of the pole of the transfer function. The Routh-Hurwitz method is 

based on the characteristics equation of transfer function that in 𝑠 field. 

 

Fig. 2.11 Input / output relationship by transfer function 

 

From frequency transfer function Eq. (2.14), Laplace transform uses 𝑠,  

instead of 𝑗𝜔, which is not limited to pure imaginary numbers and extends 

it to multiple general areas.  

𝑓(𝑡) is one function of time 𝑡, using complex number 𝑠 as operator, and 

rewrite as follows: 

https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Convolution
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𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
                (2.24) 

 

𝐹(𝑠) = ℒ[𝑓(𝑡)] is called as Laplace transform of 𝑓(𝑡), and is written as: 

 

𝐹(𝑠) = ℒ[𝑓(𝑡)]                      (2.25) 

 

Inverse Laplace transform returns 𝐹(𝑠) into time function: 

 

𝑓(𝑡) = ℒ−1[𝐹(𝑡)] =
1

2𝜋𝑗
∫ 𝐹(𝑠)𝑒𝑠𝑡𝑑𝑠

𝑐+∞

𝑐−∞
       (2.26) 

 

The condition of Laplace transform existence is that   𝑓(𝑡)  must be a 

monovalent function at 𝑡 ≥ 0 area. That is to say, there is a real number 𝜎0 

that makes the following formula true: 

 

∫ |𝑓(𝑡)|𝑒−𝜎0𝑡𝑑𝑡 < ∞
∞

0
                (2.27) 

 

However, this condition is always satisfied whichever control system that 

physically exists. The parameter 𝑐 in Eq. (2.26) is one real number which 

is much bigger than 𝜎0. 

 

1. Unit step function 

The unit step function 𝑢(𝑡) which is shown as in Fig. 2.12, is always used 

when closing the switch in a certain circuit system for applying a constant 

voltage at electronic circuit filed. 
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Fig. 2.12 Unit step function 

 

Unit step function is defined as follows: 

 

𝑢(𝑡) = {
1, 𝑡 ≥ 0
0, 𝑡 < 0

                 (2.28) 

 

The corresponding Laplace transform is as follows: 

 

𝑈(𝑠) = ℒ[𝑢(𝑡)] = ∫ 𝑢(𝑡)𝑒−𝑠𝑡𝑑𝑡 = ∫ 1 ∙ 𝑒−𝑠𝑡𝑑𝑡 = [−
1

𝑠
𝑒−𝑠𝑡]0

∞ =
∞

0

∞

0

= lim
𝑡→∞

(−
1

𝑠
𝑒−𝑠𝑡)+

1

𝑠
=

1

𝑠
                                   (2.29) 

 

2. Unit impulse function 

Unit impulse function δ(𝑡) is always used for solving system’s function 

that can express the inherent properties of the system.  

 

δ(𝑡) = {
∞, 𝑡 = 0
0, 𝑡 ≠ 0

,         ∫ δ(𝑡)𝑑𝑡 = 1
∞

0
             (2.30) 

 

Use Eq. (2.24): 

 

δ(𝑠) = ℒ[δ(𝑡)] = ∫ δ(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 1
∞

0
            (2.31) 

 

3. Exponential function 

Using Eq. (2.24) for the Laplace transform of exponential function 𝑒𝑎𝑡:  
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F(𝑠) = ℒ[𝑒𝛼𝑡] 

= ∫ 𝑒𝛼𝑡𝑒−𝑠𝑡𝑑𝑡  =
∞

0
∫ 𝑒−(𝑠−𝛼)𝑡𝑑𝑡 = [−

1

𝑠−𝛼
𝑒−(𝑠−𝛼)𝑡]0

∞ =
1

𝑠−𝛼

∞

0
  (2.32)            

 

Laplace transform of exponential function is important and used to find 

solutions to differential equations. At the processing of sine wave or cosine 

wave Laplace transform, Laplace transform of the exponential function is 

also used after using Euler's formula to transform the sine wave or cosine 

wave.  

 

4. Sine wave function and cosine wave function.  

Using Euler's formula to transform the cosine wave function and sine 

wave function.  

 

𝑒±𝑗𝜔𝑡 = 𝑐𝑜𝑠𝜔𝑡 ± 𝑗𝑠𝑖𝑛𝜔𝑡               (2.33) 

𝑐𝑜𝑠𝜔𝑡 =
𝑒𝑗𝜔𝑡+𝑒−𝑗𝜔𝑡

2
, 𝑠𝑖𝑛𝜔𝑡 =

𝑒𝑗𝜔𝑡−𝑒−𝑗𝜔𝑡

2𝑗
         (2.34) 

 

So, we can obtain the Laplace transform of cosine wave and sine wave: 

 

cos(𝑠) = ℒ[𝑐𝑜𝑠𝜔𝑡] =
1

2
(

1

𝑠−𝑗𝜔
+

1

𝑠+𝑗𝜔
) =

𝑠

𝑠2+𝜔2
      (2.35) 

sin(𝑠) = ℒ[𝑠𝑖𝑛𝜔𝑡] =
1

2𝑗
(

1

𝑠−𝑗𝜔
−

1

𝑠+𝑗𝜔
) =

𝜔

𝑠2+𝜔2
         (2.36) 

 

5. Integral 

Laplace transform of first order integral: 

 

𝐾(𝑠) = ℒ [
𝑑𝑓(𝑡)

𝑑𝑡
] = 𝑠𝐹(𝑠) − 𝑓(0)          (2.37) 

 

Laplace transform of second-order integral and third-order integral: 

 

ℒ [
𝑑2𝑓(𝑡)

𝑑𝑡2
] = 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)         (2.38) 
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ℒ [
𝑑3𝑓(𝑡)

𝑑𝑡3
] = 𝑠3𝐹(𝑠) − 𝑠2𝑓(0) − 𝑠𝑓′(0) − 𝑓′′(0)     (2.39) 

 

Laplace transform of 𝑛th-order integral:  

 

ℒ [
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
] = 𝑠𝑛𝐹(𝑠) − ∑ 𝑠𝑛−𝑘𝑛

𝑘=1 𝑓𝑛−𝑘        (2.40) 

 

6. Differential 

Laplace transform of differential: 

 

𝐾(𝑠) = ℒ [∫ 𝑓(𝑡)𝑑𝑡
𝑡

−∞
] =

𝐹(𝑠)

𝑠
+

𝑞(0)

𝑠
         (2.41) 

 

Here, 𝑞(0) ≡ [∫ 𝑓(𝑡)𝑑𝑡
𝑡

−∞
]𝑡=0. 

 

7. Time delay wave 

𝑘(𝑡) is the one time wave that from wave 𝑓(𝑡) after 𝑇 time delay: 

 

𝑘(𝑡) = 𝑔(𝑡 − 𝑇)𝑢(𝑡 − 𝑇)               (2.42) 

 

The Laplace transform of 𝑘(𝑡) is as the following: 

 

𝐾(𝑠) = ℒ[𝑘(𝑡)] = ∫ 𝑔(𝑡 − 𝑇)𝑢(𝑡 − 𝑇)𝑒−𝑠𝑡𝑑𝑡
∞

0
= 𝑒−𝑠𝑇𝐹(𝑠)  (2.43) 

 

This transform is the connection bridge between time continuous analog 

signal with time discretion digital signal, so its applicability is very important. 
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Table. 2.3 Laplace transform of typical functions 

  
 

2.2.4 Basic element transfer characteristics 

Simply loop block diagram of feedback linear system is shown as Fig. 

2.13. 𝐺(𝑗𝜔)  and 𝐻(𝑗𝜔)  are transfer functions of transfer element and 

feedback element respectively. 
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Fig. 2.13 First-order lag element 

 

In the feedback amplifier condition, the transfer function is as follows: 

 

𝑌(𝑗𝜔)

𝑅(𝑗𝜔)
=

𝐺(𝑗𝜔)

1+𝐺(𝑗𝜔)𝐻(𝑗𝜔)
                 (2.44) 

 

Here, 𝐺(𝑗𝜔) and 𝐻(𝑗𝜔) are frequency spectrum of the controlled variable 

𝑦(𝑡) and the reference value 𝑟(𝑡) respectively. 

In the feedback control system, there are proportional element, integral 

element, differential element, first-order lag element, second-order lag 

element and dead time element as shown in Table. 2.4.  
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Table. 2.4 Basic elements of transfer function 

 
 

In automatic control and negative feedback circuits, responses to step 

wave and impulse wave are important. These responses are called unit step 

response and impulse response. The unit step response is sometimes called 

the indicial response. In this section, we will introduce first-order lag element, 

second-order lag element and dead time element, and their response for 

corresponding input signal. 

 

1, First-order lag element 

 

 

Fig. 2.14 First-order lag element 
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As shown in Fig. 2.14, an element having a transfer function whose 

denominator is a linear expression with respect to s is referred to as a first-

order lag element. This transfer function itself is called a first-order lag 

transfer function. When the first-order lag transfer function is expressed in 

the form shown in Fig.2.14, 𝐾 is called a gain constant and 𝑇 is called a 

time constant.  

 

 

Fig. 2.15 𝑹𝑪 integration circuit 

 

As shown in Fig.2.15, a circuit that includes only a resistor and a capacitor 

or a resistor and an inductor, and does not include the capacitor and the 

inductor at the same time is a first-order lag system. The unit step response 

of this circuit is: 

 

 𝑦(𝑡) = ℒ−1 [
1

𝑠
∗ 𝐺(𝑠)] = ℒ−1 {

𝐾

𝑠(1+𝑇𝑠)
} = 𝐾 (1 − 𝑒−

𝑡

𝑇)      (2.45) 

 

The waveform of step response and impulse response are shown in Fig.2.16. 

The time constant 𝑇 is a parameter indicating the speed of response. At step 

response, a time constant is given by extending the slope of the response 

waveform at time zero as it is and intersecting the final value. The response 

waveform at this time is becoming 1 − 1 𝑒⁄ = 0.63, which is the final value. 

In the circuit shown in Fig.2.16 (a) 𝑇 is equal to 𝑅𝐶. At the first-order lag 

system, there are no vibration components generated. 
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  (a) Step response           (b) Impulse response 

Fig. 2.16 Transient response of first-order lag element 

 

2，Second-order lag element 

As mentioned in the previous section, the circuit as shown in Fig. 2.9 is one 

second-order lag element, and its frequency transfer function and transfer 

function be expressed as Eq. (2.18) and Eq. (2.23) respectively. In general, 

the transfer function of the quadratic element can be written as: 

 

𝐺(𝑠) =
𝐾𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛+𝜔𝑛
2                    (2.46) 

 

Here, 𝜔𝑛is called natural frequency, and 𝜁 is called damping factor. Its 

characteristic equation is 𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2 = 0，and its roots are 𝑝1 = 𝑝2 =

(−𝜁 ± √𝜁2 − 1)𝜔𝑛. Therefor the unit step response is given by 

  

𝑦(𝑡) = ℒ−1 {
𝐾𝜔𝑛

2

𝑠(𝑠−𝑝1)(𝑠−𝑝2)
}              (2.47) 

 

Calculated as Laplace inverse transform, and the unit step response is 

classified as follows, according to the damping factor 𝜁: 

 

 𝜁 > 1 (𝑝1 and 𝑝2 are different real roots) 
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𝑦(𝑡) = 1 − 𝑒−𝜁𝜔𝑛𝑡
sinh (√𝜁2 − 1𝜔𝑛𝑡 + 𝛾)

√𝜁2 − 1
 

𝛾 = 𝑡𝑎𝑛ℎℎ−1 √𝜁2−1

𝜁
                (2.48) 

 

 𝜁 = 1 (𝑝1 and 𝑝2 are double roots) 

 

𝑦(𝑡) = 1 − (1 + 𝜔𝑛𝑡)𝑒
−𝜔𝑛𝑡           (2.49) 

 

 𝜁 < 1 (𝑝1 and 𝑝2 are complex conjugate roots) 

 

𝑦(𝑡) = 1 − 𝑒−𝜁𝜔𝑛𝑡
sinh (√𝜁2 − 1𝜔𝑛𝑡 + 𝜙)

√𝜁2 − 1
 

𝜙 = 𝑡𝑎𝑛−1 √𝜁2−1

𝜁
                   (2.50) 

 

 

Fig. 2.17 Unit step response waveform of the second-order lag system 
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Fig.2.17 shows the response waveform when 𝜔𝑛𝑡 is the horizontal axis 

and the damping factor 𝜁 is a parameter. If the value of 𝜁 is small, the 

waveform shows oscillation which is difficult to converge. On the other hand, 

if it is too large, the response becomes slow and it takes time to converge. 

Therefore, it can be seen that the attenuation coefficient is an important 

parameter in designing the system. Generally, in order to improve settling it 

is often set to about 𝜁 ≈ 0.7. 

 

3. Dead time element 

 

 

Fig. 2.18 Dead time element 

 

As shown in Fig.2.18, an element that generates 𝑦(𝑡) = 𝑒(𝑡 − 𝐿) as an 

output signal when 𝑥(𝑡) is added as an input signal is referred to as a dead 

time element. Let us find the transfer function 𝐺(𝑠)  of the dead time 

element. If the Laplace transform 𝑋(𝑠) of the input signal 𝑥(𝑡) is: 

 

𝑋(𝑠) = ∫ 𝑒(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
                 (2.51) 

 

Then the Laplace transform 𝑌(𝑠) of the output signal 𝑦(𝑡) is obtained as 

follows: 

 

𝑌(𝑠) = ∫ 𝑦(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 𝑒−𝑠𝐿𝑋(𝑠)
∞

0
           (2.52) 

 

 Here, taking the ratio of the input and output signals, the transfer function 
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𝐺(𝑠) is obtained as follows: 

 

𝐺(𝑠) = 𝑒−𝑠𝐿                    (2.53) 

 

2.3 Stability criterion 

2.3.1 Conditions for stability  

It is effective to have a closed loop as shown in Fig.2.1 in order to reduce 

the influence of fluctuations in parameters of the control target and control 

device or various disturbances entering each part and to reduce the control 

deviation. When the initial values of all integral elements included in such a 

feedback control system may be regarded as 0, it is convenient to analyze 

using a transfer function. Consider a system in Fig.2.19. 

 

 

Fig. 2.19 Unit step function 

 

If the transfer function of the forward transfer path is 𝐺(𝑠), the transfer 

function of the feedback circuit is 𝐻(𝑠), and the Laplace transform of the 

reference amount 𝑟(𝑡), the control amount 𝑦(𝑡), the deviation 𝑒(𝑡), and the 

feedback amount 𝑏(𝑡) are 𝑅(𝑠), 𝑌(𝑠), 𝐸(𝑠), and 𝐵(𝑠) respectively. Then 

the following relational expression is obtained: 

 

𝑌(𝑠) = 𝐺(𝑠)𝐸(𝑠)                  (2.54) 

                      𝐸(𝑠) = 𝑅(𝑠) − 𝐵(𝑠)                  (2.55) 

𝐵(𝑠) = 𝐻(𝑠)𝑌(𝑠)                  (2.56) 
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Substituting Eq. (2.55) and Eq. (2.56) into Eq. (2.54), we have 

 

𝑌(𝑠) = 𝐺(𝑠)𝑅(𝑠) − 𝐺(𝑠)𝐻(𝑠)𝑌(𝑠)          (2.57) 

 

Therefore,  

 

𝑌(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)𝐻(𝑠)
𝑅(𝑠)                   (2.58) 

 

And then set: 

 

𝑊(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)𝐻(𝑠)
                   (2.59) 

Then we have: 

 

𝑌(𝑠) = 𝑊(𝑠)𝑅(𝑠)                   (2.60) 

 

𝑊(𝑠) is the combined transfer function for the closed loop, and it is called 

the closed loop transfer function. On the other hand, 𝐺(𝑠)𝐻(𝑠) is a transfer 

function along the loop from one end of the cut to the other end when it is 

assumed that the cut is made somewhere in the loop, and 𝐺(𝑠)𝐻(𝑠) is 

called open loop transfer function. 

When a finite arbitrary input is added to the control system, this system is 

said to be stable if its output is always rooted. If the inverse transformation 

of the closed-loop transfer function 𝑊(𝑠) expressed by Eq. (2.60) is 𝜔(𝑡), 

then the necessary and sufficient condition for 𝑦(𝑡) to be finite for any 

finite 𝑟(𝑡) is: 

 

∫ |𝑦(𝑡)|𝑑𝑡
∞

0
= 𝑓𝑖𝑛𝑖𝑡𝑒                  (2.61) 

 

Let us consider this condition in the 𝑠 region. In Eq. (2.60), assuming that 

the poles of 𝑊(𝑠) and 𝑅(𝑠) are all different from each other and if we 

put them into 𝑝1, 𝑝1, ⋯⋯ , 𝑝𝑛 and 𝑞1, 𝑞2, ⋯⋯ , 𝑞𝑛, then it can be expanded 

into the following form:  

 



４５ 

 

𝑌(s) = 𝐾0 + ∑
𝐾𝑖

𝑠−𝑝𝑖
+ ∑

𝐾𝑗
′

𝑠−𝑞𝑗

𝑟
𝑗=1

𝑛
𝑖=1               (2.62) 

 

Apply inverse Laplace transform and return to the time domain: 

 

𝑦(𝑡) = 𝐾0𝛿(𝑡) + ∑ 𝐾𝑖𝑒
𝑝𝑖𝑡𝑛

𝑖=1 + ∑ 𝐾𝑗
′𝑒𝑞𝑗𝑡𝑟

𝑖=1            (2.63) 

 

When 𝑝𝑖  or 𝑞𝑗  is a real number, and if these are positive, 𝑒𝑝𝑖𝑡or 𝑒𝑞𝑗𝑡 

increases with time and eventually becomes infinite as shown in Fig. 2.20. If 

it is negative, it gradually decreases with time and eventually approaches 

zero. 

 

 

Fig. 2.20 Case of with real number pole 𝒑 

 

When 𝑝𝑖 or 𝑞𝑗 is a complex number, and if it is divided into a real part 

and an imaginary part and set to𝛼 + 𝑗𝛽, since the complex pole must be a 

conjugate pair, 𝛼 − 𝑗𝛽 is another pole. A combination of the terms 𝛼 + 𝑗𝛽 

and 𝛼 − 𝑗𝛽 makes the system oscillatory as shown in Fig. 2.20, and if the 

real part 𝛼 is positive, the amplitude gradually increases with time as shown 

in Fig. 2.21 (a), whereas if 𝛼 becomes negative, it gradually attenuates as 

shown in Fig. 2.21 (b). 
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(a) 𝛼 > 0                       (b) 𝛼 < 0 

Fig. 2.21 Case of with conjugate complex number poles 𝜶 ± 𝒋𝜷 

 

From the above considerations, it can be seen that if at least one of 𝑝𝑖 and 

𝑞𝑗 has a non-negative real part, ∫ |𝑦(𝑡)|𝑑𝑡
∞

0
 is no longer finite. Since the 

input  𝑟(𝑡)  is considered as a finite arbitrary input, none of the poles 

𝑞1, 𝑞2, ⋯⋯ , 𝑞𝑛  of 𝑅(𝑠)  has a non-negative real part. Therefore, the 

condition for 𝑦(𝑡)  to be finite is that the real parts of the poles 

 𝑝1, 𝑝1, ⋯⋯ , 𝑝𝑛 of 𝑊(𝑠) are all negative. Therefore, the condition for the 

control system to be stable is that all the poles of 𝑊(𝑠) are negative in the 

real part. 

As is clear from Eq. (2.59), the pole of 𝑊(𝑠)  is the root of the 

characteristic equation: 

 

1 + 𝐺(𝑠)𝐻(𝑠) = 0                 (2.64) 

 

Now, when these roots are drawn on the complex plane representing 𝑠 as 

shown in Fig. 2.22, the system is stable if all the roots exist only in the left 

half plane of the imaginary axis. If there is even one root on the right half, it 

becomes unstable. Also, if the root is just above the imaginary axis, it 

continues to vibrate with a certain amplitude, so it is difficult to say that it is 

stable. 
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Fig. 2.22 Position of the pole on the 𝒔 plane 

 

A special case where the transfer function 𝐻(𝑠) of the feedback path 

becomes 1 in the feedback system of Fig. 2.23 is called a unity feedback 

system. Such a configuration is called a voltage follower in the electrical and 

electronic circuit area. 

 

 

Fig. 2.23 Unity feedback system 

 

In the unity feedback system as shown in Fig. 2.23, its transfer function is: 

 

𝑊(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)
                   (2.65) 

 

Then its characteristic equation is: 
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1 + 𝐺(𝑠) = 0                   (2.66) 

 

2.3.1 Routh-Hurwitz stability criterion 

When designing a feedback control system, the first requirement is that 

the system should be stable. If it is likely to become unstable, it is a 

predecessor to take some measures to stabilize it. In the time domain analysis 

of the control system theory, the Routh–Hurwitz stability criterion is a 

mathematical test that is the necessary and sufficient condition for 

the stability of a linear time invariant control system [13]. It uses the ideas 

above to determine whether a given polynomial has roots in the right half-

plane. 

If the control system is made up of a finite number of lumped elements, 

𝐺(𝑠) is expressed by a rational function with respect to 𝑠. Therefore, the 

denominator of the closed-loop transfer function𝑊(𝑠)  can generally be 

expressed by the following real coefficient polynomial: 

 

𝐷(𝑠) = 𝛼𝑛𝑠
𝑛 + 𝛼𝑛−1𝑠

𝑛−1 + ⋯+ 𝛼1𝑠 + 𝛼0 = 0        (2.67)    

  

Therefore, determining the stability can be attributed to the problem of 

finding out whether the real part of the root of the characteristic equation 

𝐷(𝑠) = 0 is positive or negative. When the order 𝑛 is 2nd, 3rd or 4th order, 

it is sufficient to actually solve the characteristic equation and examine the 

real part of the root. However, as the order becomes higher, it is troublesome 

to find the root. Therefore, the existence of a root whose real part is not 

negative may be determined by the following method. 

For convenience, the coefficient in the first term is considered to be 

positive. If it is negative, each term of 𝐷(𝑠)  multiplied by -1 can be 

considered as a characteristic equation. If any one of the 

coefficients 𝛼𝑛−1, 𝛼𝑛−2, …… , 𝛼1, 𝛼0 is negative or zero, some of the roots of 

the characteristic equation have a non-negative real part. Therefore, a 

necessary condition for the system to be stable is that the coefficients of all 

terms of the characteristic equation are present and all are positive. However, 

this is not a sufficient condition for stability. According to Hurwitz's stability 

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Stable_polynomial
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Time_invariant
https://en.wikipedia.org/wiki/Control_system
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determination, in addition to this, it is a necessary and sufficient condition 

for stability that all of the Hurwitz determinants described below are positive. 

The coefficients of Eq. 2.67 are arranged as Fig. 2.24, first row first 

column, second row second column, third row third column, in order from 

the upper left corner of this sequence. The 𝑛 − 1 determinants made by 

taking the above are called Hurwitz determinants. However, in some higher-

order determinants, the subscript α𝑘 of 𝑘 is negative, but these are all set 

to zero. 

 

 

Fig. 2.24 Coefficient of characteristic equation 

 

 

Fig. 2.25 Hurwitz determinant 

 

The necessary and sufficient condition for all roots of the characteristic 

equation 𝑝(𝑠) to be real parts is that all of  𝛼𝑛−1, 𝛼𝑛−2, …… , 𝛼1, 𝛼0 and 

𝐷2, 𝐷3, …… ,𝐷n−1 are positive. 

Routh’s discriminant method is equivalent to the Hurwitz method, but is 

convenient for actual calculations and has the advantage of knowing the 

number of unstable roots. Necessary and sufficient condition of the stability 
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is that all real parts of the solutions of characteristic equation are negative, 

which is equivalent to the following: 

   𝛼𝑖 > 0 for i=0, 1, ... , n, and all values of the first column parameters 

in Routh table (Table. 2.5) are positive. 

 

Table. 2.5 Routh table 

 

 

In the first column of the Routh table, the number of times for the 

coefficients sign changes is equal to the number of the system characteristic 

equation solutions with the positive real part.   

 

2.3.2 Nyquist stability criterion 

Routh discriminant method and Hurwitz discriminant method can be used 

only when the characteristic equation is given by a polynomial of 𝑠. It cannot 

be applied if the coefficient value is not mathematically clear or the 

characteristic equation includes a transcendental function. On the other hand, 

the Nyquist stability discriminant has a feature that can be determined 

graphically based on the frequency characteristic of the round transfer 

function 𝐺(𝑠). 

In the feedback system, if the transfer function is 𝐺(𝑠), the value of s 

satisfying the characteristic equation as 1 + 𝐺(𝑠) = 0 is stable if there is 

no value on the right half or imaginary axis of the 𝑠 plane. Therefore, as 

shown by 𝛤 in Fig. 2.26(a), consider a trajectory that makes a round on the 

s plane. In other words, starting from the original point 0, proceeding upward 
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on the imaginary axis and reaching +𝑗∞, from there, going to −𝑗∞ around 

the right side along the semicircle of infinity radius, and further upward on 

the imaginary axis. Let 𝛤 be the closed path that returns to zero. The system 

is stable if there is no root of 1 + 𝐺(𝑠) = 0 inside the 𝛤. Now, as shown in 

Fig. 2.26(b), consider a plane in which the real part of the round transfer 

function 𝐺(𝑠) is represented on the horizontal axis and the imaginary part 

is represented on the vertical axis. If the value of 𝑠 is moved along the 

trajectory 𝛤 on the 𝑠 plane, the corresponding 𝐺(𝑠) value also draws a 

closed path 𝛤 
′
 on the 𝐺(𝑠) plane. 

 

 

(a)                                (b)  

Fig. 2.26 Correspondence between s plane and 𝑮(𝒔) plane 

 

In other words, 𝛤 
′
 is the conformal mapping of the trajectory 𝛤 on the 

s plane by the mapping function 𝐺(𝑠). The part surrounded by 𝛤 on the 𝑠 

plane is always on the right side of the orbital direction. Therefore, the 

portion of the 𝐺(𝑠) plane that is wrapped to the right in the direction of 

travel of 𝛤 
′
 corresponds to the right half of the 𝑠 plane. 

In Fig. 2.26(b), Q is a point on the negative real axis at a distance of 1 

from the original point. The value of 𝐺(𝑠) matches the point Q. It means 

that the value of s is the root of characteristic equation 1 + 𝐺(𝑠) = 0. From 

the above considerations, it can be said that the system is stable if the 

trajectory of 𝛤 
′
 does not wrap around point Q. 

Nyquist plot: The Nyquist plot is a frequency response plot in 



５２ 

 

Gaussian plane, widely used in automatic control and signal processing (Fig. 

2.27(a)) [14]. The most common usage of the Nyquist plot is for assessing 

the stability of the system with feedback.  

Necessary and sufficient condition for the closed-loop system stability is 

given as follows: 

   when,ω = 0 → ∞, N =
𝑃

2
 

Here, N is the number of Nyquist plot anti-clockwise encircle point (-1, 

j0), and P is the number of positive roots of the open-loop characteristic 

equation. 

As shown in Fig. 2.27(a), if the vector locus of 𝐺(𝑗𝜔) passes through the 

left side of the point (−1, j0) when 𝜔 changes from 0 to ∞, it is stable, 

whereas it is unstable if it passes on the right side. In many cases, this 

inference is sufficient. 

 

(a) Nyquist plot of an open-loop system 
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(b) Bode plots of the loop gain for stable system 

Fig. 2.27 Nyquist plot and Bode plot 

 

Bode plot:  In electrical engineering and control theory, the Bode plots 

are graphs of the frequency responses (gain and phase) of the open-loop 

characteristics of the feedback system, and they can show gain margin and 

phase margin (Fig.2.27(b)) required to maintain feedback system stability 

under variations in circuit characteristics [5-13]. Also they provide visual 

representations of the operational amplifier transfer response and its 

potential stability, and they can be obtained by measurements as well as the 

mathematical model (small signal model) of the operational amplifier. This 

principle has been widely applied to design many feedback control systems. 

Circuit designers can routinely use the Bode plots to determine the 

bandwidth and frequency stability of the operational amplifier circuits. We 

can see from Fig. 2.27, that we can also obtain the gain margin and phase 

margin from Nyquist plot. 

 

https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Gain_margin
https://en.wikipedia.org/wiki/Gain_margin
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Fig. 2.28 Bode plots of the loop gain for unstable system 

 

 

Fig. 2.29 Bode plots of the loop gain for stable system 

 

The frequencies at which the magnitude and phase of the loop gain are 

equal to unity and −180o, respectively, play a crucial role in the stability and 

they are called the “gain crossover point” (GX) and the “phase crossover 
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point” (PX) respectively. In a stable system, the gain crossover must occur 

well-before the phase crossover. As shown in Fig 2.29, if the magnitude plots 

are shifted down, the gain crossover moves closer to the origin which makes 

the feedback system more stable. 

To ensure stability, |𝑓𝐴(𝑗𝜔)|  must drop to unity before ∠𝑓𝐴(𝑗𝜔) 

crosses −180o. As shown in Fig. 2.30(a), GX is only slightly below PX, and 

in Fig.2.30 (b), GX precedes PX with a greater margin. Therefore, the greater 

the spacing between GX and PX (while GX remains below PX), the more 

stable the feedback system is.  

 

 

(a) Small margins 
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(b) Large margins 

Fig. 2.30 Open-loop frequency responses for various margins between gain and 

phase crossover points. 𝑮𝑿= gain crossover point, 𝑷𝑿= phase crossover point. 

 

Alternatively, the phase of 𝑓𝐴(𝑗𝜔) at the gain crossover frequency can 

serve as a measure of stability: the smaller |𝑓𝐴(𝑗𝜔)| at this point, the more 

stable the system. This observation leads us to the concept of “phase margin” 

(PM), defined as:     

           

PM = 180o + ∠𝑓𝐴(𝜔 = 𝜔1)                   (2.68)                                                

         

Here, 𝜔1 is the gain crossover frequency. 
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Fig. 2.31 Skeleton Bode plot 

 

The skeleton Bode plot which is shown as in Fig. 2.31 is an approximation 

of the Bode plot by a straight line when the board or zero is a real number. 

By using the skeleton Bode plot, drawing is becoming easier for circuit 

design and analyses. 6dB/oct is means gain 6dB increase when frequency 

doubles, and 20dB/dec is means gain 20dB increase when frequency is 10 

times. Drawing the phase is a little complicated than drawing the gain: in the 

case of zero point, it approximates linearly to  45
0
at  𝜔 = 𝜔𝑧 , 00at  𝜔 =

0.1𝜔𝑧, 900at 𝜔 = 10𝜔𝑧; in the case of pole point, it approximates linearly 

to−450at 𝜔 = 𝜔𝑧 , 00at 𝜔 = 0.1𝜔𝑧,−900at 𝜔 = 10𝜔𝑧. Fig. 2.31 shows 

how to create a skeleton Bode plot of gain and phase when there is one zero 

point and one pole point. 

Stability and many response characteristics are mutually restricted. For 

example, in relation to response seed, if there is a good phase margin in the 
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frequency analysis, the speed will be slower in the response of the feedback 

system. On the contrary, if the speed of response is increased, the phase 

margin is hard to guarantee and the system will perform poorly in terms of 

stability. 

2.4 Summary  

In this chapter, we have introduced the stability criterion, including Routh-

Hurwitz stability which is unpopular in electronic field, and Nyquist stability 

criterion which is widely used for judging stability by circuit designer. 

Before doing this, we first introduced the principle, composition and 

classification of the feedback control system in details. And then, we 

introduced the related knowledge that is needed when we derive the transfer 

function, including differential equation and Laplace transform. All of those 

are basic theoretical knowledge, but are very important and indispensable for 

carrying out research and learning in many subjects. 
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CHAPTER III 

OPERATIONAL AMPLIFIER AND 

SMALL SIGANAL MODEL 

 

Electronic circuits are configured using semiconductor devices such as 

diodes, bipolar transistors, and MOS transistors. In the former section of this 

chapter, we talk about the basic knowledge of electronics, including the 

constructions and principles as well as the voltage-current characteristic of 

transistors and its small signal equivalent circuit. In the later of transistor, we 

duce the small signal model of several examples of operational amplifiers.  
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3.1 Transistor and amplifier circuit 

The most important purpose of electronic circuits is the amplification of 

electrical signals. Resistors, capacitors, and coils are called passive elements 

and do not function to amplify electrical signals. Active elements are 

required to amplify electrical signals. Until around 1960s, vacuum tubes 

were mainly used as active elements, but small and lightweight active 

elements called transistors later became the mainstream, and at present, 

vacuum tubes are used only in very special cases. This section describes the 

basic concept of what amplification is, focusing on the transistor operating 

principle and its equivalent circuit. 

3.1.1 Bipolar transistor and MOS transistor  

 

Fig. 3.1 npn transistor 

 

As shown in Fig. 3.1, bipolar transistors are formed by sandwiching PN 

junctions, and there are two types, npn transistors using npn junctions and 

pnp transistors using pnp junctions. Fig. 3.1 shows an npn transistor. 

The collector current 𝐼𝐶  varies exponentially with the base-emitter 

voltage 𝑉𝐵𝐸: 

 

𝐼𝐶 = 𝐼𝑆𝑒
𝑞𝑉𝐵𝐸

𝑘𝑇                       (3.1) 
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Since the base current 𝐼𝐵  also varies exponentially with base-emitter 

voltage  𝑉𝐵𝐸 , so the relationship between collector current 𝐼𝐶  and base 

current 𝐼𝐵 is given by:  

 

𝐼𝐵 =
𝐼𝐶

𝛽𝐹
                         (3.2) 

 

Here, 𝛽𝐹is called forward current gain. Since the emitter current is the sum 

of the base current and the collector current, and considering the polarity, we 

have the following:  

 

 𝐼𝐸 = −(𝐼𝐵 + 𝐼𝐶) = −(𝐼𝐶 +
𝐼𝐶

𝛽𝐹
) = −

𝐼𝐶

𝜕𝐹
           (3.3) 

 

Here, 𝜕𝐹 is called forward current transfer rate. The collector current 𝐼𝐶 of 

the bipolar transistor is determined by the base-emitter voltage 𝑉𝐵𝐸  and 

varies exponentially with respect to the base-emitter voltage  𝑉𝐵𝐸 . It is 

basically independent of the collector voltage. 

Fig. 3.2 is a plot of the collector current 𝐼𝐶 against the collector-emitter 

voltage Vce using the base current 𝐼𝐵 as a parameter. The collector current 

𝐼𝐶 has little dependency on the collector-emitter voltage 𝑉𝐶𝐸 , and is mostly 

determined by the base current  𝐼𝐵  or the base-emitter voltage  𝑉𝐵𝐸 . This 

characteristic can be expressed by a voltage controlled current source. 

However, the collector current rapidly decreases in the region where 𝑉𝐶𝐸  is 

lower than about 0.3V. This region is called a saturation region. Normally, 

this saturation region should not be used as the operation region of the 

bipolar transistor. 
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Fig. 3.2 Collector-emitter voltage and collector current 

 

It can be seen that the collector current 𝐼𝐶 changes with a change in the 

collector-emitter voltage  𝑉𝐶𝐸 , although it is slight. This effect is called the 

Early effect. Considering the Early effects, we have the followings: 

 

𝐼𝐶 = 𝐼𝑆𝑒
𝑞𝑉𝐵𝐸

𝑘𝑇 (1 +
𝑉𝐶𝐸

𝑉𝐴
)                     (3.3) 

 

The MOS transistor has a gate formed on a semiconductor with an 

insulator such as silicon dioxide SiO2 and a metallic material such as 

polysilicon. When the substrate is a p-type semiconductor, the drain-source 

region is formed of an n-type semiconductor. Consider that a positive voltage 

𝑉𝐷𝑆 is applied between the drain and source, and a voltage 𝑉𝐺𝑆 is applied 

between the gate and source. Then the current 𝐼𝐷 flows between the drain 

and source when the voltage 𝑉𝐺𝑆 is higher than a certain voltage, and when 

the voltage 𝑉𝐺𝑆  is lower than a certain voltage, the current  𝐼𝐷  does not 

flow. 
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Fig. 3.3 Channel in the linear region. 𝑳= the channel length. 

 

A path through which carriers flow is called a channel. As shown in 

Fig.3.3, a carrier is induced across the entire region between the drain and 

the source forming a channel by the gate, and a linear region is formed. Drain 

current is expressed as: 

 

𝐼𝐷 = 𝜇𝐶𝑜𝑥
𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑇 −

𝑉𝐷𝑆

2
)𝑉𝐷𝑆           (3.4) 

 

Here, 𝑊 is the channel width, 𝐿 is the channel length, 𝑉𝑇  is the threshold 

voltage. 
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Fig. 3.4 Channel in saturation region. 

 

When 𝑉𝐷𝑆 > 𝑉𝐺𝑆 − 𝑉𝑇, the charge induced in the channel near the drain 

disappears as shown in Fig.3.4. Drain current is obtained as: 

 

𝐼𝐷 =
𝜇𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑇)

2                 (3.5) 

 

The drain current 𝐼𝐷 is determined by the gate-source voltage 𝑉𝐺𝑆 and it 

does not depend on the drain-source voltage 𝑉𝐷𝑆. Such a region is called a 

saturation region, and often is used as the operating region of MOS 

transistors. 
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Fig. 3.5 Voltage-current characteristics in saturation region. 𝑊= the channel 

width, 𝐿= the channel length. 

 

Fig.3.5 shows the characteristics of the drain current 𝐼𝐷 with respect to 

the drain-source voltage 𝑉𝐷𝑆 when the gate-source voltage 𝑉𝐺𝑆 is used as 

a parameter. In an actual MOS transistor, when the drain voltage changes 

even in the saturation region, the drain current 𝐼𝐷 changes. One reason for 

this is a change in the depletion layer thickness between the channel and the 

drain. This is called a channel length modulation effect. Considering the 

channel length modulation effect, the drain current 𝐼𝐷 is: 

 

𝐼𝐷 =
𝜇𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑇)

2(1 +
𝑉𝐷𝑆

𝑉𝐴
)            (3.6) 

 

Here, 𝑉𝐴 is a voltage representing the channel length modulation effect and 

is called as Early voltage. Fig. 3.6 shows the voltage-current relationship of 

bipolar transistors, and Fig. 3.7 shows voltage-current relationship of MOS 

transistors. 
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Fig. 3.6 Voltage-current relationship of bipolar transistors 

 

 

Fig. 3.7 Voltage-current relationship of MOS transistors 

 

3.1.2 Small signal equivalent circuit of transistor 

Signal amplification is possible by using bipolar transistors and MOS 

transistors. For this purpose, it is necessary to obtain a change in the output 

signal voltage when the transistor is kept in an appropriate operating state in 

terms of DC, and the input signal voltage is changed around the operating 

point. What is required in circuit design is a response to a small signal, which 

is a slight change in voltage, not the voltage value itself. A small voltage 

change is an input and the output voltage change is taken out as an output. 

Therefore, characteristics of the output change with respect to the input 

change are required, and a small signal equivalent circuit that is a circuit 

focused only on the signal change is required. 

In the bipolar transistor circuit, the collector current 𝐼𝐶 is a function of 

the base-emitter voltage 𝑉𝐵𝐸  and the collector-emitter voltage 𝑉𝐶𝐸 . 
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𝐼𝐶 = 𝐼𝐶(𝑉𝐵𝐸 , 𝑉𝐶𝐸)                    (3.7) 

 

Taylor expansion of Eq. (3.7) is given by: 

 

𝐼𝐶 + 𝛥𝐼𝐶 = 𝐼𝐶(𝑉𝐵𝐸 , 𝑉𝐶𝐸) +
𝜕𝐼𝐶

𝜕𝑉𝐵𝐸
𝛥𝑉𝐵𝐸 +

𝜕𝐼𝐶

𝜕𝑉𝐶𝐸
𝛥𝑉𝐶𝐸       (3.8) 

 

Proportional coefficient of collector current 𝐼𝐶 change 𝛥𝐼𝐶 to base-emitter 

voltage 𝑉𝐵𝐸  change 𝛥𝑉𝐵𝐸  is called as transconductance: 

 

𝜕𝐼𝐶

𝜕𝑉𝐵𝐸
= 𝑔𝑚 =

𝐼𝑐

𝑈𝑇
                    (3.9) 

 

Proportional coefficient of collector current 𝐼𝐶  change 𝛥𝐼𝐶  to collector-

emitter voltage 𝑉𝐶𝐸  change 𝛥𝑉𝐶𝐸  is called as collector conductance: 

 

𝜕𝐼𝐶

𝜕𝑉𝐶𝐸
= 𝑔𝑜 =

1

𝑟𝑜
                    (3.10) 

 

Proportional coefficient of base current 𝐼𝐵  change 𝛥𝐼𝐵  to base-emitter 

voltage 𝑉𝐵𝐸  change 𝛥𝑉𝐵𝐸  is called as input conductance: 

 

𝑔𝜋 =
𝛥𝐼𝐵

𝛥𝑉𝐵𝐸
=

𝑔𝑚

𝛽𝐹
                   (3.11) 

 

Small signal equivalent circuit of the bipolar transistor is as shown in Fig. 

3.8. The parameter  𝑟𝑏 is base spreading resistance, when the current flows 

through the base, the voltage applied to the base-emitter junction decreases. 

 

𝑟𝑜 =
1

𝑔𝑜
, 𝑟𝜋 =

1

𝑔𝜋
                   (3.12) 
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Fig. 3.8 Small signal equivalent circuit of bipolar transistor 

 

In the small signal equivalent circuit of the MOS transistor as shown in 

Fig. 3.9, it is necessary to consider the back gate effect. Since the drain 

current 𝐼𝐷  is a function of the gate-source voltage 𝑉𝐺𝑆 , the drain-source 

voltage 𝑉𝐷𝑆, and the body-source voltage 𝑉𝐵𝑆, it is expressed as follows: 

 

𝐼𝐷 = 𝐼𝐷(𝑉𝐺𝑆 , 𝑉𝐷𝑆, 𝑉𝐵𝑆)                (3.13) 

 

The state when the gate-source voltage 𝑉𝐺𝑆, the drain-source voltage 𝑉𝐷𝑆, 

and the body-source voltage 𝑉𝐵𝑆 change slightly is expressed as follows by 

Taylor expansion: 

 

𝐼𝐷 + 𝛥𝐼𝐷 = 𝐼𝐷(𝑉𝐺𝑆0, 𝑉𝐷𝑆0, 𝑉𝐵𝑆0) +
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
𝛥𝑉𝐺𝑆 +

𝜕𝐼𝐷

𝜕𝑉𝐷𝑆
𝛥𝑉𝐷𝑆 +

𝜕𝐼𝐵

𝜕𝑉𝐵𝑆
𝛥𝑉𝐵𝑆  

(3.14) 

𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
= 𝑔𝑚,

𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
= 𝑔𝐷,

𝜕𝐼𝐷

𝜕𝑉𝐵𝑆
= 𝑔𝑚𝑏         (3.15) 

 

 

Fig. 3.9 Small signal equivalent circuit of MOS transistor 
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3.2 Small signal model 

The operational amplifier is a high gain amplifier originally used in an 

analog electronic computer, and performs addition / subtraction, calculus, 

and other operations. With the progress of integrated circuit technology, 

operational amplifiers have also been integrated, and very high performance 

operational amplifiers have become available at low cost. By using an 

operational amplifier, various operational amplifiers including an amplifier 

circuit can be easily realized with high performance. Sometimes a simpler 

and better circuit is obtained than when individual components are used. 

This section shows several examples of operational amplifiers and 

applications of the proposed stability criterion to them. 

 

3.1.2 Two-pole operational amplifier with C 

compensation. 

 

(a) Transistor level circuit. 
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(b) Small-signal model. 

Fig. 3.10 Two-pole amplifier with inter-stage capacitance. 𝑹𝟏, 𝑹𝟐= equivalent 

resistors, 𝑪𝟏, 𝑪𝟐= equivalent capacitances, 𝑮𝒎𝟏, 𝑮𝒎𝟐= transconductances, and 

𝑪𝒓𝟏= compensation capacitance. 

 

Consider the two-pole amplifier in Fig. 3.10 whose open-loop transfer 

function is given by: 

 

   𝐺(𝑠) = 𝐾
1+𝑏1𝑠

1+𝑎1𝑠+𝑎2𝑠
2
.                      (3.16) 

                                               

Here,   𝑏1 = −
𝐶𝑟1

𝐺𝑚2
,    𝐾 = 𝐺𝑚1𝐺𝑚2𝑅1𝑅2,     

  𝑎1 = 𝑅1𝐶1 + 𝑅2𝐶2 +(𝑅1 + 𝑅2 + 𝑅1𝐺𝑚2𝑅2)𝐶𝑟1 ,  

  𝑎2 = 𝑅1𝑅2𝐶2 [𝐶1 + (1 +
𝐶1

𝐶2
) 𝐶𝑟1]                     (3.17) 

Fig. 3.11 (b) (c) show feedback amplifiers using the operational amplifier 

in Fig. 3.10(a), and their closed-loop transfer function is obtained as follows: 

 

       
𝐺(𝑠)

1+𝑓𝐺(𝑠)
=

𝐾(1+𝑏1𝑠)

1+𝑓𝐾+(𝑎1+𝑓𝐾𝑏1)𝑠+𝑎2𝑠
2
                  (3.18) 

 

 Here  𝑓 =
𝑅2

𝑅1+𝑅2
  for Fig. 3.11 (b) and 𝑓 = 1 for Fig. 3.11 (c). 
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(a) Block diagram 

 
(b) Circuit example 1 with 𝑓 = 𝑅2 (𝑅1 + 𝑅2)⁄ . 

 

(c) Circuit example 2 with 𝑓 = 1 voltage follower 

Fig. 3.11 Feedback systems 

 

Application of the proposed criterion 

  

Then we set a parameter θ as follows: 

 

θ = 𝑎1 + 𝑓𝐾𝑏1                             (3.19) 

                                                           

Using Eq. (3.17), the parameter θ is obtained as follows 

 

θ = 𝑅1𝐶1 + 𝑅2𝐶2+(𝑅1 + 𝑅2)𝐶𝑟1 + (𝐺𝑚2 − 𝑓𝐺𝑚1)𝑅1𝑅2𝐶𝑟1   (3.20)   

                       

Based on the R-H stability criterion, we can obtain the following as the 
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necessary and sufficient condition for the operational amplifier feedback 

circuit stability: 

 

θ > 0                             (3.21) 

                                                                    

Note that the explicit stability condition in Eq. (3.20), Eq. (3.21) cannot 

be found out in any analog circuit design book [6-13], to the best of our 

knowledge. We can see from Eq. (3.20), Eq. (3.21) which parameter values 

should be increased or decreased to obtain the feedback stability. 

 

3.2.2 Two-pole operational amplifier with R, C 

compensation. 

 

 
(a) Transistor level circuit. 
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(b) Small-signal model 

Fig. 3. 12 Two-pole amplifier with compensation of Miller right-half-plane zero. 

𝑹𝟏, 𝑹𝟐= equivalent resistors, 𝑪𝟏, 𝑪𝟐 = equivalent capacitances, 𝑮𝒎𝟏, 𝑮𝒎𝟐= 

transconductances, 𝑪𝒓𝟏= compensation capacitance, and 𝑹𝒓= compensation 

resistor. 

 

The closed-loop transfer function of the feedback amplifier using the 

operational amplifier in Fig. 3.12 is given by  

 

𝐺(𝑠)

1+𝑓𝐺(𝑠)
=

𝐾(1+𝑏1𝑠)

1+𝑓𝐾+(𝑎1+𝑓𝐾𝑏1)𝑠+𝑎2𝑠
2
               (3.22)  

                                  

Here, 𝑏1 = −(
𝐶𝑟2

𝐺𝑚2
− 𝑅𝑟𝐶𝑟2),   

𝐾 = 𝐺𝑚1𝐺𝑚2𝑅1𝑅2, 𝑎3 = 𝑅1𝑅2𝑅𝑟𝐶1𝐶2𝐶𝑟2, 

𝑎1 =  𝑅1𝐶1 + 𝑅2𝐶2 + (𝑅1 + 𝑅2 + 𝑅𝑟  + 𝑅1𝑅2𝐺𝑚2)𝐶𝑟2,  

𝑎2 = 𝑅1𝑅2(𝐶2𝐶𝑟2 + 𝐶1𝐶2 + 𝐶1𝐶𝑟2) +𝑅𝑟𝐶𝑟2(𝑅1𝐶1 + 𝑅2𝐶2)     (3.23) 

                

Then we can obtain the parameter α1 as follows: 

 

α1 = (𝑎1 + 𝑓𝐾𝑏1) = 𝑅1𝐶1 + 𝑅2𝐶2+(𝑅1 + 𝑅2 + 𝑅𝑟)𝐶𝑟2 + (𝐺𝑚2 − 𝑓𝐺𝑚1 +

𝑓𝐺𝑚1𝐺𝑚2𝑅𝑟)𝑅1𝑅2𝐶𝑟2.                       (3.24) 

 

and the Routh table’s parameter  𝛽1 is given by 

 

𝛽1 =
(𝑎1 + 𝑓𝐾𝑏1)𝑎2 − 𝑎3(1 + 𝑓𝐾)

𝑎2
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= 𝑅1𝐶1 + 𝑅2𝐶2+(𝑅1 + 𝑅2 + 𝑅𝑟)𝐶𝑟2 + (𝐺𝑚2 − 𝑓𝐺𝑚1 +

𝑓𝐺𝑚1𝐺𝑚2𝑅𝑟)𝑅1𝑅2𝐶𝑟2 −
𝑅1𝑅2𝐶1𝐶2𝑅𝑟𝐶𝑟2(1+𝑓𝐺𝑚1𝐺𝑚2𝑅1𝑅2)

𝑅1𝑅2(𝐶2𝐶𝑟2+𝐶1𝐶2+𝐶1𝐶𝑟2)+𝑅𝑟𝐶𝑟2(𝑅1𝐶1+𝑅2𝐶2)
                                                                             

(3.25) 

 

The stability condition is as follows: 

 

      α1>0,     𝛽1 > 0                          (3.26)  

                                

Again, the explicit stability condition in Eq. (3.24), Eq. (3.25), Eq. (3.26) 

cannot be found out in any analog circuit design book [6-13], to the best of 

our knowledge, and we understand from Eq. (3.24), Eq. (3.25), Eq. (3.26) 

which parameter values should be increased or decreased to obtain the 

feedback stability. 

 

3.2.3 Three-pole operational amplifier. 

 

 

(a) Transistor level circuit.
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(b) Small-signal model 

Fig. 3.13 Three-pole amplifier with inter-stage capacitance.𝑹𝟏, 𝑹𝟐, 𝑹𝟑= 

equivalent resistors, 𝑪𝟏, 𝑪𝟐, 𝑪𝟑= equivalent capacitances, 𝑮𝒎𝟏, 𝑮𝒎𝟐, 𝑮𝒎𝟑= 

transconductances, and 𝑪𝒓𝟑, 𝑪𝒓𝟒= compensation capacitances. 

 

The closed-loop transfer function of the feedback amplifier using the 

operational amplifier in Fig. 3.13 is given by 

 

𝐺(𝑠)

1+𝑓𝐺(𝑠)
=

𝐾(1+𝑏1𝑠+𝑏2𝑠
2)

1+𝑓𝐾+(𝑎1+𝑓𝐾𝑏1)𝑠+(𝑎2+𝑓𝐾𝑏2)𝑠
2+𝑎3𝑠

3
.          (3.27) 

                              

Where, 𝐾 = 𝐺𝑚1𝐺𝑚2𝐺𝑚3𝑅1𝑅2𝑅3,      

 𝑏1 = −(
𝐶𝑟3

𝐺𝑚2
+

𝐶𝑟4

𝐺𝑚3
),     𝑏2 =

𝐶𝑟3𝐶𝑟4

𝐺𝑚2𝐺𝑚3
, 

𝑎1 = 𝐶𝑟3(𝑅1 + 𝑅2 + 𝐺𝑚2𝑅1𝑅2) + 𝐶𝑟4(𝑅2 + 𝑅3 + 𝐺𝑚3𝑅2𝑅3) + 𝑅1𝐶1 +

𝑅2𝐶2 + 𝑅3𝐶3. 

𝑎2 = 𝐶𝑟3(𝐺𝑚2𝑅1𝑅2𝑅3𝐶3 + (𝑅1+𝑅2)𝑅3𝐶3 + 𝑅1𝑅2(𝐶1 + 𝐶2)) +

𝐶𝑟4(𝐺𝑚3𝑅1𝑅2𝑅3𝐶1 + (𝑅2+𝑅3)𝑅1𝐶1 + 𝑅2𝑅3(𝐶2 + 𝐶3)) + 𝐶𝑟3𝐶𝑟4((𝐺𝑚2 +

𝐺𝑚3)𝑅1𝑅2𝑅3 + 𝑅1𝑅2 + 𝑅2𝑅3 + 𝑅1𝑅3) + 𝑅1𝑅2𝐶1𝐶2 + 𝑅2𝑅3𝐶2𝐶3 +

𝑅1𝑅3𝐶1𝐶3.  

 𝑎3 = 𝑅1𝑅2𝑅3[𝐶𝑟3(𝐶2𝐶3 + 𝐶1𝐶3) + 𝐶𝑟2(𝐶1𝐶2 + 𝐶1𝐶3) + 𝐶𝑟1𝐶𝑟4(𝐶1 + 𝐶2 +

𝐶3) + 𝐶1𝐶2𝐶3].                            (3.28) 

 

Then we can obtain the parameter 𝜕2:  

 



７６ 

 

𝜕2 = 𝑎1 + 𝑓𝐾𝑏1 = 𝐶𝑟3(𝑅1 + 𝑅2 + 𝐺𝑚2𝑅1𝑅2) + 𝐶𝑟4(𝑅2 + 𝑅3 +

𝐺𝑚3𝑅2𝑅3) + 𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅3𝐶3 − 𝑓𝐺𝑚1𝐺𝑚2𝐺𝑚3𝑅1𝑅2𝑅3(
𝐶𝑟3

𝐺𝑚2
+

𝐶𝑟4

𝐺𝑚3
).                                 

(3.29) 

 

and the Routh table’s parameter 𝛽2: 

 

  𝛽2 =
(𝑎1+𝑓𝐾𝑏1 )(𝑎2+𝑓𝐾𝑏2 )−𝑎3(1+𝑓𝐾 )

𝑎2+𝑓𝐾𝑏2 
                 (3.30) 

 

The stability condition is as follows:    

  

 α2>0,     𝛽2 > 0.                     (3.31) 

                                                        

Again, the explicit stability condition in Eq. (3.29), Eq. (3.30), and Eq. 

(3.31) cannot be found out in any analog circuit design book [6-13], to the 

best of our knowledge.  

In this section, we select three circuit configurations as examples for 

deducing the explicit stability condition based on proposed method. For 

other circuit configuration, the R-H method would can be applied at the 

condition that if we can derive its characteristic equation of closed-loop 

transfer function and Routh table. 

3.3 Summary 

A circuit that amplifies a signal voltage and/or current whose amplitude is 

sufficiently smaller than the DC device voltage and current is called a small 

signal amplifier. In the small signal amplifier, the DC device voltage, current 

and the signal voltage, and the current can be calculated separately, and the 

signal component can be analyzed by a linear equivalent circuit. In this 

chapter, we introduce the transistor and its small signal equivalent circuit. 

Combining with practical examples, we deduce the small signal model of 

several examples of operational amplifiers, we will explore the relationship 

that between R-H stability criterion with Nyquist stability criterion using 
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these small signal models in the next chapter. 
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CHAPTER IV 

THEORETICAL 

DEMONSTRATION 

 

In the research of science and engineering, we lay emphasis on the 

calculation and analysis of simulation and experimental data, but the 

theoretical part of the research is also important. Formula derivation and 

numerical analysis are the premise and guarantee of experiment. The 

theoretical feasibility can help us better analyze the experimental results and 

make our experimental data more convincing.  

This chapter shows the equivalency between the Nyquist stability criterion 

and the R-H stability criterion in some conditions and the relationship 

between R-H parameters and phase margin, as the verification of theoretical 

part for this dissertation. For finding out if there is a connection between R-

H stability criterion and Nyquist stability criterion, we deduce the stability 

conditions based on the R-H stability criterion and Nyquist stability criterion 

respectively, and then we compare and judge these stability conditions. We 

analysis three transfer function examples from simple to complex of the pole 

and zero. For finding out the relationship between R-H parameters and 

stability index phase margin, we have also conducted corresponding data 

analysis using examples. 

4.1 Equivalence at mathematical foundations 
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(a) Sketch of Nyquist plot 

 

 

 (b) Sketch of Bode plot 

Fig. 4.1 Sketch diagram 

 

Example 1: Select one amplifier whose open-loop transfer function is 

given by 

 

𝐺(𝑠) =
𝐾(1+𝑏1𝑠)

1+𝑎1𝑠+𝑎2𝑠
2
                    (4.1) 

 

Fig. 3.11 (c) shows a feedback amplifier (voltage follower) using this 

operational amplifier, and its closed-loop transfer function can be obtained 
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as follows: 

 

𝐻(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)
=

𝐾+𝐾𝑏1𝑠

1+𝐾+(𝑎1+𝐾𝑏1)𝑠+𝑎2𝑠
2
           (4.2) 

 

Based on the R-H stability criterion, we can also deduce the stability 

condition as following: 

 

1 + 𝐾 > 0, 𝑎1 + 𝐾𝑏1 > 0, 𝑎2 > 0           (4.3) 

 

We can obtain stability condition:   

 

𝐾 < −
𝑎1

𝑏1
, in case 𝑏1 < 0  

𝐾 > −
𝑎1

𝑏1
, in case 𝑏1 > 0              (4.4) 

  

In frequency domain, Eq. (4.1) is represented as: 

 

𝐺(𝑗𝜔) =
𝐾(1+𝑏1(𝑗𝜔))

1+𝑎1(𝑗𝜔)+𝑎2(𝑗𝜔)2
   

=
𝐾 (1−𝑎2𝜔

2 +𝑏1𝑎1𝜔
2)+𝑗𝐾(𝑏1𝜔−𝑎1𝜔−𝑎2𝑏1𝜔

3) 

(1−𝑎2𝜔
2)2+𝑎1

2𝜔2
              (4.5) 

 

According to the explanation of Nyquist plot that has been introduced in 

previous chapter, and based on the sketch Nyquist plot as shown in Fig. 

4.1(a), we can find out that if the open-loop system is stable (𝑃 = 0), the 

Nyquist plot must not encircle the plot (−1, j0). So the stability condition is 

given as follows: 

 

∠𝐺(𝑗𝜔2) = −𝜋                        (4.6) 

|𝐺(𝑗𝜔2)| < 1                         (4.7) 

 

Here, 𝜔2 is the frequency at point 𝐴.  

Also according to the explanation of Bode plot that has been introduced 

in the previous chapter, and based on the sketch bode plot as shown in Fig. 
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4.1(b), we can find out that if the open-loop system is stable, the Bode plot 

should satisfy the following conditions: 

 

∠𝐺(𝑗𝜔1) = −𝜋                        (4.8) 

GM = 0 − 20𝑙𝑔|𝐺(𝑗𝜔1)| > 0             (4.9) 

 

By simple derivation, we can found out the stability condition that 

respective based on Nyquist plot and Bode plot as shown in Eq. (4.6), Eq. 

(4.7) and Eq. (4.8), Eq. (4.9) is actually identical.  

Considering that Eq. (4.5), Eq. (4.6) and Eq. (4.8), we can obtain: 

 

    𝜔2
2 =

1

𝑎2
(1 −

𝑎1

𝑏1
)                      (4.10) 

 

Hence, the amplitude value of the point 𝐴 is: 

 

    |𝐺(𝑗𝜔2)| = |
𝐾(1−𝑎2𝜔2

2 +𝑏1𝑎1𝜔2
2)

(1−𝑎2𝜔2
2)2+𝑎1

2𝜔2
2 | =

𝐾|
𝑎1
𝑏1

+
𝑎1
𝑎2

(𝑏1−𝑎1)|

|(
𝑎1
𝑏1

)2+
𝑎1
𝑎2

𝑎1
𝑏1

 (𝑏1−𝑎1)|
= 𝐾 |

𝑏1

𝑎1
|  (4.11) 

 

Based on calculation of Eq. (4.11) and condition Eq. (4.7) and Eq. (4.9), 

we can obtain the following inequality expression ultimately: 

 

−
𝑎1

𝑏1
< 𝐾 <

𝑎1

𝑏1
,  in case 𝑎1𝑏1 > 0 

𝑎1

𝑏1
< 𝐾 < −

𝑎1

𝑏1
,  in case 𝑎1𝑏1 < 0          (4.12) 

 

Clearly, inequality expressions Eq. (4.4) and Eq. (4.12) are equivalent 

under some conditions. So, we can say that mathematical foundations of 

Nyquist and R-H stability criteria are equivalent.  

 

Example 2: Select one amplifier whose open-loop transfer function is 

given by 
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𝐺(𝑠) =
𝐾(1+𝑏1𝑠)

1+𝑎1𝑠+𝑎2𝑠
2+𝑎3𝑠

3
                    (4.13) 

 

Fig. 3.11 (c) show a feedback amplifier (voltage follower) using this 

operational amplifier, and the closed-loop transfer function is obtained as 

follows: 

 

𝐻(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)
=

𝐾+𝐾𝑏1𝑠

1+𝐾+(𝑎1+𝐾𝑏1)𝑠+𝑎2𝑠
2+𝑎3𝑠

3
        (4.14) 

 

Based on the R-H stability criterion, we also can deduce the stability 

condition as following: 

 

1 + 𝐾 > 0, 𝑎1 + 𝐾𝑏1 > 0, 𝑎2 > 0, 𝑎3 > 0, 

𝑎2(𝑎1+𝐾𝑏)−𝑎3(1+𝐾)

𝑎2
> 0                    (4.15) 

 

We can obtain stability condition: 

 

𝐾 >
𝑎3−𝑎1𝑎2

𝑎2𝑏−𝑎3
,  in case 𝑎2𝑏 − 𝑎3 > 0 

𝐾 <
𝑎3−𝑎1𝑎2

𝑎2𝑏−𝑎3
,  in case 𝑎2𝑏 − 𝑎3 < 0         (4.16) 

 

In frequency domain, Eq. (4.14) is represented as: 

 

𝐺(𝑗𝜔) =
𝐾(1 + 𝑏1(𝑗𝜔))

1 + 𝑎1(𝑗𝜔) + 𝑎2(𝑗𝜔)2 + 𝑎3(𝑗𝜔)3
 

=
𝐾[(1−𝑎2𝜔

2+𝑎1𝑏1𝜔
2−𝑎3𝑏𝜔4)+𝑗(𝑏1𝜔−𝑎2𝑏1𝜔

3−𝑎1𝜔+𝑎3𝜔
3)]

(1−𝑎2𝜔
2)2+(𝑎1𝜔−𝑎3𝜔

3)2
  (4.17) 

      

According to the explanation of Nyquist plot that has been introduced in 

the previous chapter, and based on the sketch Nyquist plot as shown in Fig. 

4.1(a), we can find out that if the open-loop system is stable (𝑃 = 0), the 

Nyquist plot should not encircle the plot (−1, j0), so the stability condition 
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is given as follows: 

 

∠𝐺(𝑗𝜔3) = −𝜋                       (4.18) 

|𝐺(𝑗𝜔3)| < 1                        (4.19) 

 

Here, 𝜔3 is the frequency at the point 𝐴.  

Also according to the explanation of Bode plot that has been introduced 

in the previous chapter, and based on the sketch bode plot as shown in Fig. 

4.1(b), we can find out that if the open-loop system is stable, the Bode plot 

should satisfy the following conditions: 

 

∠𝐺(𝑗𝜔1) = −𝜋                        (4.20) 

GM = 0 − 20𝑙𝑔|𝐺(𝑗𝜔1)| > 0             (4.21) 

 

By simple derivation, we can found out the stability condition that 

respective based on Nyquist plot and Bode plot as shown in Eq. (4.18), Eq. 

(4.19) and Eq. (4.20), Eq. (4.21) is actually identical.  

Considering Eq. (4.17), Eq. (4.18) and Eq. (4.20), we can obtain: 

 

  𝜔3
2 =

𝑎1−𝑏1

𝑎3−𝑎2𝑏1
                      (4.22) 

 

Hence, the amplitude value of the point 𝐴 is: 

 

|𝐺(𝑗𝜔3)| = |
𝐾(1−𝑎2𝜔3

2+𝑎1𝑏1𝜔3
2−𝑎3𝑏1𝜔3

4)

(1−𝑎2𝜔3
2)2+(𝑎1𝜔−𝑎3𝜔3

3)2
| = 𝐾 |

𝑎3−𝑎2𝑏1

𝑎3−𝑎1𝑎2
|      (4.23) 

 

Based on calculation of Eq. (4.23) and condition Eq. (4.19) and Eq. (4.21), 

we can obtain the following inequality expression ultimately: 

 

𝑎3−𝑎1𝑎2

𝑎2𝑏−𝑎3
< 𝐾 <

𝑎3−𝑎1𝑎2

𝑎3−𝑎2𝑏
, in case (𝑎3 − 𝑎1𝑎2)(𝑎3 − 𝑎2𝑏) > 0   

𝑎3−𝑎1𝑎2

𝑎3−𝑎2𝑏
< 𝐾 <

𝑎3−𝑎1𝑎2

𝑎2𝑏−𝑎3
, in case (𝑎3 − 𝑎1𝑎2)(𝑎3 − 𝑎2𝑏) < 0 (4.24) 

                                            

Clearly, inequality expressions Eq. (4.24) and Eq. (4.16) are equivalent 
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under some conditions. So, we can say that mathematical foundations of 

Nyquist and R-H stability criteria are equivalent.  

 

Example 3: Select one amplifier whose open-loop transfer function is 

given by 

 

𝐺(𝑠) =
𝐾(1+𝑏1𝑠+𝑏2𝑠

2)

1+𝑎1𝑠+𝑎2𝑠
2+𝑎3𝑠

3
                  (4.25) 

 

Fig.3.11(c) show a feedback amplifier (voltage follower) using this 

operational amplifier, and the closed-loop transfer function is obtained as 

follows: 

 

𝐻(𝑠) =
𝐺(𝑠)

1+𝐺(𝑠)
=

𝐾+𝐾𝑏1𝑠+𝐾𝑏2𝑠
2

1+𝐾+(𝑎1+𝐾𝑏1)𝑠+(𝑎2+𝐾𝑏2)𝑠
2+𝑎3𝑠

3
       (4.26) 

 

Based on the R-H stability criterion, we also can deduce the stability 

condition as follows: 

 

(𝑎2 + 𝐾𝑏2)(𝑎1 + 𝐾𝑏1) − 𝑎3(1 + 𝐾) > 0           (4.27) 

 

Let set one function: 

 

𝑓(𝐾) = (𝑎2 + 𝐾𝑏2)(𝑎1 + 𝐾𝑏1) − 𝑎3(1 + 𝐾)     

= 𝐾2𝑏1𝑏2 + 𝐾𝑎1𝑏2 + 𝐾𝑎2𝑏1 − 𝐾𝑎3 + 𝑎1𝑎2 − 𝑎3       (4.28) 

 

 Domain of definition 𝐾 ∈ (0,+∞) 

 Initial value:  

𝑓(0) = 𝑎1𝑎2 − 𝑎3                       (4.29) 

 Derived function: 

 

𝑓′(K) = 2𝐾𝑏1𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏1 − 𝑎3          (4.30) 

 

For getting to the stability condition Eq. (4.27), the following conditions 

should be satisfied:  
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𝑓(0) ≥ 0, and 𝑓′(K) > 0                    (4.31) 

 

Thus, the stability condition yields to the following: 

 

2𝐾𝑏1𝑏2 + 𝑎1𝑏2 + 𝑎2𝑏1 − 𝑎3 > 0              (4.32) 

 

at condition: 𝑎1𝑎2 − 𝑎3 > 0. 

 

In frequency domain, Eq. (4.25) is represented as:     

   

𝐺(𝑗𝜔) =
𝐾(1 + 𝑏1(𝑗𝜔) + 𝑏2(𝑗𝜔)3)

1 + 𝑎1(𝑗𝜔) + 𝑎2(𝑗𝜔)2 + 𝑎3(𝑗𝜔)3
= 

𝐾 (1−𝑎2𝜔
2−𝑏2𝜔

2+𝑎2𝑏2𝜔
4+𝑎1𝑏1𝜔

2−𝑎3𝑏1𝜔
4)+𝑗𝐾(𝑎3𝜔

3−𝑎1𝜔+𝑎1𝑏2𝜔
3−𝑎3𝑏2𝜔

5+𝑏1𝜔−𝑎2𝑏1𝜔
3) 

(1−𝑎2𝜔
2)2+(𝑎1𝜔−𝑎3𝜔

3)2

                                                  (4.33) 

 

According to the explanation of Nyquist plot that has been introduced in 

the previous chapter, and based on the sketch Nyquist plot as shown in Fig. 

4.1(a), we can find out that if the open-loop system is stable (𝑃 = 0), the 

Nyquist plot must not encircle the plot (−1, j0), so the stability condition as 

follows: 

 

∠𝐺(𝑗𝜔4) = −𝜋                        (4.34) 

|𝐺(𝑗𝜔4)| < 1                         (4.35) 

 

Here, 𝜔4 is the frequency at point 𝐴. 

Also according to the explanation of Bode plot that has been introduced 

in the previous chapter, and based on the sketch Bode plot as shown in Fig. 

4.2(b), we can find out that if the open-loop system is stable, the Bode plot 

should satisfy the following conditions: 

 

∠𝐺(𝑗𝜔1) = −𝜋                        (4.36) 

GM = 0 − 20𝑙𝑔|𝐺(𝑗𝜔1)| > 0             (4.37) 

 

By simple derivation, we can find out the stability condition that 
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respective based on Nyquist plot and Bode plot as shown in Eq.(4.34), 

Eq.(4.35) and Eq.(4.36), Eq.(4.37) is actually identical.  

Considering Eq. (4.33), Eq. (4.34) and Eq. (4.36), we can obtain: 

 

𝑎3𝜔4
3 − 𝑎1𝜔4 + 𝑎1𝑏2𝜔4

3 − 𝑎3𝑏2𝜔4
5 + 𝑏1𝜔4 − 𝑎2𝑏1𝜔4

3 = 0.  (4.38) 

 

After transformation, we can obtain: 

 

1 − 𝑎2𝜔4
2 =

(1−𝑏2𝜔4
2)(𝑎1−𝑎3𝜔4

2)

𝑏1
                (4.39) 

 

Hence, the amplitude value of point 𝐴 is: 

 

|𝐺(𝑗𝜔4)| = |
𝐾1−𝑎2𝜔4

2−𝑏2𝜔4
2+𝑎2𝑏2𝜔4

4+𝑎1𝑏1𝜔4
2−𝑎3𝑏1𝜔4

4

(1−𝑎2𝜔4
2)2+(𝑎1𝜔4−𝑎3𝜔4

3)2
| = ⋯ =

𝐾𝑏1

|𝑎1−𝑎3𝜔4
2|
   

(4.40) 

                                 

 

From Eq. (4.38), we have 

 

𝑎3𝑏2𝜔4
4 + (𝑎2𝑏1 − 𝑎1𝑏2 − 𝑎3)𝜔4

2 + 𝑎1 − 𝑏1 = 0        (4.41) 

 

Solution of Eq. (4.41): 

 

𝜔2 =
𝑎3+𝑎1𝑏2−𝑎2𝑏1±√(𝑎2𝑏1−𝑎1𝑏2−𝑎3)

2−4𝑎3𝑏2(𝑎1−𝑏1)

2𝑎3𝑏2
≈

𝑎3+𝑎1𝑏2−𝑎2𝑏1

2𝑎3𝑏2
 (4.42) 

                                

 

From Eq. (4.42), Eq. (4.40) and condition Eq. (4.27): 

 

|𝐺(𝑗𝜔4)| =
𝐾|𝑏1|

|𝑎1−𝑎3𝜔4
2|

=
𝐾|𝑏1|

|𝑎1−𝑎3
𝑎3+𝑎1𝑏2−𝑎2𝑏1

2𝑎3𝑏2
|
=

𝐾|2𝑏1𝑏2|

|𝑎1𝑏2+𝑎2𝑏1−𝑎3|
< 1 (4.43)                           

 

By calculation we can obtain the following inequality expression ultimately: 

 

𝑎3 − 𝑎1𝑏2 − 𝑎2𝑏1 < 2𝐾𝑏1𝑏2 < 𝑎1𝑏2 + 𝑎2𝑏1 − 𝑎3  
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         in case 𝑎1𝑏2 + 𝑎2𝑏1 − 𝑎3 > 0 

 

 𝑎1𝑏2 + 𝑎2𝑏1 − 𝑎3 < 2𝐾𝑏1𝑏2 < 𝑎3 − 𝑎1𝑏2 − 𝑎2𝑏1             

 in case 𝑎1𝑏2 + 𝑎2𝑏1 − 𝑎3 < 0                    (4.44) 

 

Clearly, inequality expressions Eq. (4.32) and Eq. (4.44) are equivalent 

under some conditions. So, we can say that mathematical foundations of 

Nyquist and R-H stability criteria are equivalent.  

 

4.2 Relationship between R-H parameters and 

phase margin 

Example1:  Consider the two-pole amplifier as shown in Fig. 3.10. 

Accordingly, Fig. 3.11 (b) shows a feedback amplifier using this operational 

amplifier, and its closed-loop transfer function is shown in Eq. (3.18). Based 

on the R-H stability criterion, we can obtain the explicit stability condition 

is shown in Eq. (3.21). 

 

Table. 4.1 Data collection 

 

 

 We define the R-H parameter θ as one time dimension parameter. Using 

the parameter values of short-channel CMOS devices, and calculating the 

values of parameter θ and the corresponding operational amplifier system 

phase margin (PM), gain margin (GM), 𝐹𝑔𝑚 and 𝐹𝑝𝑚 at various feedback 
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factor 𝑓 conditions, using MATLAB. 𝐹𝑔𝑚 is the frequency where the gain 

margin is measured, which is a −180𝑜 phase crossing frequency in Bode 

plot, and 𝐹𝑝𝑚 is the frequency where the phase margin is measured, which 

is a 0dB gain crossing frequency in Bode plot. For example, when feedback 

factor 𝑓 = 0.01, we can obtain the values as Table. 4.1. 

Using the polyfit function of MATLAB, we can obtain the fitted curve 

which can indicate the relationship between parameter θ with phase margin 

as shown in Fig. 4.2 in variation feedback factor conditions. In feedback 

factor 𝑓 = 0.01 condition, we can obtain the fitted curve as shown in Fig. 

4.3, and its corresponding relation function is given as follows:  

 

𝑃𝑀 = 2.601𝑒28𝜃5 − 5.616𝑒23𝜃4 + 4.683𝑒18𝜃3 − 1.915𝑒13𝜃2 +

4.076𝑒28𝜃 + 13.38                                       (4.45)                 

  

 

Fig. 4.2 Relationship between PM and parameter 𝛉 in various feedback factor 

conditions. PM= phase margin, theta= parameter 𝛉. 
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Fig. 4.3 Relationship between PM and parameter 𝛉 at feedback factor 𝒇 =

𝟎. 𝟎𝟏 condition. PM= phase margin, theta= R-H parameter 𝛉. 

 

As shown in Fig. 4.2 and Fig. 4.3, the PM and the R-H parameter θ have 

the monotonic relationship, following with increase of the parameter value, 

the phase margin increases, in other words, the feedback system becomes 

more stable. 

We can calculate the required value of the compensation capacitor, for a 

given operational amplifier PM, based on the calculated value of the 

parameter θ. 

 

Example2:   Consider the two-pole amplifier as shown in Fig. 3.12, 

whose open-loop transfer function is given by  

𝐺(𝑠) =
𝐾(1+𝑏1𝑠)

1+𝑎1𝑠+𝑎2𝑠
2+𝑎3𝑠

3
                       (4.46) 

Accordingly, Fig. 3.11 (b) shows a feedback amplifier using this 

operational amplifier, and its closed-loop transfer function is shown as Eq. 

(3.22). Based on the R-H stability criterion, we can obtain the stability 

condition is shown as Eq. (3.26).  

We also define the R-H parameter 𝛼1, 𝛽1 as time dimension parameters. 

Using the parameter values of short-channel CMOS devices, and calculating 

the values of parameters 𝛼1, 𝛽1and the corresponding feedback system PM, 

in variation feedback factor 𝑓 conditions by MATLAB. In feedback factor 

𝑓 = 0.01 condition, we can obtain the relation function in Fig. 4.4, when 

parameters 𝛼1, 𝛽1 as independent variables and PM as dependent variable 

by using interpolation function in curve fitting tool of MATLAB. 
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Fig. 4. 4 Relationship between PM with parameter 𝛂𝟏, 𝛃𝟏 in feedback factor 

𝒇 = 𝟎. 𝟎𝟏 condition. PM= phase margin, 𝛂𝟏, 𝛃𝟏= R-H parameters. 

 

As shown in Fig. 4.4, the relationship between R-H parameter 𝛼1, 𝛽1 with 

PM is monotonic one, and following with increase of the parameter value, 

the phase margin increases, in other words, the feedback system becomes 

more stable. 

4.3 Summary  

 

During our derivation using various examples, we can find out that the 

inequality expressions respective based on Nyquist and R-H stability criteria 

are equivalent under some conditions. So, we can say that mathematical 

foundations of Nyquist and R-H stability criteria are equivalent. Through the 

analysis of the data in the software we found that the relationship that 

between R-H parameter with phase margin is monotonic one, and following 

with increase of the parameter value, the phase margin increases, in other 

words, the feedback system becomes more stable. 
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CHAPTER V 

VERFICATION WITH  

SPICE SIMULATION 

 

In this chapter, we describe the verification of our theoretical analysis and 

derivation results obtained in the previous chapter. The simulation is 

performed with LTspice (Linear Technology Simulation Program with 

Integrated Circuit Emphasis) software which is one of SPICE simulators for 

free.  

5.1 Equivalence verification 

 

Table. 5.1 Parameter values of the amplifier 1 

 

 

We calculate the values of the parameters θ, α1,  𝛽1 as shown in Eq. (3.20), 

Eq. (3.24), Eq. (3.25) and depict Bode plots using SPICE for judging stability 
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of the amplifier with the voltage follower configuration (Fig. 3.11(c)) for 

amplifiers 1, 2 . See Table. 5.1, Figs. 5.1, 5.2, 5.3 as amplifier 1, Table. 5.2, 

Figs. 5.4, 5.5, 5.6 as amplifier 2. 

 

Table. 5.2 Parameter values of the amplifier 2 

 

 

Then we show analysis between their simulation results and the parameter 

values of θ, α1 and 𝛽1. We found out the following: when θ, α1 and 𝛽1 

are greater than 0, less than 0 and approximate to 0, then the corresponding 

amplifier with the voltage follower configuration in Fig. 3.11 (b) is stable, 

unstable and critical stable respectively. 

We can distinctly find that the amplifier stability depends on the 

parameters  θ, α1, 𝛽1, and the feedback system is stable if and only if the 

parameters θ, α1 and 𝛽1 are positive.  
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Fig. 5.1 Bode plots for case (1) of unstable amplifier 1. GX= gain crossover 

point, PX= phase crossover point. 

 

 

Fig. 5.2 Bode plot for case (6) of critical stable amplifier1. GX= gain crossover 

point, PX= phase crossover point. 
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Fig. 5.3 Bode plot for case (7) of stable amplifier 1. GX= gain crossover point, 

PX= phase crossover point. 

 

 

Fig. 5.4 Bode plot for case (3) of unstable amplifier2. GX= gain crossover point, 

PX= phase crossover point. 
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Fig. 5.5 Bode plot for case (5) of critical stable amplifier 2. GX= gain crossover 

point, PX= phase crossover point. 

 

 

Fig. 5.6 Bode plots for case (8) of the stable amplifier 2. GX= gain crossover 

point, PX= phase crossover point. 

 



９６ 

 

5.2 Application verification 

Using the parameter values of short-channel CMOS devices (Appendix), 

and calculating inequality expressions Eq. (3.21) and Eq. (3.26), we can 

obtain the value range of the compensation capacitor 𝐶𝑟1 : 

 

𝐶𝑟1 > 79.57fF                     (5.1) 

 

We also obtain the following inequality expression: 

 

3.5 × 10−8 + 3.7 × 1010𝐶𝑟2 + 𝑅𝑟𝐶𝑟2 + 831.7𝑅𝑟 >

                              
4.3×10−8𝑅𝑟𝐶𝑟2

5.1×10−17+4.3×10−3𝐶𝑟2+3.5×10−8𝑅𝑟𝐶𝑟2
                (5.2)                  

 

Let,  

𝑋 = 3.5 × 10−8 + 3.7 × 1010𝐶𝑟2 + 𝑅𝑟𝐶𝑟2 + 831.7𝑅𝑟 

𝑌 =
4.3×10−8𝑅𝑟𝐶𝑟2

5.1×10−17+4.3×10−3𝐶𝑟2+3.5×10−8𝑅𝑟𝐶𝑟2
              (5.3) 

 

We select several values of the parameters in Eq. (5.1), Eq. (5.2) and depict 

their Bode plots using SPICE (LTspice) for judging stability of the amplifier 

with the voltage follower configuration. See Table. 5.3, Fig. 5.7~Fig. 5.12 as 

amplifier 3, Table. 5.4, Fig. 5.13~Fig. 5.18 as amplifier 4. The frequency in 

these transient analysis simulations is 1 × 105Hz. 

 

Table. 5.3 Parameter values of the amplifier 3 
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Fig. 5.7 Bode plot for case (1) of the stable amplifier 3. GX= gain crossover 

point, PX= phase crossover point. 

 

 

Fig. 5.8 Bode plot for case (2) of the critical stable amplifier 3. GX= gain 

crossover point, PX= phase crossover point. 
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Fig. 5.9 Bode plot for case (3) of the unstable amplifier 3. GX= gain crossover 

point, PX= phase crossover point. 

 

 

Fig. 5.10 Pulse response for case (1) of the stable amplifier 3 
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Fig. 5.11 Pulse response for case (2) of the critical stable amplifier 3 

 

 

Fig. 5.12 Pulse response for case (3) of the unstable amplifier 3 

 

Table. 5.4 Parameter values of the amplifier 4 
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Fig. 5.13 Bode plot for case (1) of the stable amplifier 4. GX= gain crossover 

point, PX= phase crossover point. 
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Fig. 5.14 Bode plot for case (2) of the stable amplifier 4. GX= gain crossover 

point, PX= phase crossover point. 

 

 

Fig. 5.15 Bode plot for case (3) of the critical stable amplifier 4. GX= gain 

crossover point, PX= phase crossover point. 
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Fig. 5.16 Pulse response for case (1) of the stable amplifier 4 

 

 

Fig. 5.17 Pulse response for case (2) of the stable amplifier 4 
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Fig. 5.18 Pulse response for case (3) of the critical stable amplifier 4 

 

Consider the two-pole amplifier in Fig. 5.19. Based on the principle and 

processing represented in the previous chapter, we obtain the parameter θ 

as shown in Eq. (3.20). We can calculate the required value of the 

compensation capacitor, for a given operational amplifier phase margin (PM), 

based on the calculated value of the parameter θ. Using the polyfitt function, 

we can obtain the curves which can indicate the relationship between 

capacitor 𝐶𝑟1 and phase margin as Fig. 5.20. 

 

 

(a) Transistor level circuit 
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 (b) Small-signal model  

Fig. 5.19 Two-pole amplifier with inter-stage capacitance. 𝑅1, 𝑅2= equivalent 

resistors, 𝐶1, 𝐶2= equivalent capacitances, 𝐺𝑚1, 𝐺𝑚2= transconductances, and 

𝐶𝑟1= compensation capacitance. 

 

 

Fig. 5.20 Relationship between PM with compensation capacitor 𝐶𝑟1 in 

variation feedback factor 𝑓 conditions. 

 

 

(a) Compensation capacitor 𝐶𝑟1 as independent variable and PM as 

dependent variable. 
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 (b) PM as independent variable and compensation capacitor 𝐶𝑟1 as 

dependent variable. 

Fig. 5.21 Relationship between PM with compensation capacitor 𝐶𝑟1 at 

feedback factor 𝑓 = 0.01 condition. 

 

In feedback factor 𝑓 = 0.01 condition, we can obtain the fitted curve as 

Fig. 6.21 and the relation function between PM with capacitor as following: 

 

𝑃𝑀 = −1.026𝑒36𝐶𝑟1
3 + 1.52𝑒24𝐶𝑟1

2 + 4.488𝑒12𝐶𝑟1 + 7.24   (5.4)                        

𝐶𝑟1 = 6.343𝑒−15𝑃𝑀3 − 2.091𝑒−13𝑃𝑀2 + 2.493𝑒−12𝑃𝑀 − 9.822𝑒−12                                      

(5.5)  

 

If we want to obtain 45o  phase margin, the needed corresponding 

capacitor value is 0.25694nF by calculation from function Eq. (5.5). 

For verifying this result, we have performed simulation using amplifier 

circuit shown in Fig. 5.19, the feedback system circuit shown in Fig. 3.11(b) 

when the feedback factor  𝑓 = 0.01 , and compensation capacitance 

is 0.25694nF. The simulation result is shown in Fig. 5.22. The phase margin 

result is 180° − 133° = 47°  obtained from LTspice simulation, and it is 

similar to the result 45°from function Eq. (5.5). 
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Fig. 5.22 LTspice simulation result with conditions: feedback factor 

𝒇 = 𝟎. 𝟎𝟏, compensation capacitor of 𝟎. 𝟐𝟓𝟔𝟗𝟒𝐧𝐅. 

 

Although the relationship between Cr1 and the phase margin 

(corresponding to Fig. 5.19) can be obtained by using the small equivalent 

circuit which can indicate the variation tendency of stability following the 

circuit parameter variation. But as we see, this relationship only can reflect 

the impact from single circuit parameter on stability. The advantages of the 

proposed method are through the explicit stability condition Eq. (3.21), Eq. 

(3.26), Eq. (3.31) and relationship between parameter and phase margin 

(corresponding function Eq. (4.54) and Fig. 4.3), we can overall consider 

consideration multiple circuit parameters one time as well as the trade-off 

analysis between the influences on system stability from every single circuit 

parameter. 

5.3 Summary  

In this chapter, we have performed simulation to verify our theoretical 

analysis and derivation results obtained in previous chapter. By observing 

our simulation results, we can clearly see that the conclusion of the R-H 

method is the same as that of the traditional Bode plot method. 
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CHAPTER VI 

CLOSED-OPEN CONVERSION 

 

The operational amplifier is an important circuit that plays a central role 

in analog circuits, and it is a high gain amplifier originally used in an analog 

electronic computer, and performs addition / subtraction, calculus, and other 

operations. With the progress of integrated circuit technology, operational 

amplifiers have also been integrated, and very high performance operational 

amplifiers have become available at low cost. By using an operational 

amplifier, various operational circuits including an amplifier circuit can be 

easily realized with high performance. Sometimes a simpler and better 

circuit is obtained than when individual components are used. 

 

 

Fig. 6.1 Feedback control system 

 

In this chapter we propose an idea to obtain the open loop characteristics 

by using corresponding closed loop results. We explain its principle and 

select operational amplifiers for verifying the proposed method, and compare 

with conventional method including LPF (Low pass filter) method and null 

double injection method. Our simulations have verified the effectiveness of 
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the proposed method by comparison with the conventional methods. The 

proposed method can be accurate because the open loop gain around the 

frequency where phase and gain margins are evaluated would not be very 

high. When this method reveals that the phase margin is not sufficient for the 

designed operational amplifier, some parameter values are increased or 

decreased based on the results obtained by the Routh-Hurwitz method 

described in previous chapters so that its enough phase margin should be 

gained. In addition, we discuss the application of Nyquist plot for judging 

the stability which is not often used by circuit designer, including discussion 

on its advantages and disadvantages. 

 

6.1 Closed loop characteristic locus in open loop 

Nyquist plot 

 

 

Fig. 6.2 Inverting operational amplifier 

 

Examining the stability of operational amplifier circuits has been a 

concern since the negative feedback circuit was invented. In control theory, 

the system is stable if the poles of the closed-loop transfer function are all on 

the left plane of the complex plane. There are many difficulties when this 

stability criterion be applied to circuits, for example, knowing the positions 

of the poles and zeros is difficult because the questions of equivalent circuit 

and numerical calculation. As a method for practically dealing with this 

problem, the frequency characteristic of the transfer function is widely used. 

From the viewpoint of stability, the input signal 𝑉𝑖𝑛 can be regarded as a 

disturbance factor of the loop, and the error signal 𝑉𝑟  indicates the 



１０９ 

 

reverberation when it returns around the loop. The expression of error signal 

𝑉𝑟 is given by 

 

𝑉𝑟 =
1

1+𝐾𝐴(𝑠)
𝑉in                     (6.1) 

 

Since the coefficient 1 + 𝐾𝐴(𝑠)  is an important factor indicating the 

quantitative relationship, let's call it a stability factor. Another problem when 

applying the stability theorem to circuits is that it is difficult to find the 

stability factor by simulation. Because the error signal 𝑉𝑟 does not exist in 

practical circuit, Eq. (6.1) cannot be used. Also 𝑉𝑟  can be obtained as a 

difference between the real signals 𝑉in and 𝑉X. However, in real circuits the 

input offset inevitably exists and generates an error. 

We propose an idea to obtain the open loop characteristics 𝐾𝐴(𝑠) with 

corresponding closed loop results and we call this operation as a closed-open 

conversion method. The reason why the closed-open conversion method has 

not been used so far is that the numerical error greatly affects the result 

because the gain of operational amplifier is large. Considering the feedback 

control system, and the transfer function of closed-loop is as follows: 

 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝑊(𝑠) =

𝐴(𝑠)

1+𝐾𝐴(𝑠)
                  (6.2) 

 

By calculation we can obtain the transfer function of open loop: 

 

𝐴(𝑠) =
1 

1 W(s)-K⁄
                       (6.3) 

 

As we know, the gain of opamp |𝐴(𝑠)| is very large in the low frequency 

region, so 𝑊(𝑠) ≈ 1 K⁄  in Eq. (6.2). Therefore, the resulting 𝐴(𝑠) will 

largely change with a small error in 𝑊(𝑠), since 1 𝑊(𝑠)⁄  is so close to K 

that the denominator of Eq. (6.3) becomes very small in magnitude. 

Simulations yield precision results even in the low-frequency region, 

however, this is not true for the measurement results, and this leads to the 

erroneous result for 𝐴(𝑠).This is why the closed-open conversion method 

has not been used, because the gain of the opamp is too large, especially for 
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low frequencies. 

However, which has an effect on stability is that the Nyquist diagram is 

close to the origin point, and at this moment, the gain is much smaller. In a 

portion on the Nyquist plot places where the gain is small, the numerical 

accuracy of the closed-open transformation increases, making the proposed 

closed-open conversion method practical, and it may be used for 

measurement results. The low frequency gain is almost independent of 

stability. As the operational amplifier gain decreases at high frequencies, it 

approaches the -1 point (Nyquist diagram). Around this point, the closed-

loop gain is also small, so that it is easy to obtain the accuracy of mutual 

conversions. 

An error signal can be obtained in a region where the stability is 

meaningful by using the actual signal of the operational amplifier. 

 

 

Fig. 6.3 Buffer configuration 

 

This time, we select the unity gain buffer connection configuration 

(feedback factor is 𝐾 = 1) as shown in Fig. 6.3 to introduce our proposed 

closed-open conversion method. The buffer connection is the easiest to see 

when looking at the open loop characteristics from the closed loop, and when 

the gain is 1, the system is most likely to be unstable. Generally, 𝐾𝐴(𝑠) is 

used as the open loop characteristics, and is instead of 𝐴(𝑠)  in this 

condition. The closed loop characteristics is as follows: 

 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝑊(𝑠) =

𝐴(𝑠)

1+𝐾𝐴(𝑠)
                     (6.4) 

 

and by calculation, we can obtain the open loop characteristics: 

 

𝐴(𝑠) =
𝑊(𝑠)

1−𝑊(𝑠)
                          (6.5) 
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Since the transfer function depends on the load, discussion on the loop 

stability should be considered as a round transfer function including the load 

condition. 𝑊(𝑠) can be easily obtained by AC analysis. If AC analysis is 

performed with an actual load on the buffer, it is not necessary to change the 

load conditions for simulation. 

Fig. 6.4 shows the Bode plot which is often used for judging the stability, 

and the frequency domain which is encircled by the green border. In this area, 

we can obtain the phase margin and gain margin to determine the stability 

[6]. 

 

 

Fig. 6.4 Bode plot and effect area on stability 
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Fig. 6.5 Nyquist plot 

 

Fig. 6.5 shows the Nyquist plot in the high frequency domain 

corresponding the green border area in Fig. 6.4. Stability is defined by 

characteristics at around the unit circle (brown broken line), where |𝐴(𝑠)|is 

small. Nyquist diagram also can show phase margin and gain margin, and 

minimum distance to −1 point is a better indicator to determine stability 

[14]. In order to introduce and verify this theory, we select one operational 

feedback amplifier whose configuration is as shown in Fig. 6.3 and the 

transfer function of the operational amplifier is given by  

 

𝐴(𝑠) =
10

(1+𝑠)(1+0.3𝑠)(1+0.06𝑠)
                (6.6) 

 

Depict the Nyquist plot of open loop transfer function 𝐾𝐴(𝑠) by using 

Mathematica software at different feedback factor conditions, as shown in 

Fig. 6.6. Fig. 6.7 shows the Bode plot of stability factor 1 (1 + 𝐾𝐴(𝑠))⁄ , 
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Fig. 6.6 Nyquist plots with different feedback factor 𝐾 

 

 

Fig. 6.7 Bode plot of stability factor  𝟏 (𝟏 + 𝑲𝑨(𝒔))⁄  

 

By comparison of Fig. 6.6 and Fig. 6.7, we can find out that the closest 

points 𝑇′, 𝑇′′, 𝑇′′′ with the -1 point appear as peak in the Bode plot of the 

stability factor, and the magnitude is the reciprocal of the closest approach 

distance. The stability factor peak value is a direct stability index rather than 

a gain margin or a phase margin. 
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Fig. 6.8 Nyquist plane of open loop transfer function 𝑨(𝒋𝝎) 

 

Fig. 6.8 shows a complex plane where 𝐴(𝑗𝜔) is represented and point 

𝑃  shows the Nyquist locus of the open loop transfer function. Also the 

length of vector 𝑂𝑃  indicates the absolute value of  𝐴(𝑗𝜔) , and the 

inclination angle indicates the phase angle of 𝐴(𝑗𝜔). If we choose the point 

𝑄  at  −1 + 𝑗0 , the vector 𝑄𝑃  represents  1 + 𝐴(𝑗𝜔) . The closed loop 

transfer function is given by 

 

𝑊(𝑗𝜔) =
𝐴(𝑗𝜔)

1+1∗𝐴(𝑗𝜔)
=

𝑂𝑃⃗⃗ ⃗⃗  ⃗

𝑄𝑃⃗⃗ ⃗⃗  ⃗
= 𝑀𝑒𝑗𝜑                (6.7) 

 

The squared of the length of 𝑊(𝑗𝜔) is expressed by: 

 

𝑀2 =
|𝑂𝑃⃗⃗ ⃗⃗  ⃗|2

|𝑄𝑃⃗⃗ ⃗⃗  ⃗|2
=

𝑥2+𝑦2

(𝑥+1)2+𝑦2
                      (6.8) 

 

By rearranging Eq. (6.8), we can obtain the trajectory equation of 𝑀 as 

follows: 

 

 {𝑥 +
𝑀2

𝑀2−1
}2 + 𝑦2 = (

𝑀

𝑀2−1
)2                    (6.9) 

 

This is a circumference equation with a center at (−𝑀2 (𝑀2 − 1) + 𝑗0⁄ ) 

on the real with radius 𝑀 (𝑀2 − 1)⁄ . Fig. 6.9 shows a circle group of 𝑀 =

𝑐𝑜𝑛𝑠𝑡. with a solid line. The locus of 𝜑 = 𝑐𝑜𝑛𝑠𝑡. is an arc passing through 

the origin 𝑂 and the point 𝑄. This is clear from the ∠𝑄𝑃𝑂 = 𝜑 relation 

and the geometrical theorem that the circumference angle is constant [19]. 
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Fig. 6.9 Closed loop 𝑴 ∙ 𝝋 locus in open loop Nyquist plot 

 

By using different axes on the same complex plane, closed loop and open 

loop characteristics become a single plot. 𝑀 trajectory and 𝜑 trajectory are 

orthogonal. Next, we will talk about why it is orthogonal. At first, consider 

the reciprocal of the closed-loop transfer function 𝑊(𝑗𝜔) as follows: 

 

1

𝑊(𝑗𝜔)
= 1 +

1

𝐴(𝑗𝜔)
=

1

𝑀
𝑒−𝑗𝜑                 (6.10) 

 

When the angular frequency 𝜔 is changed from 0 to ∞, the vector locus of 

1 𝐴(𝑗𝜔)⁄  is drawn on the complex plane, which is an inverse Nyquist plot 

as shown in Fig. 6.10. 
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Fig. 6.10 Inversion Nyquist plane of open loop transfer function 𝑨(𝒋𝝎) 

 

Vector 𝑂𝑃 indicates 1 + 𝐴(𝑗𝜔). If a point with a distance of 1 from the 

original point is determined on the negative real axis, the vector 𝑄𝑃 

is 1 (1 + 𝐴(𝑗𝜔)⁄ ), and its magnitude is equal to 1 𝑀⁄ , and its phase angle 

indicates – 𝜑. If we draw the same circle centered at (−1, 𝑗0) with radius 

of 1 𝑀⁄ , it will be a locus of points where 𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Also, as shown by 

the dotted line in the figure, when radiation with a tilt angle of –𝜑 is drawn 

from point 𝑄, this is trajectory of 𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

 

Fig. 6.11 Closed loop 𝑴 ∙ 𝝋 locus in open loop inverse Nyquist plot 

 

Obviously, the 𝑀 locus and 𝜑 locus are orthogonal as show in Fig. 6.11. 
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The Nyquist plot and the inverse Nyquist plot are reciprocal relationship with 

each other. In the inverse Nyquist plot, 𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 locus is a concentric 

circle, and the map which obtained by taking the inverse of this circle group 

is the 𝑀 locus in the Nyquist plot. Since this locus is an inversion with 

respect to the origin of the circumference having the center on the real axis, 

it is also a group of circles having the center on the real axis. The 𝜑 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 locus is straight line on the inverse Nyquist plot, but the locus on 

the Nyquist diagram which is inversion with it, is represented by a circle 

group. The 𝑀 locus and the 𝜑 locus are orthogonal to each other on the 

inverse Nyquist plot, so the two locus are also orthogonal to each other on 

the Nyquist plot, which is an equiangular map.   

 

6.2 Verification and comparison 

Conventional low pass filter (LPF) method is often used for checking the 

open loop characteristics by inserting a LPF with a very low cutoff frequency 

into the feedback circuit to ensure the DC operating point, the circuit diagram 

as shown in Fig. 6.12(b). About the LPF method there are two disadvantages: 

first one is that we need to replace the feedback section with another circuits; 

this operation is inescapable influence simulation result. Another 

disadvantage is that we need to measure the transfer characteristics from the 

positive input due to the loop has been disconnected, but which affects the 

stability is the transfer characteristic from the negative input. 

 

      

(a) Proposed method             (b) LPF method 

Fig. 6.12 Closed loop system circuits 

 

The internal circuit of the operational amplifier is as shown in Fig. 

6.13[10], and the values of bias voltage 𝑉𝑏𝑖𝑎𝑠1 and 𝑉𝑏𝑖𝑎𝑠2 are 546.88mV 
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and 366.99mV respectively. At the process of the proposed method, we run 

the circuit with LTspice and read the output file (text editor) in which the 

closed loop characteristics are written in a format like {frequency, real part, 

imaginary part}. Using these data, we can calculate and get open loop 

characteristics by Eq. (6.5). We also depict the plot using the data from the 

LPF method for comparison with the proposed method at one same graph. 

 

 

Fig. 6.13 Internal circuit of the opamp 

 

Using the obtained data of the open loop characteristics, we can depict the 

Bode plot of the open loop transfer function 𝐴(𝑗𝜔) as the blue line shown 

in Fig. 6.14. The red line shown in Fig. 6.14 is the simulation result from the 

LPF method. We also depict the Nyquist plot using the data from two 

methods as shown in Fig. 6.15, and we can see that two results are consistent. 
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Fig. 6.14 Bode plot of open loop transfer function 

 

 

Fig. 6.15 Nyquist plot of open loop transfer function 

 

In the high frequency domain, especially around the unit circle, the 

simulation results are consistent. In the low frequency region, the difference 

of DC gain is caused by the difference of operation point. 

   

We also have performed simulations by using “Null double injection” 

method taken from an article by R. D. Middlebrook, and the circuit is shown 

in Fig. 6.16 [24]. The loop gain is equivalent to the following: 
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𝐺𝑣 =
𝑣𝑓

𝑣𝑖
,    𝐺𝑖 =

𝑖𝑓

𝑖𝑖
                         (6.11) 

 

Here 𝑣𝑓  and 𝑖𝑓  denote the feedback signals, while 𝑣𝑖  and 𝑖𝑖  are the 

input. 𝐺𝑣 is the open loop voltage gain, and 𝐺𝑖 is the open loop current 

gain, and they are related through the following equation: 

 

𝐺 + 1 = (𝐺𝑣 + 1)||(𝐺𝑖 + 1) 

𝐺 =
𝐺𝑖∗𝐺𝑣−1

𝐺𝑖+𝐺𝑣+2
                              (6.12) 

 

As shown in Fig. 6.16(a), we inject two batteries and the independent 

current source 𝐼1 for measuring the open loop gain. The current source is 

defined as 'AC 1' so that it will provide a 1A small signal current in the AC 

analysis. The two batteries are used to measure the current in each direction. 

They are given a voltage of 0 so that they don't affect simulation results. The 

battery 𝑉2  measures the current 𝑖𝑖  and the battery 𝑉1  measures the 

current 𝑖𝑓. We inject two batteries and the independent voltage source 𝑉5 

for measuring the open loop gain as shown in Fig. 6.16(b). The voltage 

source is defined as 'AC 1' so that it will provide a 1V small signal voltage 

in the AC analysis. The batteries are again given a voltage of 0, not to affect 

the simulation. The circuits need to be analyzed at the same time in order to 

produce the total gain as the total gain relies on both the open loop current 

gain and the open loop voltage gain. 

 

 

  (a) Measurement of current gain     (b) Measurement of voltage gain 

Fig. 6.16 Null double injection method 
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Fig. 6.17 Bode plot of open loop transfer function 

 

We select an LT1128 amplifier, perform its simulations and compare the 

three simulation results. We depict the Bode plot and Nyquist plot using the 

data from the proposed method, and traditional method include LPF method 

and null double injection method for comparison at one same graph as shown 

in Fig. 6.17 and Fig. 6.18. 
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Fig. 6.18 Nyquist plot of the open loop transfer function 

 

By comparison, we can find out that the proposed method can be used for 

obtaining the open loop characteristics from the closed loop measurement. 

In the low frequency region, the simulation results are consistent. But in the 

high frequency domain, especially around the unit circle, the simulation 

results are not consistent. The LPF method need to open up the loop, and that 

the DC bias point of the circuit will be altered. Since the circuit is linearized 

around the DC bias point in AC analysis, this will influence the simulation 

results. Considering the proposed and null double injection methods which 

can both make measurement without opening up the loop, the proposal 

approach is simpler and less time-consuming. 

 

6.3 Summary  

In this chapter, we have tried the closed-open conversion method for 

obtain the open loop characteristics (opamp stability etc.) from closed loop 

operation results. The effectiveness of this method was demonstrated by 

practical example. Since the traditional LPF method need to open up the loop, 
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this will influence the simulation results. The null double injection method 

also does not need opening up the loop although, but compared with the 

proposed method, the later one is simpler and less time-consuming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VII 

DISCUSSION  

 

7.1 Discussion  

In this dissertation, our work can be divided into two parts: application of 

R-H stability criterion in judging the stability of operational amplifier, and 
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one try of closed-open conversion method that to obtaining open loop 

characteristics. The former is the main body of this article, we used Chapter 

3 and Chapter 4 for introductory principle and simulation respectively. And 

we talk about the closed-open conversion method in Chapter 5 including 

principle and simulation result. 

According to the above consideration, we have proposed the following for 

operational amplifier stability analysis and design 

 Depict a small signal equivalent circuit for the operational amplifier 

circuit in open-loop structure. 

 Derive its open-loop transfer function. 

 Derive its closed-loop transfer function and obtain its characteristic 

equation. 

 Apply the R-H stability criterion and obtain the relation function 

between the R-H parameter with phase margin. (which is not easy to 

obtain with Bode plot) 

 Then use this relation function for circuit parameters.  

The R-H method would be effective especially for multi-stage operational 

amplifiers (high-order systems). 

It may be true that one might ponder the derivation of precise explicit 

transfer function with polynomials of 𝑆 is difficult due to many parasitic 

components in the operational amplifier circuit. However, even if the derived 

equivalent circuit or transfer function uses only major components and 

neglects parasitic components, the R-H method provides the information 

whose major parameter values should be increased or decreased for stability. 

Since the coefficients of Routh table are polynomials, the parameter value 

modification processing would be complicated. Then we can only modify 

one dominant parameter whereas the other parameters are fixed each time 

and observe the change of stability brought by the modification. 

The R-H method can judge with simple calculation for given parameter 

values whether the operational amplifier circuit with feedback configuration 

is stable or not, but it cannot obtain gain and phase margins directly. On the 

other hand, Bode plot can obtain them. Then the usage of the proposed 

method together with the Bode plot would be more effective. 

  Regarding to the closed-open conversion method, although cluster theory 

analysis shows that our method is feasible, and our simulation also has good 

results, however there are only slight difference between traditional method 



１２５ 

 

and proposed method on the details. Analyzing and finding out what causes 

these differences is what we should be doing. 

7.2 Future work 

Although we have achieved good simulation results, there is still a long 

way to go before it can be well applied to the actual circuit design, and there 

are still many difficulties to be overcome, as well as many areas to be 

improved and considered. Validation in more examples and application in 

real circuits is the next step we want to take. We hope that this method will 

be familiar and used by more circuit designers, researchers from enterprises, 

schools and other research institutions. We also want to provide an easy-to-

use tool to obtain the open loop characteristics from the closed loop operation 

results as our target. 
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CHAPTER VIII 

CONCLUSION 

 

This dissertation proposes a stability analysis and design method for the 

operational amplifier feedback circuit based on the equivalent small signal 

circuit model of the operational amplifier and the Routh-Hurwitz stability 

criterion. We summarize our work as the following aspects: 

 

 In terms of innovation. 

This proposed method can lead to obtain explicit stability conditions for 

operational amplifier circuit parameters that have not been described in any 

operational design book/paper, to the best of our knowledge.  

 

 In the theoretical proof. 

We have shown the equivalence between Nyquist and Routh-Hurwitz 

stability criteria for analysis and design of the operational amplifier stability 

under some conditions, and have deduced the relationship between Routh-

Hurwitz stability criterion parameters with phase margin of the operational 

amplifier. We have shown that they are monotonic relationship.  

 

 In the verification and simulation parts. 

We have confirmed with SPICE simulation that this method is equivalent 

to the Bode plot method, and satisfactory results have been obtained with 

LTspice simulations at transistor level circuit. Also the acquisition and 

application of the relationship between R-H stability criterion parameters 

with phase margin demonstrate the feasibility of the proposed method on 

both sides of theory and practice.  

 

 In comparison with the conventional method.  

Compared to the conventional Bode plot method which only can judge the 

stability qualitatively, the proposed method not only can judge the stability 

but also can further perform quantitative analysis; this clarifies which circuit 

parameters influence the operational amplifier stability, and we know 
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whether these circuit parameters should be increased or decreased. The R-H 

method has an advantage of being able to obtain explicit stability condition 

for circuit parameters; hence the R-H method can be practically used 

together with the Bode plot method. 

● Supplement method. 

In the later part of this dissertation, an additional method is proposed to 

obtain the open loop characteristics directly without opening up the loop and 

not need to insert any extra circuit element. Our simulation results show the 

practical usage feasibility of this proposed closed-open conversion method. 

When this method reveals that the phase margin is not sufficient for the 

designed operational amplifier, some parameter values are increased or 

decreased based on the results obtained by the above-mentioned Routh-

Hurwitz method so that its enough phase margin should be gained.  
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APPENDIX 
Table I Short-channel COMS parameters 

 

(Source from “CMOS Circuit Design, Layout, and Simulation” 3rd Edition, R.JACOB 

BARKER) 

Table II small signal equivalent circuit parameters 
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