
Algorithms and Lower Bounds for Threshold Circuits

Atsushi Saito
Division of Electronics and Computing, Gunma University

February 13, 2015



Abstract

A fundamental purpose of theory of computation is to understand differences between
uniform computation and nonuniform one. In particular, Boolean circuit has been studied
in an area of nonuniform computation models, because Boolean circuits are natural formal-
ization of computer architecture and hardware. Boolean circuit is compared with uniform
computation expressed as fixed size programs which run for an arbitrary input length. In
the computational complexity theory, cost of non-uniform computation is measured through
infinite family of Boolean circuits. Proving computational limitations of Boolean circuits is
an extremely important and challenging task in the theoretical computer science.

A remarkable recent result about satisfiability algorithms is a nontrivial algorithm for
testing satisfiability of depth two sparse threshold circuits which have linear number of wires
by Impagliazzo et. al. In this thesis, we construct a nontrivial algorithm for a larger class of
circuits. We give a nontrivial circuit satisfiability algorithm for a class of circuits which may
not be sparse in gates with dependency. Two gates in a circuit are dependent, if the output
of the one is always greater than or equal to the other one. An independent gate set is a
set of gates in which two arbitrary gates are not dependent. In our setting, the number of
restrictions to bottom level gates is bounded above because of dependency of bottom gates.
We first define some partial order on the set of bottom gates. Next, we define a problem:
for given a pair of a circuit and a Hasse diagram relating with the circuit, output YES if
and only if the circuit is satisfiable. Because of an upper bound on the expected number
of restrictions to bottom level gates, the running time of the randomized algorithm is faster
than the complexity of the trivial exhaustive search.

Recently, Williams proved a separation between NEXP and ACC ◦ THR, where an ACC ◦
THR circuit has a single layer of threshold gates at the bottom and an ACC circuit at the top.
Two main ideas of his strategy are a closure property of circuit class and an algorithm for
counting satisfying assignments of circuits. In this thesis, we show that this general scheme
based on these two ideas can be applied for a certain class of circuits with multilayer of
threshold gates. The circuit class we give has the symmetric gate at the top and poly-log
layers of threshold gates to which an extra condition on the dependency is imposed. We
show that, if the size of a maximum independent gate set of each layer of threshold gates is
at most nγ for sufficiently small γ > 0, then two key ingredients needed to apply his strategy
can be established. We also give a result about lower bounds against NEXP, extending the
results by Williams.



Contents

1 Introduction 4
1.1 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Boolean Circuit Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Boolean Circuits and Relationship between Satisfiability and Lower Bounds 7
2.1 Polynomial Hierarchy and Meyer’s Theorem . . . . . . . . . . . . . . . . . . 9
2.2 Randomized Complexity Classes and PRG . . . . . . . . . . . . . . . . . . . 9
2.3 Interactive Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Turing Machine with Advice Strings . . . . . . . . . . . . . . . . . . . . . . 14
2.5 The Notion of Infinitely Often Classes . . . . . . . . . . . . . . . . . . . . . 16
2.6 NEXP ⊆ P/poly implies NEXP = EXP . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Universal Witness Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 A faster algorithm rules out small U.W.C . . . . . . . . . . . . . . . . . . . . 21

3 Satisfiability for a Restricted Class of Depth Two Threshold Circuits 24
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Problems We Consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Motivation of our setting . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Results on Satisfiability Algorithms . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 An Overview of the Entire Algorithm in Lemma 3.8 . . . . . . . . . . . . . . 29

3.4.1 Partial order on bottom gates . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Restriction to the bottom gates and reduction to ILP . . . . . . . . 30
3.4.3 The entire overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Partial Order in Circuits and Reduction Lemma . . . . . . . . . . . . . . . 30
3.6 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Analysis of the Expected Savings . . . . . . . . . . . . . . . . . . . . . . . . 38

4 A Nonuniform Restricted Circuit Class with Threshold Gates Having Strong
Size Lower Bounds 41
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Prior Work and Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



4.2.2 Lower Bounds against NEXP for a Circuit Class with Multi Layers of
Threshold Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Restrictions to Output of Threshold Gates . . . . . . . . . . . . . . . 45
4.3 Closure Property under AND . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Transforming of Circuits and a Counting Algorithm . . . . . . . . . . . . . . 48

4.4.1 Notions for bottom up procedures . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Proof of Lemma 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Lower Bounds for ACC ◦ THR ◦ (O(k)-THR)d circuits . . . . . . . . . . . . . 52

5 Conclusion 55

2



Acknowledgements

First and foremost, I would like to thank my advisor Kazuyuki Amano for helpful discussions,
suggestions, patience, and support. Further, I would like to thank Toru Araki, Ken-etsu
Fujita, Shinichi Nakano, Koichi Yamazaki for many helpful comments to the preliminary
version of this thesis and discussions.

3



Chapter 1

Introduction

1.1 Satisfiability

Satisfiability problem gives both an integral view on theory of NP-complete problems which is
firstly defined in [13] and [31], and one of the most useful methods for constraint satisfaction
problems in engineering and other practical fields. In particular, heuristic ways on CNF SAT
are applied in the practical area of various combinatorial search problems such as boolean
circuit design verification.

There are several well known computational problems related to satisfiability problems.
The first one is satisfiability for CNF formulas and its generalization, because CNF is one
of fundamental concepts about boolean functions. For example, Santhanam [38] gives an
algorithm with a nontrivial exponent for linear size formulas of AND and OR gates with
fan-in two. The second one is MAX-k-SAT, the optimization version of k-CNF SAT. Even
for MAX-3-SAT, no algorithms with constant savings over brute force search are known while
such an algorithm is constructed for MAX-2-SAT in [43]. The third one is Integer Linear
Programming (ILP) that is very useful in expressing combinatorial optimization problems
both in theory and practice.

Satisfiability for depth two threshold circuits contains these problems as special cases.
Satisfiability for CNF formula can be solved by algorithms solving satisfiability for depth two
threshold circuits. We should note that we do not obtain a nontrivial algorithm for depth two
threshold circuit satisfiability algorithm as a corollary of the result in [38]. The reason is that
known transformation from a linear size threshold circuit to formula over AND and OR gates
yields a quadratic blow-up of size. MAX-k-SAT, the optimization version of k-CNF SAT, can
be computed by algorithms solving satisfiability for depth two threshold circuits, since we
can regard the top threshold gate as a counting device of the number of satisfied CNFs and
an objective function in an optimization problem. Finally, testing the feasibility for a 0-1 ILP
is equivalent to testing the satisfiability of a circuit with two levels: the bottom consisting
of threshold gates and the top level being an AND gate. So understanding satisfiability
of depth two threshold circuits could give us various view points on both theoretical and
practical areas including the above three problems.

In the paper [25], Impagliazzo et al. constructed the first nontrivial algorithm with

4



constant savings in the exponent over brute force search for the satisfiability of sparse depth
two threshold circuits which has cn-wires for every constant c. As a consequence, they also
got a similar result for linear-size ILP. Here we say an algorithm is nontrivial, if its running
time is bounded above by 2n/w(n) where n is the number of input variables and w(n) is a
super-polynomial function in n. Note that 2n is just the number of assignments to n input
variables. Their main subroutine is an algorithm for the Vector Domination Problem: given n
vectors in Rd, decide whether there is a pair of vectors such that the first vector is larger than
the second vector in each coordinate. Relationship between this problem and satisfiability
problem is studied in [43].

The Strong Exponential Time Hypothesis (SETH) is a well known conjecture about lim-
itations of efficiency of satisfiability algorithms. The statement of SETH is that for every
δ < 1 there is a k such that k-SAT cannot be solved in time O(2δn). In particular, an
algorithm with constant savings for depth two threshold circuits of super linear size would
violate SETH [22], since k-CNF for all k can be reduced through Sparsification Lemma [23]
to superlinear size depth two threshold circuits [9]. Some algorithms solving CNF-SAT and
MAX-SAT with constant savings for linear size formula are given in [38] and [15]. Assuming
the SETH, we can not to solve satisfiability problem for super linear size depth two threshold
circuits with constant savings as a direct extension of the result in [25].

Thus one of natural directions relating with this result is extending classes of input cir-
cuits and constructing an algorithm with constant savings under the SETH for such classes.
Considering algorithms for a class of circuits of polynomial size is also crucial to circuit com-
plexity theory. For all above reasons, it is significant to give algorithms for an explicit class
which is a subclass of depth two threshold circuits of super linear size.

In Chapter 3, we give all results and proofs on the research in [3].

1.2 Boolean Circuit Lower Bounds

Boolean circuit is one of the most popular and natural computation models. For example,
proving the existence of some NP problem having super polynomial size circuits led us to
P ̸= NP. The best general boolean circuit lower bounds for NP problems are, however,
5n− o(n) by Iwama and Morizumi [27].

Various restricted circuit classes are studied. Bounded depth circuit class is one of the
most successful restricted classes with a lot of remarkable results [16, 19, 36, 41]. Williams
established a landmark in the circuit complexity theory with the separation between NEXP
and ACC0 [45]. He incorporated many known results [6, 14, 20] into a perspective between
algorithms and lower bounds [44]. The class TC0, which is a class of constant depth polyno-
mial size threshold circuits, is a well known natural circuit class larger than ACC0. Current
understanding of bounded depth threshold circuits is extremely inadequate [18, 24].

Recently, Williams [46] proved a separation between NEXP and ACC ◦ THR, where an
ACC◦THR circuit has single layer of threshold gates at the bottom and an ACC circuit at the
top. Two main ideas of his strategy are a closure property of circuit class and an algorithm
for counting satisfying assignments of circuits. Thus it is a plausible direction to consider

5



the usefulness of the framework based on these ideas.
In this thesis, we show that this general framework based on these two ideas can be

applied for some restricted class of circuits with multi layer of threshold gates. The circuit
class we give has the symmetric gate at the top and at most poly-log layers of threshold
gates to which an extra condition on the dependency is imposed. Two gates in a circuit are
dependent, if the output of the one is always greater than or equal to the output of the other
one. An independent gate set is a set of gates in which two arbitrary gates are not dependent.
Each layer of threshold gates in our class has independent gate sets of size at most nγ for
sufficiently small γ > 0. We show that two main ideas in [46] are workable for our circuit
class. It is notable that our circuit class is universal even if there is no two independent
gates and that the general framework can be applied for poly-log depth circuits. First, we
show that we can efficiently find a circuit in our class being equivalent to the AND of two
input circuits in our class. Thus our class has a closure property (Lemma 4.13). Second, we
design an algorithm for counting satisfying assignments for our circuit class (Lemma 4.14).
We connect dependency to a structure of a partial order on the gate set. This connection
make counting assignments easier than general settings. By pluging them into William’s
schema (Theorem 4.6), we obtain super quasi-polynomial size lower bounds for our circuit
class against NEXP (Theorem 4.12).

In Chapter 4, we give all results and proofs on the research in [4]. We also give a result
lower bounds against NEXP, extending results in [46].

6



Chapter 2

Boolean Circuits and Relationship
between Satisfiability and Lower
Bounds

In this chapter, we give a survey on boolean circuits and relationship between satisfiability
and lower bounds. In particular, we give a self contained proof of a remarkable general result
on relationship between improvements of circuit satisfiability algorithms and circuit lower
bounds in [44].

Williams established a landmark in the circuit complexity theory with the separation
between NEXP and ACC0 [45]. He integrated a perspective between algorithms and lower
bounds [44] and many known results [6, 14, 20]. These known results are: conditional results
about the existence of small size boolean circuits regarded as compression of NEXP witness
which is proved by Impagliazzo, Kabanets, and Wigderson [20], a procedure transforming
ACC0 circuits to SYM◦AND circuits with quasi polynomial overheads designed by Beigel and
Tarui [6], and a fast matrix multiplication algorithm constructed by Coppersmith [14], and
the nondeterministic time hierarchy theorem. His perspective is as follows: constructing a
faster meta algorithm for a restricted circuit class is useful to prove the limitation of power
of the restricted circuits. Note that we regard meta algorithms as algorithms running on
algorithms or circuits. This perspective relies on the following ideas: (1) The meta algorithm
in this perspective essentially runs on an arbitrary algorithm having computational power
such as NEXP or ENP, (2) The computational process of such an extremely powerful algorithm
is expressed as a family of the restricted small size circuits, and (3) The meta algorithm
simulates an arbitrary powerful algorithm so fast that we can derive a contradiction to the
time hierarchy theorem. We assume that the reader has knowledge about several basic
definitions of Turing machine and complexity classes like P,NP, and NEXP. (see eg: [5])

A Boolean circuit with n-inputs is a directed acyclic graph with n sources and one sink.
All non-source vertices are called gates and have labels which is one of {∨,∧,¬}, that is,
disjunction (OR), conjunction (AND), and negation gates. The in-degree of all negation
gates is one.

The depth of the circuit C is the number of edges in the longest path between the sink and

7



a source. The fan-in is the maximum in-degree of the graph. The fan-out is the maximum
out-degree of the gates in the graph. The size of a circuit C is able to be defined in two
ways: the number of gates in the graph, and the number of wires in it. For an evaluation of
a circuit on an input x = (x1, ..., xn) ∈ {0, 1}n, for any vertex of the circuit, we compute the
output value of the gate as follows. If the vertex is the i-th source , then its value is the i-th
bit of the input (i.e. xi). Otherwise the value is defined recursively by evaluating the logical
operation of the vertex on the values of the vertices connected to the gate. The output of
the circuit is the value of the sink.

A Turing machine deals with inputs of every length. By contrast, Boolean circuits can
only get inputs of a fixed length, that is, a circuit computing inputs of certain length cannot
be used for computing inputs of different lengths. This conception is natural in practical
sense, because circuits are natural formalization of computer hardware and algorithms are
the one of computer programs. Thus, the computational model of circuits is defined as a
family of circuits C = {Cn}n∈N, where the circuit Cn has n inputs. This kind of computational
model is called nonuniform, since it allows a different treatment for inputs of varying length,
or infinite number of algorithms, if we wish. The nonuniform computation models can have
a strong power. Indeed, it can even decide undecidable languages like Halting problem. Note
that we can construct a circuit for each input length. In the case of unary languages, which
has only one input of each length, we can consider a circuit which outputs the right answer
for each input.

Definition 2.1. Let s : N → N be a function. The complexity class SIZE[s(n)] is the class
of languages such that there is some family of boolean circuits C = {Cn}n∈N deciding L and
the size of Cn is at most s(n) for all n.

Definition 2.2. The class P/poly is defined as the class of languages decided by families of
circuits of polynomial size, namely,

P/poly =
∪
c≥1

SIZE[nc]

In this chapter, we give the proof of the following result.

Theorem 2.3 ([44]). Suppose there is a super polynomial function s(n) such that CIRCUIT
SAT on circuits with n variables and nk gates can be solve solve in 2n · poly(nk)/s(n) time
by a (co-non)deterministic algorithm , for all k. Then NEXP ⊈ P/poly.

We introduce the following hierarchy theorem in the area of nonuniform circuits.

Theorem 2.4. For arbitrary function s(n) such that n ≤ s(n) ≤ 2n/4n, the following holds.

SIZE[s(n)] ⊊ SIZE[4s(n)]

Another important theorem on polynomial size Boolean circuits is the following one.

Theorem 2.5 (eg: [8] ).

DTIME[T (n)] ⊆ SIZE[T (n) log T (n)]

8



2.1 Polynomial Hierarchy and Meyer’s Theorem

The polynomial Hierarchy, denoted by PH is introduced by Meyer and Stockmeyer. This is
a kind of generalization of the classes P,NP, and coNP.

Definition 2.6. Let Σp
0 = P, and let Σp

1 = NP. Then, for any integer i ≤ 0, let Σp
i+1 = NPΣp

i .
The polynomial hierarchy is defined by PH =

∪
i≥1Σ

p
i

Let Πp
1 be coNP, and for any integer i ≤ 0, let Πp

i+1 = coNPΠp
i . It is not hard to prove

that PH =
∪

i≥1 Π
p
i . Thus PH is generalized from NP as well as coNP.

The following theorem is one of the most basic results about collapsing the polynomial
hierarchy.

Theorem 2.7 ( [29] ).
EXP ⊆ P/poly ⇒ EXP = Σp

2

Proof. Suppose EXP ⊆ P/poly. Let M be a single tape Turing machine deciding L in time
2nk

for some constant k. We consider the computational configuration for M and at the (i, t)
position of the tableau, the string zi,t is written, which encodes the content of the i-th cell
at time t and the internal state of the TM’s head in the i-th cell or string corresponding to
the absence of head at the i-th cell.

We define the following language associating with the computational tableau for M .

LM = {⟨x, i, t, z⟩ : running on input x, we have zi,t for M}

By a simulation for M , LM ∈ EXP ⊆ P/poly. Thus, using polynomial size circuits for
LM , we can obtain an polynomial size multi output circuit C such that C(⟨x, i, t⟩) = z.
Finally, we have the following local characterization of the language LM , and this shows that
LM ∈ Σp

2: x ∈ LM ⇐⇒ ∃C∀i, t s.t. C(⟨x, i − 1, t − 1⟩), C(⟨x, i, t − 1⟩), C(⟨x, i + 1, t − 1⟩),
and C(⟨x, 1, 2nk⟩) are accepting. We note that the length of C, i, and t are polynomial length
in |x|.

2.2 Randomized Complexity Classes and PRG

We define a randomized Turing machine and complexity classes related to the model.

Definition 2.8. A randomized Turing machine is a Turing machine with an additional state
qrandom. If the machine is in state qrandom the next state will be either q0 or q1 with probability
1/2 for each state.

We can give an equivalent description of this model as a Turing machine having an
additional tape for random bits. This tape is read only and the machine can only go right
on the tape.

9



Definition 2.9. Let T : N → N. L ∈ BPTIME[T (n)], if there is a randomized Turing
machine M running in time O(T (n)) for any input string of length n such that the following
two conditions (1) and (2) hold.

(1)∀x ∈ L, Pr[M(x) = 1] ≥ 2

3

(2)∀x /∈ L, Pr[M(x) = 1] ≤ 1

3

We define one of the most basic randomized complexity classes as follows.

Definition 2.10.
BPP =

∪
c≥1

BPTIME[nc]

The following theorem is about a strict separation of uniform randomized efficient com-
putation and nonuniform efficient computation, because some undecidable language can be
computed by circuits of small size.

Theorem 2.11 ( [1] ).
BPP ⊆ P/poly.

Lemma 2.12. For any L ∈ BPP and arbitrary constant c > 0, there exists a randomized
Turing Machine M such that it runs on input x in polynomial time in |x| with error probability
2−c·|x|.

Proof. Let L ∈ BPP. There exists a randomized Turing machine running in polynomial time
such that the following conditions hold.

∀x ∈ L, Pr[M(x) = 1] ≥ 2

3

and

∀x /∈ L, Pr[M(x) = 1] ≤ 1

3

Given M,x we can think of M(x) as a random variable which can be sampled effectively.
Because the running time on x is polynomial in |x|. If M accepts x, this variable has high
expectation, whereas if M rejects x this random variable has low expectation. We prove that
the number of samples of M(x) is enough to approximate the expectation of M(x) within
relatively small constant with success probability 2−c·|x|.

We design a randomized Turing machine M ′ such that on input x it computes E[M(x)]
= Pr[M(x)=1] and simulate m times independently M on x. Thus, we consider to calculate
the following ratio A.

A =
the number of accepting computational paths of M

m

10



.
The machine M ′ will accept if A ≥ 2

3
− 1

10
. To calculate error probability of M ′, let

Ai be the random variable M(x) on the i-th run. Using this notation, A = 1
m

∑m
i=Ai. By

linearity of expectation, it holds that E[A|x ∈ L] ≥ 2/3 and E[A|x /∈ L] ≤ 1/3. These
two expectations are far away, and we can distinguish between the two cases with high
probability. Because of independent m simulations, we can bound the error probability by
Chernoff’s inequality. We also note that m = O(n)

Prof of Theorem 2.11
Let L ∈ BPP. By Lemma 2.12, there is a polynomial time randomized Turing machine

M with error probability less than 2−(n+1). Let tn be the maximum length of all random
strings M uses for inputs of length n. Note that tn is polynomial in n. Let Mr(x) denote
the output of M on any input x, using r as the random strings. Since the error probability
is less than 2−(n+1), for arbitrary x of length n, the following holds.

|{r ∈ {0, 1}tn}| ≤ 2−(n+1) · 2tn .

Taking the union bound of these sets forall x ∈ {0, 1}n.

|{r ∈ {0, 1}n such that Mr(x) is wrong }| ≤ 2tn−1.

For any input length n, there are at least one random string rn, such that M can execute
correctly when it uses the random string and runs for arbitrary input string of length n.
There is a family of deterministic Turing machine {Mrn}n∈N, which uses rn whenever M
runs for any input string of length n. By the simulation to prove P ⊆ P/poly, we obtain a
corresponding polynomial size circuit family to simulate such family of Turing machine.

Now we introduce the notion of pseudo random generator (PRG, in short).

Definition 2.13. For S : N → N, a function G : {0, 1}∗ → {0, 1}∗ is called S-pseudo random
generator, if the following conditions (1), (2), and (3) hold, for any circuit C of size O(S(l)3),
where Ul is an uniform random strings of length l.

(1)|G(z)| = S(|z|), for any z ∈ {0, 1}∗

(2) Running time for inputs of length l is 2O(l)

(3)|Pr[C(US(l)) = 1] − Pr[C(G(Ul))]| ≤
1

10

We note that the machine G prints a pseudo random string whose length is increased for
an input random string.

Theorem 2.14. If there is some S-pseudo random generator, then the following holds.

BPTIME[S(l)] ⊆ DTIME[2O(S(l))].

Proof. Let L be a language that is determined by the randomized Turing machine M with

11



running time S(l), on input of length l. Let r ∈ {0, 1}S(l) be the random bits that M uses.
We consider the following two cases. First, if a PRG G can derandomize the PRG then we
obtain the desired result. Second, if not, this PRG can be used to obtain circuits which will
be a contradiction to the fact that G is a PRG.

If G is in the first case, then the following holds.

| Pr
r∈{0,1}S(l)

[Mr(x) = 1] − Pr
z∈{0,1}l

[MG(z)(x) = 1]| ≤ 1

10

Note that |z| = S(l) by Definition 2.13. This G is able to be used to derandomize M :
For any z ∈ {0, 1}l, M ′ simulates MG(z)(x) and decides by the majority. M ′ wil be correct
on all input x, for each x ∈ L:

Pr
r∈{0,1}S(l)

[Mr(x) = 1] ≥ 2

3

Pr
z∈{0,1}l

[MG(z)(x) = 1] ≥ 2

3
− 1

10
=

17

30

And for each x /∈ L:

Pr
z∈{0,1}l

[MG(z)(x) = 1] ≤ 1

3
+

1

10
=

13

30

The runtime will be S(l) · 2l, which is 2O(l) (because S(l) = 2O(l)).
We consider the second case. Suppose the following inequality.

|Prr∈{0,1}S(l) [Mr(x) = 1] − Prz∈{0,1}l [MG(z)(x) = 1]| > 1
10

(2.1)

for an infinite number of x’s, then it can be used to contradict the definition of G as a PRG.
If this holds only for a finite number x’s, then we can construct a machine M ′′ and can use
G to derandomize M ′′.

Let {xi}i∈I be an infinite sequence of x’s, which satisfy the above condition (2.1). The
series of circuits {Ci} such that Ci on input r, has xi hard-coded, and simulates Mr(xi).
If there is no xi of its length, Ci outputs 0. {Ci} distinguishes between r and G(z) with
probability larger than 1/10. Because there is a circuit of size t2 for any deterministic Turing
machine with runtime t, {Ci} contradicts that G is a PRG.

Nisan and Wigderson proved that given a strong enough circuit lower bound, in particular
super polynomial size, it is possible to construct a PRG and thus obtain a derandomization
of BPP[33].

2.3 Interactive Proof Systems

We first give the notion of an interactive proof system.

12



Definition 2.15. An interactive proof system is a multi-round protocol between two parties,
a prover and a verifier, such that on each round, messages are exchanged between the verifier
and the prover to establish if a string belongs to the language or not. We suppose that the
prover is all powerful, but cannot be trusted, while the verifier has bounded resources. An
interactive proof system must satisfy the following properties:

(1) (Completeness) There is a proof strategy for the prover such that if a string is in the
language then the verifier is convinced of this.

(2) (Soundness) If a string is not in the language, then no prover can convince the
verifier that the string is in the language.

Remind the definition of NP. A language  L ∈ NP if there exists a Turing machine M for
which the following holds:

x ∈ L ⇐⇒ ∃y ∈ {0, 1}|x|c ,M(x, y) = 1,

for some constant c. Therefore NP is an Interactive Proof System where the verifier is a
P machine. The prover produces a polynomial size certificate and the verifier verifies it in
polynomial time. We note that there is no assumption on the power to compute the string
y = y(x) for given x. The fact that the prover is computationally unlimited is formalized by
the existential quantifier. In the following definition, we look at another proof system, where
the verifier can use random bits to decide if to accept a certificate sent by the prover.

Definition 2.16. We define MA as the class of languages L for which there exists a proba-
bilistic turing machine M such that

x ∈ L ⇒ ∃y ∈ {0, 1}|x|cPr[M(x, y) = 1] ≥ 2/3.

x /∈ L ⇒ ∀y ∈ {0, 1}|x|cPr[M(x, y) = 1] ≤ 2/3.

One can informally think of MA as a randomized version NP, which means that MA
contains NP and BPP. The inclusion MA ⊆ Σp

2 is also proved. We call the prover and the
verifier in MA protocols Merlin and Arthur, respectively.

Definition 2.17 ([17]). IP is the class of languages defined by an Interactive Proof System,
where a prover P and a verifier V communicate using random bits r and messages of poly-
nomial length sent over polynomially many rounds and let C(V, P, x, r) denote the decision
of the communication protocol for given input x. That is, there is a verifier V such that

P [C(V, P, x, r) = 1] ≥ 2/3,

for some prover P , and
P [C(V,Q, x, r) = 0] ≤ 2/3,

for any prover Q, where C(V, P, x, r) = 1, if V accepts, and otherwise rejects.

13



While there exists an oracle O such that coNPO ⊈ IPO, it was later proved that IP has
very powerful computational ability.

Theorem 2.18 ([39]).
IP = PSPACE

Theorem 2.19.
PSPACE ⊆ P/poly ⇒ PSPACE = MA

Proof. We use the fact that PSPACE = IP. The interaction between Merlin and Arthur is
an instance of True Quantified Boolean Formula (TQBF, in short), and Merlin is a PSPACE
machine. Because of the equivalence between PSPACE and IP, Merlin can be replaced with
a polynomial size circuit family {Cn}. Note that the prover in the IP-protocol is a function
computing a massage sent to the verifier for given input string, random bits, and all massages
which is already sent by the two parties.

The interaction between Merlin and Arthur can now be executed in only one round.
Given input string x of length n, Merlin sends to Arthur Cn of polynomial in |x|. Arthur
then simulates the interactive proof getting answers from Cn instead of Merlin. Note that if
the input is not in the language, then every circuit sent to Arthur by Merlin fails to act as a
prover, and it does not have sufficient probability to fool the verifier.

Theorem 2.20.
EXP ⊆ P/poly ⇒ EXP = MA

Proof. Suppose EXP ⊆ P/poly. We have the following inclusion:

EXP ⊆ Σp
2 ⊆ PSPACE ⊆ EXP

Thus, EXP = PSPACE = MA.

2.4 Turing Machine with Advice Strings

We defined the class P/poly as class of languages which is computable by nonuniform boolean
circuit families of polynomial size. We will introduce a model which is an extended version
of Turing machine and is essentially equivalent to circuit family models.

A Turing machine is said to take advice if the machine has access to a string αn on top
of the string x for any input string x of length n.

Definition 2.21. Let t, α : N → N be two functions, and we later regard t and α as time and
advice functions, respectively. A language L is in the complexity class DTIME[t(n)]/α(n), if
there exist some Turing machine M running in time t(n) on input strings of length n and a
family of strings {αn}n∈N such that (1) |αn| ≤ a(n) for all n and (2) s ∈ L iff M(x, α|x|) = 1.

14



The name of the class P/poly is perhaps clearer at this point: to the left of the slash we
have the complexity class P and to the right poly which means advice of polynomial length.
We formally state this correspondence as follows.

Theorem 2.22.
P/poly =

∪
a,b∈N

DTIME[na]/nb

Proof. We first prove the ⊆ direction. Evaluation of a circuit on a given input can be
executed in polynomial time in the description length of the circuit and the input. Thus,
advice string is the description of the circuit, which is stored during all evaluation processes.

Next, we prove the other direction. Let L ∈ DTIME[na]/nb for some constants a, b. The
idea again is simple. Because P ⊆ P/poly, the Turing machine for L can be simulated by a
circuit family. We then take an advantage of the nonuniformity by hard-writing the advices,
one in each circuit. There is some Turing machine M running in time O(na) for inputs of
length n, and a family of strings {αn} with |αn| ≤ nb such that x ∈ L iff M(x, α|x|) = 1. We
remind that there is a family of circuits {Cn} of size O(n2a) that agrees with M . Note that
we can fix all input variables of the circuit Cn corresponding to α|x| and can obtain a circuit
Cn′ . Hence, we get a family of circuit {C ′

n} deciding L.
In this proof, we note that evaluating a circuit is done in time linear in its size. When

we consider Turing machine with advice strings, one can separate the computation from the
length of advice strings. Indeed, one can consider P/1, which is the complexity class with
efficient computation using just one bit advice. This class is actually strong enough to decide
a undecidable problem like Halting problem.

Remind that NEXP =
∪

a NTIME[na] and P/poly =
∪

b SIZE[nb]. We consider the following
question. Is there a b = b(a) for any a it holds that NTIME[2na

] ⊆ SIZE[nb]? For general
sets, this doesn’t hold. However, we can give an affirmative answer to this question for some
complexity classes, because we consider only complexity classes which are sets with specific
structures. This fact is useful for us.

Lemma 2.23. If NEXP ⊆ P/poly, then the following holds.

∀a ∈ N,∃b = b(a) ∈ N,NTIME[2na

]/n ⊆ SIZE[nb]

Proof. For a given a ∈ N, let Ua(·, ·) be a universal nonderterministic Turing machine which
simulates the i-th nondeterministic Turing machine Mi for input x in 2|x|asteps. We note
that L(Ua), which is the language of all strings accepted by Ua, is in NEXP. Hence, we have
L(Ua) ∈ P/poly by the assumption. Therefore, for some constant c, there is a family of circuits
{Cn} of size |Cn| ≤ nc such that C|x,i| computes L(Ua), i.e., x ∈ L(Ua) iff C|x,i|(|x, i|) = 1.

Next, we prove NTIME[2na
]/n ⊆ SIZE[nb]. Take a language L ∈ NTIME[2na

]/n. Then,
there is a sequence of advices {αn}n∈N with n = |αn|, and an index i = iL such that for
any x ∈ {0, 1}∗ we have x ∈ L if and only if Mi(x, α|x|) has an accepting computation path,
where Mi is the i-th nondeterministic Turing machine. We take the family of circuits {Cn} as

15



above. Thus we have C|x,α|x|,iL|(x, α|x|, iL) iff x ∈ L. Therefore, by partially fixing the inputs
we obtain the desired family of circuits computing L of size at most (|x| + |α|x|| + |iL|)c ≤
(2n + |iL|)c+1.

2.5 The Notion of Infinitely Often Classes

The notion of infinitely often is also quite basic and essential in the structural complexity
theory. Roughly speaking, given a complexity class C, the infinitely often version of C is
arbitrary language agreeing with some language from C on infinitely many inputs. For
example, for a language L ∈ C, L′ = {x : x ∈ L, |x| = 3n− 2, n ∈ N} is in the infinitely often
version of C.

Definition 2.24. Let C be a complexity class. Define the class io-C to contain any language
L for which there is some language L′ ∈ C and an infinite set I ⊆ N, such that for any
n ∈ I, L ∩ {0, 1}n = L′ ∩ {0, 1}n.

It is not hard to prove the following lemma.

Lemma 2.25. Let C1,C2 be two complexity classes. Then,

C1 ⊆ C2 ⇒ io-C1 ⊆ io-C2

We will also make use of the following lemma.

Lemma 2.26. For any fixed c ∈ N it holds that EXP ⊈ io-SIZE[nc]

Proof. Firstly, we take a language in EXP, which is hard for io-SIZE[nc]. Next, we give a
contradiction to the size hierarchy theorem.

By the size hierarchy theorem, there exists n0 = n0(c), for any n > n0, there exists a
function fn on n inputs such that (1) fn can not be computed by circuits of size nc and
(2) fn yet can be computed by circuits of size at most 4nc. For given input length n, we
can find the lexicographically minimum function of all functions satisfying this statement.
Moreover, we can simulate the function in exponential time. Let Lc be the resulting language∪

n≥n0
f−1
n (1).

If Lc ∈ io-SIZE[nc] then there exists a family of circuits {Cn} of size at most nc, where Cn

and fn are equivalent for infinitely many lengths of input strings, that is, Lc on the respective
input length validly. This contradicts the fact that all circuits except the first n0 ones can
not compute Lc.

Corollary 2.27. If NEXP ⊆ P/poly then for any fixed a ∈ N it holds that

EXP ⊈ io-[NTIME[2na

]/n].

16



Proof. By the assumption and Lemma 2.23, there is some b = b(a) such that the following
inclusion holds.

NTIME[2na

]/n ⊆ SIZE[nb]

By Lemma 2.25, it holds the following statement

io-[NTIME[2na

]/n] ⊆ io-SIZE[nb].

This is, however, a contradiction to Lemma 2.26.

2.6 NEXP ⊆ P/poly implies NEXP = EXP

We prove the following deterministic simulation of NEXP assuming NEXP ⊆ P/poly.

Theorem 2.28.
NEXP ⊆ P/poly ⇒ NEXP = EXP.

Indeed, we give a proof to show that both NEXP ⊆ P/poly and NEXP ̸= EXP cannot hold.
By Corollary 2.27, it holds that if we suppose NEXP ⊆ P/poly then the following holds.

∀a ∈ N,EXP ⊈ io-[NTIME[2na

]/n]

Thus, all we have to prove is the following statement.

Lemma 2.29. If NEXP ̸= EXP then, the following holds.

∀a ∈ N,MA ⊆ io-[NTIME[2na

]/n]

Proof. By the assumption that NEXP ̸= EXP, we can take some NEXP complete language
L∗ ∈ NEXP\EXP under the polynomial time many to one reduction. Because of L∗ ∈ NEXP,
there are some constant c∗ depending on L∗ and some a nondeterministic Turing machine

M∗ such that that runs in time O(2nc∗
) on inputs of length n, such that

x ∈ L ⇐⇒ ∃y ∈ {0, 1}2|z|
c∗

M∗(z, y) = 1

We consider what happens, if L∗ ∈ EXP. Any Turing machine running in deterministic
exponential time cannot get a success to decide L∗. We will take only a particular Truing
machine to decide L∗ in deterministic exponential time, and this specification is useful for
us. Trivially, it take a double exponential time for the simulation of the nondeterministic
Turing machine M∗ by just enumerating over all potential witnesses y.

It is an important idea that we consider only witness which is “easy” in some sense [28].
We consider a witness y regarded as a truth table of functions having small circuit size
complexity. We mention this formal.

17



For any constant d, consider the following deterministic Turing machine Md: On input z
of length n, it list all circuits of size nd with nc∗ input variables. For each circuit C, take the

truth table y = tt(C) of C, which is a string of length 2nc∗
. Then, check if M∗(z, y) = 1. If

we found no such y, the machine rejects z, otherwise the machine accepts z.
We note that there is no witness to be in L∗ for z, if z /∈ L∗. Thus there is no easy witness

for this false claim. Hence, Md rejects z. We also note that the running time of Md is:

O
(

((n2d)nd) · (2nc∗ · nd) · (2nc∗

)
)
.

Therefore, for every fixed constant d, the Turing machine Md runs in exponential time.
Thus it cannot compute L∗. We can assume that Md wrongfully decides L∗ for infinitely
many inputs. The reason is: if not, correcting the error of Md, we can add the finite number
of inputs for which Md wrongfully decides to the description of Md. That is, for every d,
there is some infinite sequence of input strings Bd = {z(d)i }i∈Id for which Md(z

(d)
i ) = 1 if and

only if z
(d)
i /∈ L∗, where Id ⊆ N is the set of lengths for which there are bad inputs in some

sense.
We also note that Md makes only one-sided error, that is, if z /∈ L∗ then Md can validly

reject z for any fixed d. The error of this Turing machine is false-negative, rejecting inputs
which should have been accepted. This will happen, only when the inputs have only hard
witnesses. Here we say hard witnesses as the witnesses that cannot be computed by circuits
of size |z|d.

Thus, for any d there exists a nondeterministic Turing machine such that for given n

it runs in time 2nc∗
with an advice string of length n and outputs the truth table of a

function having no circuit of size nd. The machine M ′
d nondeterministically guess a string

y ∈ {0, 1}2n
c∗

and verifies if M∗(z
(d)
n , y) = 1. If the verification results in affirmative decision,

then the machine M ′
d prints y.

Note that the machine computes with n bits of advice string z
(d)
n and runs in time O(2nc∗

).

If n ∈ Id then z
(d)
n is an input which Md rejects wrongfully. Thus, by the above arguments,

z
(d)
n while any witness for this fact, and there are such witnesses whose boolean functions

associated with truth tables have no circuits of size nd. Therefore, the machine M ′
d are

nondeterministically able to output a string y ∈ {0, 1}2n
c∗

as the truth table of a boolean
function without circuits of size nd.

Let L ∈ MA be a language. Then, there is some constant d = d(L) such that Merlin
sends Arthur a proof y ∈ {0, 1}|x|d to claim “x ∈ L”. Arthur then take |x|d random bits and
decides in time |x|d if he accepts x for given y.

We consider to derandomize Arthur’s random computation. We only take the case sat-
isfying n = |x| ∈ Id, that is, we can consider hard boolean function for the purpose of

derandomization. There exists a Turing machine M ′
d running in time O(2nc∗

), which is expo-
nential with the constant c∗ not depending on d. The machine Md′ outputs the truth table
of an nd-hard function. We can use Nisan-Wigderson PRG and this hard function, and this
gives us a derandomized Arthur.

This simulation of Arthur takes time nO(d). Because we consider the machines with n bits

18



advice strings, runs in nondeterministic time O(2nc∗
) + nO(d), and correctly computes L for

any input string of length n ∈ Id. Thus, we can execute an infinitely derandomization i.e.
L ∈ io-[NTIME[2nc∗

]/n].

2.7 Universal Witness Circuits

We formally define the notion of easy witness in the proof of Lemma 2.29. This notion is
essential to get circuit lower bounds from satisfiability algorithms.

Definition 2.30. A language L ∈ NTIME[t(n)] has S(n)-size universal witness circuits(U.W.C),
if ; For any verifier V , there is some circuit family {Cn}n∈N such that the following (1) and
(2) hold, where l = n + ⌈log2 t(n)⌉ + 1.

(1)Size(Cn) = O(S(n)),

(2)For any input string x of length n, w(x) is a witness i.e. x ∈ L ⇐⇒ V (x,w(x)) = 1,

where each bit of w(x) is Cn(⟨x, bit-index⟩).

Note that w(x) can be written as follows.

w(x) = w0···00(x)w0···01(x)w0···10(x) · · ·w1···11(x)

= Cl(⟨x, 0 · · · 00⟩)Cl(⟨x, 0 · · · 01⟩)Cl(⟨x, 0 · · · 10⟩) · · ·Cl(⟨x, 1 · · · 11⟩)

We also note that the length of the binary string w(x) is ⌈log2 t(n)⌉ + 1. The integer
k is introduced for an infinite sequence of inputs to design an infinitely often simulation of
Merlin-Arthur protocols.

Lemma 2.31. If NEXP ⊆ P/poly, then NEXP has universal witness circuits with size S(n) =
poly(n).

Proof. We use the following known theorem for derandomization.

Theorem 2.32. ∀ε > 0∃δ < ε∃e ∈ Z such that for given boolean function with nδ variables
whose circuit complexity is at least nδe, there exists a pseudo random generator G : {0, 1}nε →
{0, 1}n computable in 2O(nε) time which fools circuits of size n.

Is there a language which does not have U.W.C. of small size? If not, we complete
the proof. If so, we can construct a hard function in the sense that it has strong circuit
complexity lower bounds. By derandomization from the hardness via Theorem 2.32, we
prove MA ⊆ io-NTIME[2n]/n. However, this contradicts to the assumption NEXP ⊆ P/poly
and the following known facts which is from Meyer’s Theorem, Lemma 2.26 and Theorem
2.28:

NEXP ⊆ P/poly ⇒ NEXP = EXP = MA

19



and

EXP ⊆ P/poly ⇒ EXP ̸⊆ io-NTIME[2n]/n.

Suppose that there is a language which have U.W.C. of small size, the following holds by
the definition of U.W.C.

∃V verifier for L∀k(≥ 1)∀{Cn}n∈N s.t. (2) ⇒ ¬(1),
¬(1)Size(Cn) ̸= O(S(n)),

(2)For any input string x of length n w(x) is a witness i.e. x ∈ L ⇐⇒ V (x,w(x)) = 1,

(2.2)

where w(x) = Cl(⟨x, z0⟩) Cl(⟨x, z1⟩) · · · .
We note that the length of zi is polynomial in n for each i because the length of arbitrary

witness string for NEXP language is at most 2nO(1)
.

There is a infinite sequence of inputs S = {xik}k∈N such that;

1. ∀k, xik ∈ L, and

2. ∃k0∀k(k ≥ k0)∀y(|y| = 2|xik
|c)∀d ≥ 1,

V (xik , y) = 1 ⇒ circuit size for f is greater than |xik |d, where f : {0, 1}nεac ∋ (xik , i) 7→
yi ∈ {0, 1}

Arthur can be simulated by a polynomial size nq circuit A, since BPP ⊆ P/poly. What is
written to the advice? We set the advice for n-bit inputs to be the string xil ∈ S, where xil

has length nεa and to be the string 0n with no existence of such string xil ∈ S. Our purpose
is to simulate infinitely often, thus we do not have to choose n successively. For any fixed l,
we can take some (sufficiently large) n such that |xil | = nεa. We can construct the following
algorithm for the simulation.

1. Nondeterministically guess the following two strings:

– a witness y of length 2|xik
|c for the verifier V , and REJECT if V (xik , y) = 1 does

not hold

– the message which is sent by Merlin and has polynomial length.

2. Simulate the Arthur:

– Evaluate G on all nεa possible seeds

– Evaluate the output of the circuit A on the outputs of G regarding y as a truth
table of a hard funciton

– Take the majority of all outputs of A

20



The pseudo random generator G fools Arthur. Treat y as a hard function : the number
of valuables is ncεa and circuit complexity is at least nεad. Since nεad/δe ≥ na as setting
d to be arbitrary large, we can fool circuits of size na. Running time is bounded above:
O(2ncεa

+ 2nεa
) and setting ε(= ε(c, a)) > 0 to be arbitrary small accomplish the desired

inclusion MA ⊆ io-NTIME[2nε
]/nε, for ∀ε > 0.

Note that the assumption NEXP ̸= EXP is the source of hardness for derandomization to
prove Lemma 2.29 and denying the existence of small U.W.C is the one in this proof. We
also note that the number of input variables in witness circuits which we consider is smaller
than the one of the witness circuit which is obtained by the exhaustive search running in
exponential time in the proof of Theorem 2.29. This difference about the number of input
variables is critical to prove Theorem 2.3.

2.8 A faster algorithm rules out small U.W.C

We give the proof of the following theorems connecting slight improvements of satisfiability
to circuit lower bounds.

Theorem 2.3(restated) Suppose there is a super polynomial function s(n) such that CIR-
CUIT SAT on circuits with n variables and nk gates can be solved in 2n · poly(nk)/s(n) time
by a (co-non)deterministic algorithm , for all k. Then NEXP ⊈ P/poly.

Theorem 2.33. Let c ≥ 1. Let a(n) be a monotone increasing and unbounded function.
Let S(n), T (n) be functions such that

T (n)/(S(n) + n8) ≥ Ω(n4a(n)), and n ≤ S(n) ≤ O(2n/n · 1/a(n)). (2.3)

If Circuit SAT on n variables and m gates can be solved in O(2nmm/T (n)) co -nondeterministic
time then NTIME[2n] does not have S(n)-size U.W.C. .

We use the following known results about efficient local reduction.

Theorem 2.34 ( eg: [12, 35] ). L ∈ NTIME[n] can be reduced to 3SAT instances of n(log n)d

size. Moreover there is an algorithm that given instance of L and an integer i ∈ [cn(log n)d]
in binary, outputs the i-th clause of the resulting 3SAT formula in O((log n)d) time.

We obtain the following corollary by Lemma 2.5.

Corollary 2.35. L ∈ NTIME[2n] can be reduced to 3SAT instances of c2nn4 size. Moreover
there is an algorithm that given instance of L and an integer i ∈ [c2nn4] in binary, outputs
the i-th clause of the resulting 3SAT formula in O(n4) time.

Proof of Theorem 2.33. We give a proof by contradiction to the nondeterministic hierarchy

21



theorem, which states that the separation NTIME[f(n)] ⊊ NTIME[g(n − 1)] holds for any
functions f, g : N → N satisfying that f(n) = o(g(n− 1)).

Assume that NTIME[2n] has a family of U.W.C of S(n)-size, determining whether the
variable corresponding to a given bit-index is 0 or 1. Note that L has U.W.C i.e. ∀x ∈
L∃y(|y| ≤ c2nn4) s.t. V (x, y) = 1 and y can be encoded with a circuit of size S(|x|). That is,
we can obtain a kind of compressed representation: ∀x ∈ L∃Cy such that Cy is an U.W.C
with input length l = log(c2|x||x|4) and size S(|x|).

We construct a nondeterministic algorithm N for L which is an arbitrary NTIME[2n]
language.

1. For an input string x, existentially guess the circuit Cy

– Given index of a variable as an input string, Cy outputs the 0-1value of the variable

2. Construct a circuit D with l input wires such that

D(X) outputs 1 ⇐⇒ the X-th clause is not satisfied. (see Fig1. and Fig2.)

3. Recall the assumption that there is a faster C-SAT algorithm. We can call the algorithm
to solve circuit satisfiability on D, and ACCEPT if and only if D is unsatisfiable

Using bounds on S(n), T (n), we prove that the running time of this nondeterministic algo-
rithm is at most O(2n/a(n)). This is, however, a contradiction to the hierarchy theorem,
since 2n/a(n) = o(2n−1) and NTIME[2n] ⊆ NTIME[2n/a(n)].

Fig. 2.1:

22



Fig. 2.2:

The running time of the C-SAT algorithm on the circuit D is ;

O(2n/a(n)) + 2l(n8 + S(n))c/T (n) ≤ O(2n/a(n) + 2nn4(n8 + S(n))c/T (n))

≤ O(2n/a(n) + 2nn4/(n4a(n)))

≤ O(2n/a(n))

Finally, we show that designing a faster C-SAT algorithm is a way to prove NEXP ⊈
P/poly.
Proof of Theorem 2.3. Proving this theorem is straight forward. Let S(n) = nk, T (n) =
s(n) in Theorem 2.3. Then a 2n ·poly(nk)/s(n) time algorithm for C-SAT implies that NEXP
does not have nk-size U.W.C. Since k can be arbitrary, NEXP does not have nk-size U.W.C,
thus NEXP also does not. Taking contrapositive of Lemma 2.31, we complete the proof.

23



Chapter 3

Satisfiability for a Restricted Class of
Depth Two Threshold Circuits

The structure of this chapter is as follows. Firstly, we define several notions being necessary
in other sections in Section 3.1 and formally state our results in Section 3.3. We give an
overview of the entire algorithm in Section 3.4. In Section 3.4, we also define a problem: for
given a circuit and a graph containing information about dependency of the circuit output
YES if and only if the circuit is satisfiable. We give a constructive proof of a reduction
from our original circuit satisfiability problem to this problem in Section 3.5. In Section 3.6,
we solve the problem defined in Section 3.4. In Section 3.7, we give an algorithm whose
subroutine is to solve the problem in Section 3.5 to solve the original satisfiability problem.

3.1 Preliminaries

A threshold gate which outputs a boolean value has the label w1x1 + · · · + wnxn ≥ t, where
each of w1, ..., wm and t is a real number, and x1, ..., xn are input boolean variables. For all
boolean inputs (x1, ...., xm), it outputs 1 if and only if the statement of the label holds. We
give a more precise definition as follows.

Definition 3.1. Let x1, ..., xn be boolean variables. Let w1, ..., wn, t be real numbers. We
define a threshold gate as a gate computing a boolean function THRw1,...,wn,t(x1, ..., xn) such
that THRw1,...,wn,t(x1, ..., xn) = 1 ⇐⇒ Σn

i=1wixi ≥ t. A depth two threshold circuit is a
circuit which has two layers of threshold gates: the top gate and bottom gates. We assume
that there may be some wire from an input variable to the top gate, and we call such wire a
direct wire.

Definition 3.2.
(1) Two gates G1, G2 at the bottom level have dependency, if ∀x ∈ {0, 1}n[G1(x) ≤ G2(x)] ∨
∀x ∈ {0, 1}n[G2(x) ≤ G1(x)], where n is the number of input variables. In other words, one
of two preimages G−1

1 (1), G−1
2 (1) is a subset of the other one.

(2) A subset of bottom gates is called independent gate set, if any two gates in the set do not
have dependency. A circuit may contain several independent gate sets.

24



Definition 3.3. A depth two threshold circuit C is sparse, if
∑
G∈B

fan-in of G ≤ dn, where d

is a constant and B is the set of all bottom level gates in C.

We define an extension of this notion which involves dependency in circuits.

Definition 3.4. A depth two threshold circuit C is sparse in independent gates, if there
exists some constant d for an arbitrary independent gate sets I in C (at the bottom level)∑
G∈I

fan-in of G ≤ dn. The constant d is called a sparse constant of C.

3.2 Problems We Consider

Let’s consider the following parameterized circuit SAT problems.

Definition 3.5.
Name of Problem: k-THR-SAT
Given: Depth two threshold circuit C of size nc which is sparse in independent gates, where
c is a constant.
Parameter: k : Maximum size of independent gate sets of C which may depend on the
number of input variables n.
Compute: YES iff C is satisfiable.

Definition 3.6.
Name of Problem: k-THR-SAT with unique exception
Given: Depth two threshold circuit C of size nc which is sparse in independent gates such
that there exists an unique maximal independent gate set I ′ of size greater than k, where c
is a constant.
Parameter: k: Maximum size of independent gate sets of C except I ′.
Compute: YES iff C is satisfiable.

Note that we obtain an instance of k-THR-SAT by eliminating all gates in I ′ and wires
connecting to them from C.

3.2.1 Motivation of our setting

In this section, we describe several facts on circuits with high dependency. We think that
these explain why the investigation of threshold circuits parameterized by its dependency
is interesting. One may think that circuits with bounded size independent gate sets seems
to have very weak computational ability and seems to compute only boolean functions in a
narrow class. However, the class of depth two threshold circuits is universal, even if there is
no pair of independent gates.

Let k-THR be a layer of threshold gates whose maximum independent gate set size is k,
and let THR◦k-THR denote the class of depth two circuits where the top gate is an arbitrary
threshold gate and the bottom level is k-THR.

25



It is clear that the class THR ◦ k-THR with k = 2n can compute all boolean functions by
emulating DNF formulas. A bit surprisingly, THR ◦ k-THR is universal even for k = 1. We
describe below the construction of such a circuit for an arbitrary given function.

Let f(xn−1, . . . , x1, x0) be a boolean function on n variables. For simplicity, we assume
f(0, 0, . . . , 0) = 0. For 0 ≤ j ≤ 2n − 1, let yj denote the binary representation of j of length
n, i.e., yj := (xn−1, . . . , x1, x0) with

∑n−1
i=0 xi2

i. Let Gj be the threshold gate whose output
is 1 iff

∑n−1
i=0 2ixi ≥ j. The bottom level of a circuit is consisting of G = {Gj | f(yj) ̸=

f(yj−1) (1 ≤ y ≤ 2n − 1)}. Obviously, there is no pair of independent gates in G. The top
gate outputs 1 iff

∑
Gj∈G wjGj ≥ 1 where the weight wj is f(yj) − f(yj−1) which is 1 or −1.

In fact, the value of f is equal to
∑

Gj∈G wjGj. We note that the top gate can be replaced

by a symmetric gate (i.e., a gate whose output depends only on the sum of its inputs) that
outputs 1 iff

∑
Gj∈G Gj is odd. This says that SYM ◦ k-THR is also universal.

We see by these examples that limiting dependency affects not the universality but the
complexity, i.e., the number of gates or wires in a circuit. As was described in Introduction,
for every δ < 1, the existence of 2δn time algorithm for k-THR-SAT of superlinear size for
k = ω(n) would refute SETH. It is clear from the definition that the class of functions
that can be computed by THR ◦ k-THR circuits of size s(n) contains the one computed by
THR ◦ k′-THR circuits of the same size for every k′ ≤ k. Hence it is interesting to see the
largest value of k such that k-THR-SAT admits an algorithm with constant savings as well
as to study how the time complexity of circuit satisfiability problem varies as the dependency
of input circuits does.

3.3 Results on Satisfiability Algorithms

We show the following main theorem, which is about a construction of nontrivial satisfiability
algorithm for depth two threshold circuits with bounded size of independent gate sets.

Theorem 3.7. There is a satisfiability algorithm for k-THR-SAT with unique exception
that runs in time O(2(1−s)n), where s = 1/dO(d2), and k ≤ nγ for an arbitrary real constant
0 < γ < 1 and d is a sparse constant of a given circuit.

In the rest of the sections, our main goal is to prove the following Lemma 3.8 and we
obtain Theorem 3.7 from Lemma 3.8.

Lemma 3.8. There is a randomized satisfiability algorithm for k-THR-SAT with unique
exception in which all random bits are created by independently tossing a coin, and the
algorithm runs in time O(2(1−s)n), where E[s] = 1/dO(d2), and k ≤ nγ for an arbitrary real
constant 0 < γ < 1 and d is a sparse constant of a given circuit.

In what follows, we give a way to obtain Theorem 3.7 from Lemma 3.8. A way to get
a deterministic algorithm from a two sided error algorithm with error probability at most
1/3 is given as follows. This method is generally called the conditional expectation method
(pessimistic estimator).

26



We consider a randomized algorithm that uses m random bits. We can regard all its
sequences of coin tosses as corresponding to a binary tree of depth m. We know that most
paths from the root to the leaf are good, that is, give a correct answer. It is natural and simple
thought to try and find such a path by walking down from the root and making good choices
at each step. Equivalently, we try to find a good sequence of coin flips with considering each
single bit.

We consider formally this intuition. Fix a randomized algorithm A and an input x,
and let m be the number of random bits used by A on input x. For 1 ≤ i ≤ m and
r1, r2, ..., rm ∈ {0, 1}, we define P (r1, ..., ri) as the fraction of continuations of a randomized
computation that are good sequences of coin tosses. A precise definition is as follows: if
R1, ..., Rm are uniform and independent random bits, then P (r1, ..., ri) is defined as Pr

R1,...,Rm

[A(x,R1, ..., Rm) is correct |
∧i

j=1 “Rj = rj”] = E
Ri+1

[P (r1, ..., ri, Ri+1)].

By averaging argument, there exists an ri+1 ∈ {0, 1} such that P (r1, ..., ri, ri+1) ≥ P (r1, r2, ..., ri).
Thus, at node (r1, ..., ri), we pick ri+1 which maximizes P (r1, ..., ri+1). Finally, we obtain
r1, ..., rm such that

P (r1, r2, ..., rm) ≥ P (r1, r2, ..., rm−1)
...

≥ P (r1)

≥ P ≥ 2/3,

where P is the fraction of good path from the root. Therefore, we have P (r1, ..., rm) = 1,
because P (r1, ..., rm) is either 0 or 1.

For an implementation of this argument, we just construct a deterministic algorithm to
compute P (r1, r2, ..., ri) for each i. Note that if we show an algorithm in which all random
bits are created by independently tossing a biased coin then an implementation is given. By
using Chernoff bound, we can construct a randomized algorithm which repeats the algorithm
in Lemma 3.8 constant times and runs with error probability at most 1/3. Thus, using
the conditional expectation method, we obtain Theorem 3.7 by repeating the algorithm in
Lemma 3.8 constant times.

Note that the statement of Theorem 3.7 improves the following previous result by Im-
pagliazzo et al. [25] in the sense that we can construct a nontrivial algorithm when we relax
some condition on sparsity in input circuits.

Theorem 3.9 ( [25] ). There is a depth two threshold circuit SAT algorithm with n variables
and dn wires that runs in time O(2(1−s)n), where s = 1/dO(d2) and d is an arbitrary constant.

We first give a rough and qualitative sketch of the outline of the algorithm in [25]. For
given depth two sparse threshold circuits, they give three reductions: the first one transforms
an arbitrary ILP instance with small number of inequalities to an instance of vector dom-
ination problem, and the second one transforms any depth two circuit with small number
of gates to an union of ILP instances with small number of inequalities, and the third one

27



transforms a depth two threshold circuit with linear number of wires to an union of depth
two circuits with small number of gates. Constructing an algorithm with constant savings
in the exponent, we can test satisfiability of depth two sparse threshold circuits with our
setting. Our meaning of small number is the one that the number of gates or inequalities is
less than the number of variables.

The random restriction technique is used to construct these reduction procedures. The
second reduction uses restrictions to output wires of bottom gates in depth two threshold
circuits with small number of gates. The third reduction uses restrictions to input variables,
and we can decrease the number of bottom gates because of this restriction. For each re-
striction to output wires of bottom gates we obtain an ILP instance with small number of
inequalities by the second reduction, and for each restriction to input variables we obtain a
depth two circuit with small number of gates by the third one.

Restricting to the output wire of a bottom gate means obtaining a linear inequality whose
variables and coefficients and the threshold value agree with the label of the bottom gate.
Let’s consider when we obtain a depth two threshold circuit with small number of gates.
The number of brute force restrictions to bottom gates of which the number is less than the
number of variables is still less than the number of brute force restrictions to input variables.
Because of this saving, we can constantly save the complexity of the exponent of the running
time.

Restricting variables for the third reduction involves a little technical argument. We take
a random subset of variables and assign a boolean string to these variables and let the other
unchosen variables remaining. When for a random subset of input variables these variables
are fixed, we consider the following two cases for an arbitrary bottom gate. In the first
case the gate has at most one unfixed fan-in. In the second case the gate has at least two
unfixed input fan-ins. In the former case, such kind of gates do not cause any trouble for the
reduction, because we can eliminate these gates and decrease the number of bottom gates.
In the latter case, however, we cannot take such straight forward argument. It is the sparsity
of circuits that gives the nice property that there are not so many such bad gates.

We mention how we obtain an extension of [25] from our setting. In our setting, the
number of restrictions to bottom level gates is bounded above because of dependency of
bottom gates. We first define some partial order on the set of bottom gates. Hasse diagrams
of this relation are useful to formalize the notion of dependency of bottom gates in a circuit.
Next, we define a mid-point problem: for given a pair of a circuit and a Hasse diagram relating
with the circuit, output YES if and only if the circuit is satisfiable. Our main subroutine is
a randomized algorithm solving this problem. Because of an upper bound on the expected
number of restrictions to bottom level gates, the running time of the randomized algorithm
is faster than the complexity of the trivial exhaustive search. In other words, the expected
exponent of the running time is faster than the one of the trivial exhaustive search. Our
main subgoal is to obtain an upper bound on the expected exponent of the running time of
a randomized algorithm to check satisfiability. We show several lemmas about the bounds
on the number of restrictions. We finally design a randomized algorithm contains several
subroutines: the reduction procedure from satisfiability problem for given depth two threshold
circuits to the mid-point problem and the algorithm solving an intermediate problem. We

28



obtain a deterministic algorithm by repeating this randomized algorithm constant times,
using the method called the conditional expectation method.

3.4 An Overview of the Entire Algorithm in Lemma

3.8

3.4.1 Partial order on bottom gates

We express structures on dependency of bottom level gates using directed graphs. We first
introduce a partial order representing the dependency of threshold gates.

Definition 3.10. Let C be a depth two threshold circuit. The binary relation ⪯ on the
set of bottom level gates of C is defined as follows: G1 ⪯ G2 ⇐⇒

def
G−1

1 (1) ⊆ G−1
2 (1) for all

G1, G2 ∈ G, where G is the set of bottom gates.

We define a problem using the partial order stated in the above.

Definition 3.11.
Name of Problem: L′

Given:⟨C,H⟩ satisfying the following conditions.

• C is an instance of k-THR-SAT with unique exception

• There is no pair of gates G1, G2 s.t. G−1
1 (1) = G−1

2 (1)

• H is a Hasse diagram of a partial ordered set of bottom level gates in C according to
the order ⪯.

Output:YES iff C is satisfiable

We will give a procedure for the problem L′ and this procedure is a critical subroutine of
the algorithm constructed in Lemma 3.8. The algorithm in Lemma 3.8 first transforms a given
instance of k-THR-SAT to an instance of the problem L′, and then solves the satisfiability
problem using some structure of Hasse diagram.

The first reduction is given by the following lemma.

Lemma 3.12. There is a reduction which reduces k-THR-SAT with unique exception to the
problem L′ defined above and the reduction runs in deterministic time O(poly(n)TZOLP [2, n]),
where TZOLP [m,n] is the time complexity of the 0-1 Linear Programming with m constraints
and n variables.

Roughly speaking, the reduction described in this lemma generates a Hasse diagram by
checking the dependency of every pair of bottom gates by solving an ILP with two constraints.
The proof of the lemma is postponed to the next section.

29



3.4.2 Restriction to the bottom gates and reduction to ILP

Intuitively, when the dependency of a circuit C is limited, the output of C is determined by
fixing the output of a small number of bottom gates. By using this property, we can build
a set S of small number of ILP instances such that C is satisfiable iff at least one instance
in S is feasible and each instance has a small number of constraints. In fact, our algorithm
solves k-THR-SAT by solving such set of ILP instances. The following lemma whose proof
is postponed states this more formally.

Definition 3.13. For a depth two threshold circuit C, the set X(C) is defined as {(y1, ..., ync)
∈ {0, 1}nc

: yi is the output of the i-th bottom gate in C, when C runs for an arbitrary input
x ∈ {0, 1}n}.

Lemma 3.14. Let C be an instance of k-THR-SAT with unique exception. There is a set
S of ILP instances with n variables satisfying the following three conditions: (1) It holds
that C−1(1) =

∪
S∈S F (S), where F (S) is the set of feasible solutions of S ∈ S, (2) the set

S contains at most |X(C)| ILP instances and (3) each instance in S has at most 2k + |I ′|
constraints, where I ′ is unique exceptional independent gate set in C.

We will use this reduction in the main algorithm which will be described in another
section.

3.4.3 The entire overview

The construction of an algorithm in Lemma 3.8 is as follows:
1. Call the reduction procedure in Lemma 3.12 to transform the given instance of k-THR-
SAT with unique exception to an instance of the problem L′.
2. Find the exceptional unique independent set I ′.
3. Run the main algorithm on the input ⟨C,H⟩ and I ′.

We note that we can find I ′ in step 2. as follows. First, let a positive integer l be 1,
and repeat increasing l by one until there uniquely exist an independent set of size l. Next,
search the unique maximal independent set of size greater than l. Note that the repeating
process stops in at most k steps. In step 3, restriction methods to both input variables and
outputs of bottom gates and the reduction to ILP in Lemma 3.14 are used.

3.5 Partial Order in Circuits and Reduction Lemma

At first we give the following lemma on a binary relation on the set of bottom gates of a
depth two threshold circuit mentioned in the previous section.

Lemma 3.15. Assume that C is an instance of k-THR-SAT with unique exception, and
that there is no two gates G1, G2 in C such that G−1

1 (1) = G−1
2 (1). Then, there exists some

partial ordered set (G,⪯), where G is a set of bottom gates of C such that the maximum size
of an independent set of Hasse diagram H of (G,⪯) is k.

30



Proof First, we prove the existence of a partial ordered set. For any instance of k-
THR-SAT with unique exception the following holds. If there is no two equivalent gates at
the bottom level in the instance, then there is a partial ordered set (G,⪯) such that for all
G1, G2 ∈ G, G1 ⪯ G2 ⇐⇒ G−1

1 (1) ⊆ G−1
2 (1), where G is a set of bottom gates. To prove

this statement we show that the relation ⪯ is reflective, asymmetric and transitive.
It is clear that G−1

1 (1) ⊆ G−1
1 (1) and that G−1

1 (1) ⊆ G−1
2 (1) ∧ G−1

2 (1) ⊆ G−1
3 (1) ⇒

G−1
1 (1) ⊆ G−1

3 (1) for all gates G1, G2, G3. Thus the relation is reflective and transitive.
Finally, G−1

i (1) ⊆ G−1
j (1) ∧ G−1

j (1) ⊆ G−1
i (1) ⇒ i = j, because there is no pair of two

gates which is equivalent. Thus the relation is asymmetric.
Next we argue the maximum size of independent sets in a Hasse diagram. Let H = (V,E)

be a Hasse diagram of C stated above. It holds that G−1
i (1) ̸= G−1

j (1) if and only if either (1)

G−1
i (1) ⊊ G−1

j (1) or (2) G−1
j (1) ⊊ G−1

i (1) or (3) G−1
i (1)\G−1

j (1) ̸= ∅∧G−1
j (1)\G−1

i (1) ̸= ∅.
Thus, for any bottom gates G,G′, the following three conditions are equivalent.
(i) ¬(G ⪯ G′) ∧ ¬(G′ ⪯ G).
(ii) (G,G′) /∈ E ∧ (G′, G) /∈ E.
(iii) G and G′ do not have dependency.
Hence, an arbitrary maximum independent set in H corresponds to some maximum inde-
pendent gate set in C by the definition of ⪯.

In the rest of this section, we give the proof of the lemma describing the reduction from
k-THR-SAT to the problem L′.

Lemma 3.12 (restated) There is a reduction which reduces k-THR-SAT with unique
exception to the problem L′ defined above and the reduction runs in deterministic time
O(poly(n)TZOLP [2, n]), where TZOLP [m,n] is the time complexity of the 0-1 Linear Program-
ming with m constraints and n variables.

Proof Let P (x), Q(x) be constraints depending on x = (x1, ..., xn) ∈ {0, 1}n. Note
that ∀x[P (x) ⇒ Q(x)] is equivalent to ∀x[¬P (x) ∨ Q(x)] and is equivalent to ¬[∃x[P (x) ∧
¬Q(x)]] and that ∃x[P (x) ∧ ¬Q(x)] is the YES-condition of the Integer Linear Program-
ming. Thus we have the following procedure for the reduction. In this procedure, the
0-1 Linear Programming with two constraints and n variables is solved in step 4. and the
other steps are computed in polynomial time. Thus, the running time of this procedure is
O(poly(n)TZOLP [2, n]).
The reduction procedure

1. Let V = {G1, ..., Gnc} be a set of bottom gates and let D be ∅.

2. For all pairs of bottom level gates G,G′ do the following steps 3.,4.,5.

3. Let the labels of G and G′ be
∑
i∈S

aixi ≥ b and
∑
i∈S′

a′ixi ≥ b′ respectively, where

S, S ′ are the sets of indices of variables connecting to G,G′ respectively.

31



4. Solve the following instances of Integer 0-1 Linear Programming with two con-
straints, that is,

(1)
∑
i∈S

aixi ≥ b and (2)
∑
i∈S′

a′ixi < b′.

5. If there does not exist (x1, ..., xn) ∈ {0, 1}n satisfying the constraints (1) and (2)
then D := D ∪ {(G,G′)}(because of G−1(1) ⊆ G′−1(1))

6. For all G,G′ such that (G,G′) ∈ D ∧ (G′, G) ∈ D do the following steps 7., 8.

7. for each bottom gate U let yU be the output wire of U . The label wGyG +
wG′yG′ +

∑
U ̸=G,G′

wUyU ≥ tTOP in the TOP gate is replaced with (wG + wG′)yG +∑
U ̸=G,G′

wUyU ≥ tTOP .

8. G′ and all input and output wires of G′ are removed from C. Replace V with the
set of bottom gates in C. For any bottom gate U , if (U,G′) ∈ D ∨ (G′, U) ∈ D
then D := D \ {(U,G′), (G′, U)}.

9. Output the result ⟨C,H = (V,D)⟩.

3.6 Main Algorithm

At first we recap a sketch of the outline of the algorithm in [25]. Remind three reductions for
given depth two sparse threshold circuits: the first one transforms an arbitrary ILP instance
with small number of inequalities to an instance of vector domination problem, and the
second one transforms any depth two circuit with small number of gates to an union of ILP
instances with small number of inequalities, and the third one transforms given instance to
an union of depth two circuits with small number of gates.

We show several lemmas about the bounds of the number of restrictions. We first define
several terms being necessary for formal statements of these lemmas.

Definition 3.16. A directed graph H = (V,E) is an Induced Hasse Diagram (abbreviated
I.H.D) of a circuit C which is an instance of k-THR-SAT with unique exception, if H is the
output ⟨C,H⟩ of the procedure in the proof of Lemma 3.12.

Definition 3.17.
(1) Let V be a set of gates and let H = (V,E) be I.H.D of V . A coloring χ : V 7→ {0, 1} is
called a validly ordered restriction, if ∀(u, v) ∈ E, χ(u) ≤ χ(v).
(2) Let χ be a validly ordered restriction for an arbitrary I.H.D H = (V,E).
We define the min-set of H for χ as the set {umin ∈ V ∩χ−1(1) : ∀v ∈ V \{umin}[v ⪯ umin ⇒
χ(v) = 0]}.
We define the max-set of H for χ as the set {umax ∈ V ∩ χ−1(0) : ∀v ∈ V \ {umax}[umax ⪯
v ⇒ χ(v) = 1]}.

32



Definition 3.18. Let H be an I.H.D and χ be a validly ordered restriction of H. Let I1, I0 be
independent sets in H. The pair of independent sets (I1, I0) satisfies the covering condition
for H, if the following condition holds.
Condition: For any v ∈ V \ (I1 ∪ I0) in H, either ∃u1 ∈ I1, u1 ⪯ v or ∃u0 ∈ I0, v ⪯ u0

according to the order ⪯ of H.

We count the number of validly ordered restrictions, and a lemma in this section is about
an upper bound on the number of these restrictions. Bottom gates in min-set or max-set
are critical to design our algorithm for satisfiability. Satisfiability of a circuit depends on
information about bottom gates which are in min-set or max-set of the circuit, when output
of bottom gates are fixed. In other words, we can decide satisfiability, even if we consider
only some local information about bottom gates of a circuit and ignore the other gates. The
covering condition is a condition stating the concept of min-set and max-set from another
viewpoint, and is used in our algorithm in this section.

Definition 3.19. Let X ′
H be a set of validly ordered restrictions of H. We define IH as a

set of pairs of independent sets in H which satisfies the covering condition, that is, IH :=
{(I1, I0) ⊆ V × V : I1, I0 are independent sets satisfying the covering condition in H}.

Definition 3.20. Let c be a constant. For a depth two threshold circuit C, the set X(C)
is defined as {(y1, ..., ync) ∈ {0, 1}nc

: yi is the output of the i-th bottom gate in C, when
C runs for an arbitrary input x ∈ {0, 1}n}.

The following lemma is a main lemma of this section, and rough meaning of this lemma
is that we can construct a satisfiability algorithm using exhaustive search for all independent
gate sets.

Lemma 3.21. For an arbitrary instance ⟨C,H⟩ ∈ L′, let I ′ be the unique maximal indepen-
dent set of size greater than k. Then, |X(C)| ≤ 2|I′|k2nO(k).

We first show the following lemma to prove Lemma 3.21, which reduces counting the
number of restrictions for a circuit to counting the number of structures in a graph.

Lemma 3.22. There is a bijection µH : X ′
H ∋ χ 7→ (I1, I0) ∈ IH such that if µH(χ) = (I1, I0)

then I1 is the min-set of H for χ and I0 is the max-set of H for χ.

First, we show two claims. The lemma easily follows from these claims.

Claim 3.23. Let H be an I.H.D and χ be a validly ordered restriction of H. Let I1, I0 be
min-set and max-set of H for χ respectively. Then (I1, I0) is a pair of independent sets such
that the covering condition holds for H.

Proof. We give a proof by contradiction.

33



For any fixed χ which assign 0 or 1 to vertices of H and for min-set I0 and max-set I1 of
H for χ, adding all edges which is in I0 × I1 preserves validity of χ. In other words, after
adding all edges which is in I0 × I1, χ is still a valid ordered restriction. Let H ′ = (V,E ′) be
this I.H.D which is obtained by adding edges to H. Thus I0, I1 are maximal independent sets
in H ′.

Assume that I0, I1 do not satisfy the covering condition. Then either case1 or case2
holds for H ′.
case1. ∃u1 ∈ I1, u1 ⪯ v and ∃u0 ∈ I0, v ⪯ u0, for some v ∈ V \ (I1 ∪ I0) in H ′.

In this case, u1 ⪯ u0 contradicts to the assumption that u1 ∈ I1, u0 ∈ I0.
case2. ∀u1 ∈ I1,¬(u1 ⪯ v) and ∀u0 ∈ I0,¬(v ⪯ u0), for some v ∈ V \ (I1 ∪ I0) in H ′.

In this case, since I1, I0 are maximal independent sets, for all v′ ∈ V \ (I1 ∪ I0) it holds
that ∀u1 ∈ I1,¬(u1 ⪯ v′) ⇒ v′ ⪯ u1 and ∀u0 ∈ I0,¬(v′ ⪯ u0) ⇒ u0 ⪯ v′. Thus we obtain
that there exists a vertex v ∈ V \(I0∪I1) such that u0 ⪯ v ⪯ u1, contradicting to u1 ∈ I1 and
u0 ∈ I0. In other words, for any c ∈ {0, 1} we obtain that χ(v) = c contradicts to uc ∈ Ic.

Claim 3.24. For any (I1, I0) which is a pair of independent sets in H satisfying the covering
condition, there uniquely exists validly ordered restriction χ : V → {0, 1} such that I1, I0 are
min-set and max-set of H for χ, respectively.

Proof. For any validly ordered restriction χ it holds that I1 is max-set implies χ(I1) = {1},
and I0 is min-set implies χ(I0) = {0}. First, we consider vertices in I0∪I1. Since I1, I0 are min-
set and max-set of H for χ respectively, assign zero-one value to vertices in I1 ∪ I0 such that
χ(I1) = {1} and χ(I0) = {0}. Finally we consider the other vertices. For any v ∈ V \(I1∪I0),
the value χ(v) is uniquely determined by the definition of covering condition.
Proof of Lemma 3.22. For any χ ∈ X ′

H , there uniquely exists (I1, I0) ⊆ V × V such that
I1 is the min-set of H for χ and I0 is the max-set of H for χ. By Claim 3.23, there is a map
µH : X ′

H → IH , µH(χ) = (I0, I1) such that if µH(χ) = (I1, I0) then I1 is the min-set of H for
χ and I0 is the max-set of H for χ. By Claim 3.24, this map µH is a bijective map.
Proof of Lemma 3.21. Fix an assignment χ|I′ : I ′ → {0, 1}. Let H = (V,E).

We assign 1 to any vertex u ∈ V such that there is some vertex v ∈ χ|−1
I′ (1) ⊆ I ′ such

that v ⪯ u. We assign 0 to any vertex u ∈ V such that there is some vertex v ∈ χ|−1
I′ (0) ⊆ I ′

such that u ⪯ v.
Remove all vertices whose assignment is fixed and all edges connecting to them. Thus

we obtain a subgraph H ′ of H such that size of any independent vertex set in H ′ is at most
k because we assume the existence of unique exception. The output pattern set X(C) is a
subset of validly ordered restrictions of H.

By Lemma 3.22 there is a bijective map µH′ : X ′
H′ → IH′ . Thus for any H ′ the cardinality

|X ′
H′ | is bounded above by |IH′|. Since |X(C)| ≤ 2|I′| maxH′ |X ′

H′| and |IH′ | ≤
(

k∑
i=1

(
nc

i

))2

≤
(

k∑
i=1

nci

)2

≤
(
knck

)2
= k2nO(k), we obtain the desired bound : |X(C)| ≤ 2|I′|k2nO(k).

The following lemma is similar to a part of work in [25], which gives a reduction from an
instance of circuit satisfiability to a union of ILPs.

34



Lemma 3.14(restated) Let C be an instance of k-THR-SAT with unique exception. There
is a set S of ILP instances with n variables satisfying the following three conditions: (1) It
holds that C−1(1) =

∪
S∈S F (S), where F (S) is the set of feasible solutions of S ∈ S, (2) the

set S contains at most |X(C)| ILP instances and (3) each instance in S has at most 2k+ |I ′|
constraints, where I ′ is unique exceptional independent gate set in C.

Proof. For any circuit C and each element in X(C), we obtain the following transformation
from a circuit to an ILP instance, according to the following three kinds of gates.
(i) For gates whose output is fixed to 1 with weights w1, ..., wn and threshold t, we have
n∑

i=1

wixi ≥ t.

(ii) For gates whose output gate is fixed to 0 we require
n∑

i=1

wixi < t, which is equivalent to

n∑
i=1

−wixi ≥ −t + miniwi.

(iii) For the top gate, let v1, ..., vn be the weights of the direct wires, and s be the threshold
of the top level gate, and wFIX be the sum of the weights of the gates whose output is fixed

to 1. Then we require
n∑

i=1

vixi ≥ s− wFIX .

Thus, the set of these instances satisfies the conditions (1) and (2). Moreover, the
following observation and the definition of min-set and max-set implies that the dependency
of gates in C gives at most 2k + |I ′| constraints, and yields the existence of a set S of
ILP instances with n variables satisfying the condition (3), because it holds that for each
restriction to gates in I ′, the circuit C ′ which is obtained by removing all gates in I ′ and all
wires connecting to them from C has min-set and max-set of size at most k.

Observation 3.25. For boolean functions P1(x), ..., Pm(x) : {0, 1}n → {0, 1}, the following
statements hold.
(1) If ∀x ∈ {0, 1}n, P1(x) = 1 ⇒ P2(x) = 1 ⇒ · · · ⇒ Pm(x) = 1 then, it holds that
∀x ∈ {0, 1}n, P1(x) = 1 ∧ P2(x) = 1 ∧ · · · ∧ Pm(x) = 1 ⇐⇒ ∀x ∈ {0, 1}n, P1(x) = 1.
(2) If ∀x ∈ {0, 1}n, Pm(x) = 0 ⇒ Pm−1(x) = 0 ⇒ · · · ⇒ P1(x) = 0 then, it holds that
∀x ∈ {0, 1}n, Pm(x) = 0 ∧ Pm−1(x) = 0 ∧ · · · ∧ P1(x) = 0 ⇐⇒ ∀x ∈ {0, 1}n, Pm(x) = 0.

When for a random subset of input variables these variables are fixed, we consider the
following two cases for an arbitrary bottom gate. The gate has at most one unfixed input
wire in one case, and the gate has at least two unfixed input wires in the other case. In
the former case, such gates are not harmful for our argument about the reduction, because
we can eliminate these gates and decrease the number of bottom gates. In the latter case,
however, we cannot use such straightforward argument. We define more precisely such gates
to which we cannot directly apply gate elimination argument.

Definition 3.26. BAD gate
Let U be a subset of variables. BAD gate on U is a bottom level gate that depends on at
least two variables in U .

35



In other words, if a gate is not BAD then we can eliminate it or replace it with a direct
wire.

Lemma 3.27 ( [25]). Consider a depth two threshold circuit with n variables and dn wires.
Let δ > 0 be an arbitrary positive real number and let Ũ be a random set of variables
such that each variable is not in Ũ with some probability p independently. There exists a
p = 1/dO(d2) such that the expected number of BAD gates on Ũ is at most 3δpn, where d is
a sparse constant.

The following corollary is easily obtained from this lemma.

Corollary 3.28 ( [25]). Consider a depth two threshold circuit C with n variables, which
is a part of ⟨C,H⟩ ∈ L′. Let V AR[I ′] be the set of variables connecting to the gates
corresponding to I ′, which is unique exceptional independent gate set in C. Let δ > 0 be an
arbitrary positive real number and let Ũ be a random set of variables such that each variable
is not in Ũ with some probability p independently. Let I ′

Ũ
be a subset of I ′ which are also

BAD gates on Ũ . There exists a p = 1/dO(d2) such that E[|I ′
Ũ
|] ≤ 3δp|V AR[I ′]|, where d is a

sparse constant.

Let C|ρ[Ũ ] be a circuit obtained by the operation for a circuit C that all variables in Ũ

is fixed to an arbitrary assignment ρ[Ũ ] : Ũ → {0, 1} and any gate, which is not BAD, is
eliminated from C or replaced with direct wires in C.

Corollary 3.29. Consider a depth two threshold circuit with n variables, which is a part of
⟨C,H⟩ ∈ L′. Let δ > 0 be an arbitrary positive real number and let Ũ be a random set of
variables such that each variable is not in Ũ with some probability p = 1/dO(d2), where d is a
sparse constant. Then, it holds that E[log |X(C|ρ[Ũ ])|] ≤ 3δpn+O(k log2 n+ log2 k), for any

assignment ρ[Ũ ] : Ũ → {0, 1}.

Proof. By Lemma 3.27, we obtain that log |X(C|ρ[Ũ ])| ≤ |IŨ ′|+O(k log2 n+ log2 k). Hence
Corrary 3.28 and linearity of expectation give us the desired bound.

Finally we consider an algorithm to solve L′ under given the unique exception of each
instance. Let V AR[I ′] be a set of variables connecting to the gates corresponding to I ′.

We give a description of the main algorithm as follows, using for all above ingredients.
Note that all random bits are created by tossing a coin independently in the following algo-
rithm.

Description of the main algorithm
Given: An instance ⟨C,H⟩, and the exceptional unique independent set I ′ in H.
Output:YES if and only if ⟨C,H⟩ is a YES instance of L′.

1. Choose a random subset Ũ ⊂ V AR[I ′] such that each variable is not in Ũ with proba-
bility p independently.

36



2. For each boolean assignment to Ũ , fix the value of input variables in Ũ , and do the
following steps 3. and 4.

3. Eliminate any gate in I ′ whose output is totally fixed. Replace any gate whose
output value is the value of some input variable x with direct wire connecting to
x. Let VD be the set of variable indices directly connecting to the top gate. Let
Di(i ∈ VD) be the sum of weights at the top gate such that these weights are
coefficients of outputs of bottom gates replaced with direct wires connecting to
the i-th variable.

4. For each restriction µ to outputs of remaining bottom gates in I ′ do the following
steps 5., 6., and 7.

5. Assign 0 to the output of an arbitrary bottom gate G, if there is some G′ ∈ I ′

such that the output of G′ is fixed to 0 and G ⪯ G′. Assign 1 to the output
of an arbitrary bottom gate G, if there is some G′ ∈ I ′ such that the output
of G′ is fixed to 1 and G′ ⪯ G.

6. Remove all gates whose outputs are totally fixed from the given circuit which
is a part of given instance of L′. Let H ′ be an I.H.D. which is obtained from
H by this removing operation.

7. Find k as follows. Let l be 1. Repeat increasing l by one until there uniquely
exist an independent set of size l. Let k be l. For each pair of gate sets (I0, I1)
in H ′ such that |I0|, |I1| ≤ k, if (I0, I1) is a pair of independent gate sets in H ′

and satisfies the covering condition, then solve ILP for an instance which is
obtained from the top gate and bottom gates in I0 ∪ I1 ∪ I ′ and is constituted
by the following three kinds of inequalities (i), (ii), and (iii). If satisfying 0-1
vector is found then HALT and return ”YES”.

(i) For bottom gates whose output is fixed to 1 with weights w1, ..., wn and

threshold t, the corresponding inequality is
n∑

i=1

wixi ≥ t.

(ii) For bottom gates whose output gate is fixed to 0, the corresponding in-

equality is
n∑

i=1

−wixi ≥ −t + mini wi.

(iii) For the top gate, let v1, ..., vn be the weights of the direct wires, and
s be the threshold of the top level gate, and wFIX be the sum of the
weights of the gates whose output is fixed to 1. Then for the top gate,

the corresponding inequality is
n∑

i=1

vixi ≥ s− wFIX .

8. HALT and return ”NO”

Note that three kinds of inequalities in step 7. appear in the proof of Lemma 3.14 and that
the iterating increment of l in this step stops in at most k steps. Note also that Lemma 3.21
which gives an upper bound on the number of restrictions in steps 2. and 4. is a key to
obtain a constant saving in the exponent in the running time of our algorithm.

37



3.7 Analysis of the Expected Savings

In this section our goal is the following lemma about the expected savings.

Lemma 3.8(restated) There is a randomized satisfiability algorithm for k-THR-SAT with
unique exception in which all random bits are created by independently tossing a coin, and
the algorithm runs in time O(2(1−s)n),where E[s] = 1/dO(d2), and k ≤ nγ for an arbitrary real
constant 0 < γ < 1 and d is a sparse constant of a given circuit.

We remind the construction of the algorithm in Lemma 3.8 as follows.
1. Call the reduction procedure in Lemma 3.12 to transform the given instance of k-THR-
SAT with unique exception to an instance of the problem L′.
2. Find the exceptional unique independent set I ′.
3. Run the main algorithm on the input ⟨C,H⟩ and I ′.

Let TŨ(n) be the running time of the Main Algorithm. To consider savings of this algo-
rithm, we only analyze the exponent log TŨ(n) of the running time of the Main Algorithm,
because the time complexity of entire procedure is at most 3 max{2εn, 2o(n), TŨ(n)} for some
positive constant ε < 1. Note that three quantities 2εn, 2o(n), and TŨ(n) are respectively
corresponding to three steps 1., 2., and 3. in the above algorithm and that by summing
up these three terms we obtain the bound. We also note that we can find I ′ in step 2. by
the exhaustive search for all i (1 ≤ i ≤ k + 1) and for all i-sets of the vertex set of H and
searching maximal independent set of size greater than k. We use the following result.

Corollary 3.30 ([25]). Consider a 0-1 Integer Linear Program on n variables and m(n)
inequalities. Let λ be m(n)/n. Then we can find a solution in time

2n/2

((
(1/2 + λ)n

λn

)
poly(n)

)
≤ 2(1/2+λ(log(e)+log(1+1/2λ)))n · poly(n).

Note that this algorithm is faster than 2n for λ < 0.136 and has some positive constant
saving C ′ such that running time is 2(1−C′)n.

Firstly we prove Lemma 3.8 assuming the following Claim.

Claim 3.31. There exists a constant N0 for any δ > 0, E[log TZOLP [2k + |I ′
Ũ
|, |R|]] ≤

0.5pn + 3N0δpn + o(n), where R is a set of remaining variables in the main algorithm.

Proof of Lemma 3.8 Let R be a set of remaining variables in the main algorithm. The
expectation of the exponent of the time complexity is bounded above as follows.

E[log TŨ ] ≤ E[log(|{0, 1}|Ũ || · |X(Cρ[Ũ ])| ·TZOLP [2k+ |I ′
Ũ
|, |R|] ·poly(|R|))], where |{0, 1}|Ũ ||

is the number of assignments for brute force restriction to a random subset of variables Ũ .

38



We mention how each operation in the main algorithm contributes to the above expectation.
We remind that there are two loops in the description of the main algorithm: the inner loop
and the outer loop. Note that the term |X(Cρ[Ũ ])| corresponds to restricting procedure to
bottom gates in the steps 4., 5., and 6. and that TZOLP [2k + |I ′

Ũ
|, |R|] corresponds to solving

ILP problem in the step 7., where |I ′
Ũ
| is the size of the unique exception when a random

subset of input variables is chosen and input variables in the subset are fixed. Thus by all
these observations we obtain the above bound.

By the linearity of expectation, E[log |{0, 1}|Ũ ||]+log |X(Cρ[Ũ ])|+log TZOLP [2k+|I ′
Ũ
|, |R|]] =

E[log |{0, 1}|Ũ ||] + E[log |X(Cρ[Ũ ])|] + E[log TZOLP [2k + |I ′
Ũ
|, |R|]].

We show upper bounds on the above three terms. Firstly, note that E[|Ũ |] = (1−p)n. By
Corrary 3.29, we obtain the following upper bound. E[log |X(C|ρ[Ũ ])|] ≤ 3δpn+O(k log2 n+
log2 k). By Claim 3.31, we obtain the following bound. E[TZOLP [2k + |I ′

Ũ
|, |R|])] ≤ 0.5pn +

3N0δpn + o(n).

By summing up these three bounds, we obtain E[log |{0, 1}|Ũ ||] +E[log |X(Cρ[Ũ ])|] +E[log TZOLP [2k+
|I ′

Ũ
|, |R|]] ≤ (1 − p)n + 0.5pn + 3(N0 + 1)δpn + o(n). There is some δ, which is a suffi-

cient small constant such that for some positive constant C ′′ we obtain E[log |X(Cρ[Ũ ])|] +
E[log TZOLP [2k+ |I ′

Ũ
|, |R|]] ≤ (1− (C ′′−o(1)))pn. Therefore, we obtain a bound E[log TŨ ] ≤

(1 − p)n + (1 − (C ′′ − o(1)))pn + O(log n) = (1 − (C ′′ − o(1))p)n. The lemma follows from
p = 1/dO(d2).

Finally, we give a proof of Claim 3.31 and completes the entire proof of Lemma 3.8.
Proof of Claim 3.31 We will use Corrary 3.30 to obtain the desired upper bound. Note
that |R| is the number of remaining variables and that |I ′

Ũ
|+2k is the number of constraints.

Recall that λ in Corrary 3.30 is defined as the number of constraints divided by the number

of variables. Thus λ =
|I′

Ũ
|+2k

|R| .

Firstly, we consider the following two cases; (i)λ ≥ 1/2, and (ii) λ < 1/2.
Let’s consider the case (i) λ ≥ 1/2. In this case, 1 ≥ 1/2λ and then log(1 + 1/2λ) ≤ 1.

By Corrary 3.30, log TZOLP [|I ′
Ũ
|+2k, |R|] is 0.5|R|+λ(log(e)+1)|R| ≤ 0.5|R|+ |I′

Ũ
|+2k

|R| (log(e)+

1)|R|. Since Corrary 3.28 implies E[|I ′
Ũ
|] ≤ 3δpn, it holds that

E[log TZOLP [|I ′
Ũ
| + 2k, |R|]]

≤ 0.5E[|R|] + (log(e) + 1)E[|I ′
Ũ
|] + o(n)

≤ 0.5pn + (log(e) + 1)3δpn + o(n).

Let’s consider the case (ii) λ < 1/2. In this case it holds that |I ′
Ũ
| ≤ 1

2
|R| − 2k and

log(1 + 1/2λ) ≤ log(1/λ).
Therefore by Corrary 3.30,

log TZOLP [|I ′
Ũ
| + 2k, |R|]

≤ 0.5|R| + λ(log(e) + log(1/λ))|R|

≤ 0.5|R| +
|I ′

Ũ
| + 2k

|R|
(log(e) − log(|I ′

Ũ
| + 2k) + log |R|)|R|

39



Note that − log λ = − log
|I′

Ũ
|+2k

|R| = − log(|I ′
Ũ
| + 2k) + log |R|.

In this case, we consider the following two subcases ; (ii-a) for all real constant β > 0,
|I ′

Ũ
|+2k ≤ β|R|, and (ii-b) there exists some real constant β0 (0 < β0 <

1
2
), |I ′

Ũ
|+2k > β0|R|.

(ii-a) for all real constant β (0 < β < 1
2
), |I ′

Ũ
| + 2k ≤ β|R|.

Then, log TZOLP [|I ′
Ũ
| + 2k, |R|] ≤ log TZOLP [β|R|, |R|]. Thus, we have

E[log TZOLP [|I ′
Ũ
| + 2k, |R|]]

≤ E[log TZOLP [β|R|, |R|]]
≤ (1/2 + β(log(e) + log(1 + 1/2β)))E[|R|]
= (0.5 + β(log(e) + log(1 + 1/2β)))pn.

(ii-b) there exists some real constant β0 (0 < β0 <
1
2
), |I ′

Ũ
| + 2k > β0|R|.

In this case, β0|R| < |I ′
Ũ
|+ 2k < 1

2
|R|. Thus, there exists some real constant α (β0 < α <

1
2
) such that |I ′

Ũ
| + 2k = α|R|.

Hence 0.5|R|+ |I′
Ũ
|+2k

|R| (log(e)− log(|I ′
Ũ
|+ 2k) + log |R|)|R| = 0.5|R|+ (|I ′

Ũ
|+ 2k)(log(e)−

log(α|R|) + log |R|) = 0.5|R| + (|I ′
Ũ
| + 2k)(log(e) + log(α−1)). Remind that |I ′

Ũ
| ≤ 1

2
|R| − 2k

and log(1 + 1/2λ) ≤ log(1/λ).
Therefore,

E[log TZOLP [|I ′
Ũ
| + 2k, |R|]]

= 0.5E[|R|] + (log(e) + log(α−1))E[|I ′
Ũ
|] + 2k(log(e) + log(α−1))

≤ 0.5pn + (log(e) + log(α−1))(3δp)n + 2k(log(e) + log(α−1))

In the case (ii-a), for any δ > 0, let β be a constant such that β(log(e)+log(1+1/2β)) ≤ 3δ.
Thus, in the case (ii-a), TZOLP [|I ′

Ũ
| + 2k, |R|]] ≤ 0.5pn + 3δpn + o(n).

Let N0 be max{log(e)+1, log(e)+log(α−1)}. Note that N0 does not depend on δ because
α does not depend on δ. Therefore, there exists some constant N0 for any δ > 0 it holds that
E[log TZOLP [|I ′

Ũ
| + 2k, |R|]] ≤ 0.5pn + 3N0δpn + o(n).

40



Chapter 4

A Nonuniform Restricted Circuit
Class with Threshold Gates Having
Strong Size Lower Bounds

The structure of this chapter is as follows. In Section 4.1, we define several notions being
necessary in other sections. In Section 4.2, we mention prior works related with this thesis.
We formally state our work in Section 4.2, and we give the proof of our results in sections
4.3 and 4.4. We finally give a result on ACC ◦ THR ◦ (k-THR)d lower bounds against NEXP,
extending results in [46].

4.1 Preliminaries

In this section, we give several definitions for stating our work.

Definition 4.1. Let x1, ..., xn be boolean variables. Let w1, ..., wn, t be real numbers.
(1) When all weights are one and the threshold value is the half of fan-in wires, the threshold
gate is called majority gate.
(2) We define a symmetric gate SYMS(x1, ..., xn) as a gate computing a boolean function
SYMS(x1, ..., xn) = 1 ⇐⇒ Σn

i=1xi ∈ S for a subset S ⊆ {0, 1, ..., n}. We call S the
characteristic set of the symmetric gate SYMS.

Remark of Definition 4.1 In this thesis, we suppose that the absolute value of any weight
in threshold gates is at most 2poly(n) and any weight are coded by a binary string of length
poly(n). We will use the term source (sink, resp.) to represent an input variable or a gate
which is connected to the input terminal (the output terminal, resp.) of a wire.

We remind a notion of “dependency” of gates which was also introduced in Chapter 3.

Definition 4.2. Let C be an arbitrary circuit. For a gate G in C, let G(x) ∈ {0, 1} denote
the output value of G when we feed an input string x to the circuit C.

41



(1) Two gates G1, G2 in C have dependency, if one of two preimages G−1
1 (1) and G−1

2 (1) is a
subset of the other one. In other words, ∀x ∈ {0, 1}n[G1(x) ≤ G2(x)]∨∀x ∈ {0, 1}n[G2(x) ≤
G1(x)].
(2) A subset of gates in C is called independent gate set, if any two gates in the set do not
have dependency. A circuit may contain several independent gate sets.

Definition 4.3. Let Li be a type of gates for each i = 1, 2, ..., d. Let C be a circuit, and let
V0 and V be respectively the set of input variables of C and the set of gates of C.
(1) A circuit C is a Ld ◦ Ld−1 ◦ · · · ◦ L1 circuit, if there exists some partition V1, ..., Vd of the
set V such that (i) any wire from G ∈ Vi to G′ ∈ Vj satisfies that i < j and (ii) a type of
all gates in Vi is Li for each i. We call this partition V1, ..., Vd a layering partition of C. We
also call each Vi the i-th layer.
(2) We assume that any gate G of a Ld ◦ · · · ◦ L1 circuit has an integer label i such that G
is in the i-th layer, where 1 ≤ i ≤ d. We call such labels layering labels.

Remark of Definition 4.3 Note that there is no wire connecting two gates belonging to the
same layer. For example, any AC0 circuit C is in Ld ◦ Ld−1 ◦ · · · ◦ L1 for some constant
d not depending on the number of input variables, where for each i (1 ≤ i ≤ d) Li ∈
{AND,OR,NOT}.

Definition 4.4. Let C be a Ld ◦ Ld−1 ◦ · · · ◦ L1 circuit. Let V1, ..., Vd be a layering partition
of C.
(1) A set Vi is called the i-th k-Li layer in C, if the maximum size of an independent gate
set I ⊆ Vi in C is at most k.
(2) We call C a k-Ld ◦ k-Ld−1 ◦ · · · ◦ k-L1 circuit, if there exists some layering partition
V1, ..., Vd such that each Vi is the i-th k-Li layer in C. Let (L)d denote an abbreviation of
Ld ◦ Ld−1 ◦ · · · ◦ L1, if Li is the same type L for all i.
(3) We define Ck[d] as a class of SYM ◦ (k-THR)d circuits.

Remark of Definition 4.4 (1) We usually use the term “circuit” as single output circuits, and
we particularly mention the use of multi-output circuits. When we consider a class of single
output circuits, we write Cd ◦ k-Cd−1 ◦ · · · ◦ k-C1 instead of k-Cd ◦ k-Cd−1 ◦ · · · ◦ k-C1. (2) In
this thesis, we may use the words a k-THR layer, a layer of k-THR gates or just a layer of
threshold gates to mention one of the above sets V1, ..., Vd.

We assume that for an arbitrary Ck[d] circuit C, each THR gate G in C has an integer
label i(1 ≤ i ≤ d) called layering label such that G has the label i if and only if G is in the
i-th k-THR layer in C from the bottom level.

In the area of circuit complexity, we sometimes meet the term layered circuit that there is
a partition P1, ..., Pd of gate set to d layers such that all wires are put between adjacent gate
sets Pi and Pi+1 from the bottom level P1 to the top level Pd (e.g. [30]). Any circuit C in a
circuit class defined as an accumulated layers of particular gates can have equivalent layered
circuit in the same class, because we can replace wires, which are not between two adjacent
gate sets, with dummy gates. However, executing this replacement for our setting may broke
the condition about the size of maximum independent gate sets. Thus, in our setting, the

42



term layer in a circuit is just corresponding to an element of partition of the gate set of the
circuit. In this thesis, we never use the term layer as any meaning relating with the layered
circuit.

Let At be an A gate with at most t fan-in wires, where A is a gate type. We will mainly
use this notion in sections 4.2 and 4.3 with an explanation of results in [2, 6].

4.2 Prior Work and Our Results

In this section, we firstly review the proof of super quasi-polynomial lower bounds for ACC ◦
THR by Williams [46] since it is closely related to our work in Subsection 4.2.1. In Subsection
4.2.2, we define a complexity class to separate from NEXP and give a formal statement of our
result. In Subsection 4.2.3, we give an intuitive explanation about our proof strategy and
formally state notions to understand our proof methods.

4.2.1 Prior work

In [46], the following property of circuit classes plays an important role.

Definition 4.5. Let C be a circuit class. The class C is weakly closed under AND, if there
is a polynomial time procedure such that for given the AND of two C circuits the procedure
produces an equivalent C circuit.

Remark of Definition 4.5 Note that the time complexity of a procedure in the above definition
is a function in the size of a code of two circuits.

We state a meta theorem in [46].

Theorem 4.6 ([46]). Let C be a circuit class weakly closed under AND. Suppose for any c ≥
1, there is an ε > 0 and an algorithm for counting the satisfying assignments in time 2n−Ω(nε)

on C circuits with n inputs and nlogc n size. Then NEXP does not have quasi-polynomial size
C circuits.

Note that ACC ◦ THR clearly satisfies the closure property under AND. By this general
theorem, we can derive super quasi-polynomial ACC ◦ THR lower bounds against NEXP, if
we construct a faster counting algorithm. The following theorem achieves this.

Theorem 4.7 ([46]). For every m > 1 and d > 0, there is an ε > 0 such that counting
satisfying assignments to ACC ◦ THR circuits of size 2nε

, depth d and modulus m gates can
be solved in 2n−nε

time.

Remark 4.7. Williams actually constructed a counting algorithm for the class of circuits
ACC ◦ SYM. He showed that there is a transformation from an arbitrary threshold gate to
a constant depth circuit with single layer of symmetric gates. Using this transformation we
can transform an arbitrary ACC ◦ THR circuit to an ACC ◦ SYM circuit. Thus, Theorem 4.7
can be proved by giving a counting algorithm for ACC ◦ SYM circuits. Below we formally
state this transformation since we will also use this in the proof of our result.

43



Claim 4.8 ([46]). An arbitrary THR gate G can be replaced with AC0 ◦MAJ circuit C such
that the size of C is at most polynomial in the input size of G. Moreover, time complexity
for the replacement is at most polynomial time.

We give a brief overview about a proof of Theorem 4.7.
For an arbitrary ACC◦SYM circuit, a SYM◦ACC◦SYM circuit is constructed by partially

fixing input variables. The reason why this construction of the SYM ◦ ACC ◦ SYM circuit
is useful to count the satisfying assignments is as follows. The top symmetric gate can be
regarded as a counter device so that counting the number of satisfying assignments to the
ACC ◦ SYM circuit can be done by evaluating outputs of the SYM ◦ ACC ◦ SYM circuit for
all inputs. Therefore, it is sufficient to show an efficient procedure evaluating output values
of given SYM ◦ ACC ◦ SYM circuit for all input strings. Any SYM ◦ ACC ◦ SYM circuit
can be converted to a SYM ◦ ANDu ◦ SYM circuit for poly-logarithmic u, because there is a
transformation from SYM◦ACC circuits to SYM◦ANDu circuits for poly-logarithmic u [2, 6].
This depth three circuit can be transformed to a depth two symmetric circuit. The following
claim is applied for this depth reduction, while it is not explicitly mentioned in [46].

Claim 4.9. ([46]) There is a procedure such that for given ANDu ◦ SYM circuit C with n
input variables and N = N(n) wires, where each input variable can have more than one wire
connecting to a same symmetric gate in C, the procedure converts the circuit C to a single
SYM gate with O(Nu) wires.

Finally, an extension of matrix rank called symmetric rank for a depth two symmetric
circuit is defined. An algorithm which evaluates outputs of depth two symmetric circuits for
all input strings is constructed by combining the notion of symmetric rank and a fast matrix
multiplication algorithm in [14]. For all above arguments a proof of Theorem 4.7 is obtained.

4.2.2 Lower Bounds against NEXP for a Circuit Class with Multi
Layers of Threshold Gates

In this subsection, we firstly define a class of circuits and a relating class of languages.

Definition 4.10. We define C̃k[d] as
∪
c>0

Cck[d].

We note that C̃k[d] is a class of circuits with n input variables, where c does not depend
on n and k.

Definition 4.11. Let A be an arbitrary circuit class. We define A-SIZE[S(n)] as the class
of languages having a family of A circuits with n inputs and of size O(S(n)).

We mention our primal goal.

Theorem 4.12. Let d = poly log n for the number of input variables n. There is some γ > 0
such that NEXP ⊈ C̃k[d]-SIZE[2poly(logn)] for k ≤ nγ.

44



Before proving lower bounds for the class C̃k[d], we see that Ck[d] is able to compute all
boolean functions even when k = 1 and d = 1. This means that NEXP ⊆ C̃1[1]-SIZE[2n] and
gives the motivation for studying the complexity of circuits C̃k[d] with small values of k and
d. Recall that SYM ◦ k-THR as well as THR ◦ k-THR is universal for k = 1.

We prove Theorem 4.12 by applying Theorem 4.6. Apparently, it is sufficient to prove
the following two lemmas.

Lemma 4.13. The class of C̃k[d] circuits with n inputs and of quasi-polynomial 2logO(1) n size
is weakly closed under AND.

Lemma 4.14. Let d be poly log n in the number of input variables n. There exist some ε > 0
and γ > 0 such that counting satisfying assignments to Ck[d] circuits of size S(n) = 2no(1)

can
be solved in 2n−Ω(nε) time for k ≤ nγ.

We will give a proof outline of the lemma about closure property in Section 4.3 We will
give a counting algorithm in Section 4.4 The algorithm in Theorem 4.7 is incorporated to
our counting algorithm as a subroutine.

4.2.3 Restrictions to Output of Threshold Gates

In this Subsection, we give several notions to understand the reason why we can construct
a faster satisfiability or counting algorithm for circuits with bounded size independent gate
sets. We will give extensions of these notions to multilayer setting in Section 4.4. Suppose
that G is a set of gates which has independent gate sets of size at most k and has no pair of
equivalent gates. Then, we can form a partial ordered set (G,⪯) by defining the order ⪯ on
G so that G1 ⪯ G2 iff G−1

1 (1) ⊆ G−1
2 (1) for G1, G2 ∈ G. It is easy to observe that the size of

an independent vertex set of the Hasse diagram of (G,⪯) is at most k. Recall that this Hasse
diagram is called an Induced Hasse Diagram (I.H.D, in short) of G. In Chapter 3, depth two
threshold circuits are considered, and I.H.D is defined for the set of bottom gates. In this
thesis, we will extend the notion of I.H.D for k-THR layer in Section 4.4.

Definition 3.17(restated)
(1) Let V be a set of gates and let H = (V,E) be I.H.D of V . A coloring χ : V 7→ {0, 1} is
called a validly ordered restriction, if ∀(u, v) ∈ E, χ(u) ≤ χ(v).
(2) Let χ be a validly ordered restriction for an arbitrary I.H.D H = (V,E).
We define the min-set of H for χ as the set {umin ∈ V ∩χ−1(1) : ∀v ∈ V \{umin}[v ⪯ umin ⇒
χ(v) = 0]}.
We define the max-set of H for χ as the set {umax ∈ V ∩ χ−1(0) : ∀v ∈ V \ {umax}[umax ⪯
v ⇒ χ(v) = 1]}.

Threshold gates in min-sets and max-sets are regarded as some critical local information
about all k-THR layers in a Ck[d] circuit. We give the following notion stating min-sets and
max-sets from a viewpoint of graph theory.

Definition 3.18(restated) Let H be an I.H.D and χ be a validly ordered restriction of H.

45



Let I1, I0 be independent sets in H. The pair of independent sets (I1, I0) satisfies the covering
condition for H, if the following condition holds.
Condition: For any v ∈ V \ (I1 ∪ I0) in H, either ∃u1 ∈ I1, u1 ⪯ v or ∃u0 ∈ I0, v ⪯ u0

according to the order ⪯ of H. We define X ′
H as the set {χ : χ is a validly ordered restriction

of H }. We also define IH as follows: IH := {(I1, I0) ⊆ V × V : I1, I0 are independent sets
satisfying the covering condition in H }.

Recall the following lemma in Chapter 3.
Lemma 3.22 There is a bijection µH : X ′

H ∋ χ 7→ (I1, I0) ∈ IH such that if µH(χ) = (I1, I0)
then I1 is the min-set of H for χ and I0 is the max-set of H for χ.

Observation 3.25(restated) For boolean functions P1(x), ..., Pm(x) : {0, 1}n → {0, 1}, the
following statements hold.
(1) If ∀x∀i[Pi(x) ≤ Pi−1(x)], then ∀x[

∧m
i=1 Pi(x) = 1 ⇐⇒ P1(x) = 1].

(2) If ∀x∀i[Pi(x) ≤ Pi−1(x)], then ∀x[
∨m

i=1 Pi(x) = 0 ⇐⇒ Pm(x) = 0].
We explain the reason why this observation and Lemma 3.22 is useful to prove Lemma 4.14.
Intuitively, the output of an arbitrary gate of a circuit is determined by fixing gates in the
union of min-set and max-set by Observation 3.25 . By Lemma 3.22, it is also determined
by fixing the output of threshold gates in I1 ∪ I0, where (I1, I0) ∈ IH . Note that for given
pair of subsets of the vertex set of H we can efficiently decide whether (I1, I0) ∈ IH holds
or not. If the maximum size of independent gate sets is small, then the number of threshold
gates we have to fix is not so many. We will give a more detailed description of the algorithm
in Subsection 4.4.2.

4.3 Closure Property under AND

In this section, we state how to prove the follwing lemma.

Lemma 4.13(restated) The class of C̃k[d] circuits with n inputs and of quasi-polynomial

2logO(1) n size is weakly closed under AND.
We assume that the input size is measured by the number of wires of circuits.

Recall the following claim which is in [46].
Claim 4.9([46]) (restated) There is a procedure such that for given ANDu ◦SYM circuit C
with n input variables and N = N(n) wires, where each input variable can have more than
one wire connecting to a same symmetric gate in C, the procedure converts the circuit C to
a single SYM gate with O(Nu) wires.

Actually, we only use the case u = 2 of the above claim. For the completeness, we describe
the proof of Claim 4.9 for this case. The extension for genaral u is straightforward (see [46]).

Proof. Let x1, ..., xn be input variables of the input circuit C, and let S1(x1, ..., xn) ∧
S2(x1, ..., xn) denote the top AND gate of C, where Si is the i-th symmetric gate. For
i = 1, 2, let fi : Z → {0, 1} be a function such that fi(

∑n
j=1 ci,jxj) = Si(x1, ..., xn) , where

46



ci,j is the number of wires from the variable xj to the symmetric gate Si.
Let B = 1 + maxi=1,2(

∑n
j=1 ci,j). Consider the following linear form.

L(x1, ..., xn) = B ·

(
n∑

j=1

c2,jxj

)
+

(
n∑

j=1

c1,jxj

)
. (4.1)

For any boolean assignment to the variables x1, ..., xn, the integer encoded by the lin-
ear form L(x1, ..., xn) is an integer encoded in O(logN) bits. Put SL = {bB + a | a ∈
f−1
1 (1) and b ∈ f−1

2 (1)}. It is easy to observe that L(x1, . . . , xn) ∈ SL iff (S1∧S2)(x1, . . . , xn) =
1. Hence, a symmetric gate of characteric set SL, which takes B2,jc2,j + c1,j wires from the
input variable xj for each j, computes S1 ∧ S2. Apparently, the total number of wires is
bounded by O(B2) = O(N2).

We directly apply the above claim to our setting as follows.

Claim 4.15. There is a procedure such that for given AND of two C̃k[d] circuits C1 and
C2, where C1 and C2 have n input variables and at most t = t(n) top fan-in and at most
N = N(n) wires, the procedure transforms the input to a SYM ◦ (THR)d circuit C3 having
at most O(t2N ) wires. Moreover, any gate in the l-th layer in C3 is in either the l-th layer
of C1 or the l-th layer of C2.

Proof. Let ti(≤ t) be the top fan-in of the circuit Ci for i = 1, 2. Let vi,1, ..., vi,ti be sources
of the top symmetric gate of Ci for i = 1, 2.

For each i = 1, 2 and for each 1 ≤ j ≤ ti, let yi,j denote the boolean value of the source
vi,j, when we feed an input string x to the circuit Ci, i.e. if vi,j is a gate G then yi,j = G(x)
and if vi,j is the b-th input variable then yi,j = xb. Let ci,j be the number of wires between
the source vi,j and the top gate of the circuit Ci for each i = 1, 2 and for each 1 ≤ j ≤ ti.

Let B be 1 + max
i=1,2

{
∑ti

j=1 ci,j}. We consider to replace two symmetric gates with a single

symmetric gate. For this purpose, we implement the linear form B
(∑t2

j=1 y2,j

)
+
(∑t1

j=1 y1,j

)
as mentioned in the proof of Claim 4.9. The output value of the new symmetric gate is
computed by this linear form.

Remove the top symmetric gate from C1, and regard fan-ins of the top symmetric gate
as output wires. Let C ′

1 be the multi output circuit obtained by this operation. Let C ′
2 be

the circuit which is obtained from C2 in the same way.
We take B copies of C ′

2 and let these copies be C ′
2,1, ..., C

′
2,B. Layering labels are also

copied. Connect the output wires of C ′
2,1, ..., C

′
2,B, C

′
1 to the new symmetric gate as defined

by the linear form. The number of wires of C3 is at most O(B) × O(t) × O(N) = O(t2N ).
We note that t1, t2 ≤ O(t) and B ≤ O(t). We also note that any sub-circuit whose top gate
is the source vi,j has at most N wires, where we regard an input variable as a sub-circuit
without wire.

Because layering labels are also copied, any gate in the l-th layer in C3 is in either the
l-th layer of C1 or the l-th layer of C2.

47



We give the proof of Lemma 4.13 as follows.

Proof of Lemma 4.13. Suppose that C1, C2 are respectively a Cc1k[d] circuit and a Cc2k[d]
circuit. We show that there is a polynomial time procedure such that for given the AND of a
Cc1k[d] circuit C1 and a Cc2k[d] circuit C2, where C1, C2 have n input variables and at most N
wires and c1, c2 do not depend on n and k, the procedure outputs an equivalent C(c1+c2)k[d]
circuit C3 with poly(N) wires.

Note that top fan-in of a circuit is at most the number of wires in the circuit. Hence, the
number of wires in the output circuit C3 in Claim 4.15 is at most poly(N). All that we prove
is that the output circuit C3 in Claim 4.15 is a C(c1+c2)k[d] circuit.

For each i = 1, 2, let C ′
i be a (cik-THR)d circuit with n input variables and at most

t = t(n) output wires such that C ′
i is obtained by removing the top symmetric gate from Ci

and by regarding input wires of the top symmetric gate as output wires.
We can construct C3 by copying C ′

2. Let G2,l be the set {Gi,j : Gi,j is the i-th gate in the
j-th copy of the l-th c2k-THR layer in C2 }, and let G1,l be the l-th threshold layer in C1.

By a contradiction, we prove that G2,l has no independent gate set of size greater than
c2k for each fixed l. Let µ : G2,l → N be a map such that µ(Gi,j) = i. Let M ≥ 2 be
an arbitrary integer. Let I1, I2, ..., IM ⊆ G2,l. Suppose that (A) I1 ∪ I2 ∪ · · · ∪ IM is an
independent gate set and (B) all sets I1, I2, ..., IM are distinct singleton sets. Then, any two
of images µ(I1), µ(I2), ..., µ(IM) are disjoint, and we have that |µ(I1) ∪ · · · ∪ µ(IM)| = M .
Note that Gi,j and Gi,j′ are equivalent for any i and for any j, j′. We also note that there is
no independent gate set in the l-th layer of C3 which contains both Gi,j and Gi,j′ .

For the sake of contradiction, suppose that there exists k′(> c2k) distinct gates A1, ..., Ak′

in G2,l. Let Im denote a singleton set {Am} for each 1 ≤ m ≤ k′. We note that I1, ..., Ik′
satisfies the condition (A) and (B). Then, there exist k′ gates B1, ..., Bk′ ∈ {G1,1, G2,1, ..., Gs,1}
such that Ai and Bi are equivalent for each i, where s is the number of gates in the l-th
c2k-THR layer in C2. Thus, there are some two gates which have dependency. Therefore, the
size of independent gate set in l-th threshold layers in C3 is at most (c1 + c2)k.

4.4 Transforming of Circuits and a Counting Algorithm

In this section, our goal is to prove the following lemma.
Lemma 4.14(restated) Let d be poly log n in the number of input variables n. There exist
some ε > 0 and γ > 0 such that counting satisfying assignments to Ck[d] circuits of size

S(n) = 2no(1)
can be solved in 2n−Ω(nε) time for k ≤ nγ.

4.4.1 Notions for bottom up procedures

Let f : X → Y be a map for finite sets X, Y . For an arbitrary A ⊆ X, let f |A denote the
map satisfying that ∀x ∈ A, f |A(x) = f(x).

48



Definition 4.16. Let C be a circuit class C ′ ◦ (k-THR)d for an arbitrary C ′ gate at the top
level. We call a C ′ ◦ (k-THR)d circuit an abbreviated circuit, if for any threshold layer in the
circuit there is no pair of equivalent gates in the threshold layer.

Definition 4.17. Let C be a circuit class C ′ ◦ (k-THR)d for an arbitrary C ′ gate at the top
level. Let C be an abbreviated C circuit. Let Vj be the j-th k-THR layer in C for each
1 ≤ j ≤ d.

We call a family of directed graphs Fi = {Hj = (Vj, Ej) : 1 ≤ j ≤ i} an i-th Induced
Hasse Diagram Family of C, if for each j the directed graph Hj is the Hasse diagram of the
partial ordered set (Vj,⪯) defined as follows:

∀G1 ∈ Vj, ∀G2 ∈ Vj[G1 ⪯ G2 ⇐⇒ G−1
1 (1) ⊆ G−1

2 (1)].

We call a map ρ : V1 ∪ · · · ∪ Vd → {0, 1} a validly ordered restriction for a family F , if ρ|Vi

is a validly ordered restriction to Vi for any i. We also call a d-th induced Hasse diagram
family an induced Hasse diagram family of C, and Fd is simply denoted by F .

4.4.2 Proof of Lemma 4.14

We state the following lemma.

Lemma 4.18. Let C be a circuit class C ′ ◦ (k-THR)d, where C ′ is either SYM or THR. There
is a procedure such that for given abbreviated C circuit C of size S(n) and F which is the
induced Hasse diagram family of C, the procedure outputs an AC0 ◦ SYM circuit C ′ of size at

most k2d
(
S(n)
O(k)

)d
poly(S(n)) such that C is equivalent to C ′. Moreover, this procedure runs in

O
(
k2d
(
S(n)
O(k)

)d
poly(S(n))

)
time.

Proof. Let F be {H1 = (V1, E1), ..., Hd = (Vd, Ed)}. We note that V1 ∪ · · · ∪ Vd is the set of
threshold gates of C. We define Ii as follows: Ii := {(Ii, Ji) ⊆ Vi × Vi : (Ii, Jj) is a pair of
independent sets satisfying the covering condition in Hi}.

By Lemma 3.22, the definition of min-set and max-set in Definition 3.17 and Observation
3.25 , for each 1 ≤ i ≤ d and for any (Ii, Ji) ∈ Ii there uniquely exists µi : Vi → {0, 1} such
that (A) µi is a validly ordered restriction to Vi and (B) the two images µi(Ii) and µi(Ji)
are respectively {1} and {0}, and (C) we can fix all outputs of threshold gates in the i-th
k-THR layer according to µi. Thus, for any (I1, J1) ∈ I1, ..., (Id, Jd) ∈ Id there uniquely
exists ρ : V1 ∪ · · · ∪ Vd → {0, 1} such that ρ|Vi

is equivalent to the restriction µi for any i.
Let R be the set of all validly ordered restrictions for F . By Lemma 3.22, there is some
bijection κ : I1 × · · · × Id → R such that κ((I1, J1), ..., (Id, Jd)) = ρ. Then, R and the image

κ(I1 × · · · × Id) are the same set. Hence, we have |R| ≤ k2d
(
S(n)
O(k)

)d
.

Suppose that 1 ≤ ∀i ≤ d, (Ii, Ji) ∈ Ii. Then, we can construct an integer linear program-
ming (ILP, in short) instance Sρ with at most d · 2k constraints such that (i) every linear
constraint labeled at a gate in

∪
1≤i≤d Ii holds and (ii) no linear constraint labeled at a gate

in
∪

1≤i≤d Ji holds. Let D|(ρ) be an AND ◦THR circuit corresponding to the ILP instance Sρ.

49



We define T |(ρ) as the top gate of C that all input wires except ones whose sources are
input variables are fixed.

By noticing that the ILP instance can be expressed by an AND ◦ THR circuit, we obtain
an AND ◦ {SYM,THR} circuit C ′|(ρ) = T |(ρ) ∧ D|(ρ) for each restriction ρ to the outputs of
threshold gates. Therefore, we obtain the OR ◦AND ◦ {SYM,THR} circuit

∨
ρ∈R C ′|(ρ) which

is equivalent to C.
Using Claim 4.8, we convert all threshold gates to AC0 ◦ MAJ circuits. Note that ma-

jority gates are also symmetric ones. Thus, we obtain an AC0 ◦ SYM circuit C ′ of size

at most O
(
k2d
(
S(n)
O(k)

)d
poly(S(n))

)
. For the running time analysis, consider the following

parts: (1) Checking all d-tuples of a pair of subsets of threshold gates of size at most k,
(2) Obtaining an OR ◦ AND ◦ {SYM,THR} circuit stated in the above, and (3) Running the
procedure in Claim 4.8 on this OR◦AND◦{SYM,THR} circuit. Thus, the time complexity is

O
(
k2d
(
S(n)
O(k)

)d
poly(S(n))

)
. We note that there are efficient ways for listing all pairs of inde-

pendent gates and implementing Lemma 3.22 than the trivial brute-force. The former can be
executed by solving an ILP instance with two linear constraints for each pair of independent
gates, and the later can be done by checking all small size subsets of threshold gates.

Lemma 4.19. Let d = poly log n. There is a procedure such that for given Ck[d] circuit C of

size S(n) = 2no(1)
it outputs an abbreviated circuit C ′ and an Induced Hasse Diagram Family

F of C ′ such that C is equivalent to C ′. Moreover, there exist some ε > 0 and some γ > 0
such that it runs in time 2n−Ω(nε) for k ≤ nγ.

Proof overview. We give an outline of our algorithm.
We first explain a simple procedure which is incorporated to our algorithm. For given

Ck[d] circuit C and two gates G1, G2 ∈ Vi, where Vi is the i-th threshold layer in C and
G1(x) = G2(x) for any input x, it outputs a Ck[d] circuit which is equivalent to C. Essentially,
this procedure replaces the gate G2 with G1. We call Vi+1 ∪ · · · ∪ Vd the upper layers than
the i-th threshold layer. The following is a description of this procedure.

1. For each threshold gate T in the upper layers than the i-th threshold layer, if there is
an input wire from G2 then the label wG2yG2 +

∑
U ̸=G2

wUyU ≥ tT in the gate T is replaced

with wG2yG1 +
∑

U ̸=G2

wUyU ≥ tT , and a wire is drawn from G1 to T , where each U is a

source of T .

2. For the top SYM gate S, if there is an input wire from G2 then the label yG2 +
∑

U ̸=G2

yU ∈

S1 in the gate S is replaced with yG1 +
∑

U ̸=G2

yU ∈ S1, and a wire is drawn from the

gate G1 to S, where S1 is the characteristic set of the symmetric gate S.

3. Remove G2 and all input and output wires of G2 from C.

50



We call this procedure abbreviation procedure. We note that eliminating threshold gates in
a threshold layer does not increase the size of maximum independent gate sets. We explain
our approach to make our algorithm. Our algorithm progresses from the bottom layer to the
top layer step by step. For each i, the (i + 1)-th threshold layer is abbreviated by using an
i-th induced Hasse diagram family.

We give the complete proof of Lemma 4.19 as follows.
Proof of Lemma 4.19.

We consider the following procedure about a bottom up construction of Induced Hasse
Diagram Family.

1. Let F be ∅. For i = 1, 2, ..., d, let Vi be the i-th k-THR layer in C, and let Ei be ∅, and
do the following steps 2., 8., and 9..

2. For any G1, G2 ∈ Vi, do the following steps 3., 4., 5., 6., and 7.

3. Let C1, C2 be THR ◦ (k-THR)i−1 sub-circuits in C whose top gates are G1 and
G2, respectively, if i ≥ 2. Let C1, C2 be threshold gates G1, G2, respectively,
if i = 1.

4. For b = 1, 2, transform the circuit Cb to an AC0 ◦ SYM circuit C ′
b, by running

the procedure in Lemma 4.18 on the input Cb and F = {H1, ..., Hi−1} for any
i ≥ 2 or by running the procedure in Claim 4.8 on the input threshold gate
Cb for i = 1.

5. Call the counting algorithm in Remark 4.7 to check the satisfiability of the
two AC0 ◦ SYM circuits A1:¬C ′

1 ∧ C ′
2 and A2:¬C ′

2 ∧ C ′
1.

6. If it outputs “Unsatisfiable” for A2 (i.e. C ′
1(x) ≤ C ′

2(x) for any input string
x) then Ei := Ei ∪ {(G1, G2)}.

7. Else if it outputs “Unsatisfiable” for A1 (i.e. C ′
2(x) ≤ C ′

1(x) for any input
string x ) then Ei := Ei ∪ {(G2, G1)}.

8. For each G1, G2 in C, if both (G1, G2) and (G2, G1) are in Ei then run the abbre-
viation procedure on C, G1, and G2. Let C be the resulting circuit (with no pair
of equivalent gates in the i-th k-THR layer).

9. Let Hi be (Vi, Ei) and let F be F ∪ {Hi}.

10. Output C (with no pair of equivalent threshold gates in any k-THR layer) and F =
{Hi : Hi = (Vi, Ei) (1 ≤ i ≤ d)}.

Running time analysis is as follows. The most dominant contribution to the entire running
time is in the step testing dependency of two circuits. Note that we can construct an AC0 ◦
SYM circuit with n inputs and of size S1(n) = O

(
k2d
(
S(n)
O(k)

)d
poly(S(n))

)
by Lemma 4.18.

By Theorem 4.7 and Remark 4.7, there is some ε > 0 such that an algorithm can count
the satisfying assignments to AC0 ◦ SYM circuits of size 2nε

and runs in 2n−nε
time. We

can take sufficiently small constant γ > 0 such that S1(n) ≤ 2nε
for k ≤ nγ. Thus the

running time in step 5. is at most 2n−nε
. The entire running time is at most d · (O

((
S(n)
2

))
51



·(poly(S(n)) + k2d
(
S(n)
O(k)

)d
poly(S(n)) +2n−nε

)), for some constant ε > 0. Note that S(n)

= 2no(1)
. Therefore, there exist some ε > 0, γ > 0 such that the entire running time is at

most 2n−Ω(nε) for k ≤ nγ.
Finally, we give the proof of Lemma 4.14.

Proof of Lemma 4.14. By the procedure in Lemma 4.19, for given input circuit C with
depth d = poly log n and size S(n) = 2no(1)

, we compute an Induced Hasse Diagram Family F
and an abbreviated circuit C1 such that C and C1 are equivalent. By Lemma 4.18, we obtain

an AC0 ◦ SYM circuit C2 with size S2(n) = O
(
k2d
(
S(n)
O(k)

)d
poly(S(n))

)
. By S(n) = 2no(1)

and d = poly log n, we have S2(n) = 2no(1)
. Thus, there exist ε1, γ > 0 such that this

transformation from a Ck[d] circuit C to C2 runs in time 2n−Ω(nε1 ) for k ≤ nγ. Finally,
run the algorithm in Theorem 4.7 on C2. There is ε2 > 0 such that the running time of
this algorithm is 2n−Ω(nε2 ). There exist ε = min

i=1,2
εi and γ > 0 such that counting satisfying

assignments to given Ck[d] circuit C can be done in time 2n−Ω(nε) for k ≤ nγ.

4.5 Lower Bounds for ACC ◦ THR ◦ (O(k)-THR)d circuits

In this section, we give the proof of the following theorem, extending results of [46].

Theorem 4.20. There is some constant γ > 0 such that NEXP does not have any family of
ACC ◦ THR ◦ (O(k)-THR)d circuits with n inputs and size 2logO(1) n for k ≤ nγ.

We note that the parameter k depends on the number of variables n. We also note that it is
sufficient to prove the statement of this theorem for the circuit class ACC◦SYM◦(O(k)-THR)d,
because each threshold gate in the threshold layer without restriction can be replaced with
an AC0 ◦MAJ circuit of polynomial size by Claim 4.8 and because the class AC0 is a subclass
of ACC and a MAJ gate is symmetric. Thus, in this section, we will only consider the class
ACC ◦ SYM ◦ (O(k)-THR)d.

Recall two key ideas which are applied to prove Theorem 4.12: (1) closure property of a
class of circuits, and (2) a procedure to count the number of satisfying assignments of given
circuit which is in the circuit class. We give proofs of the following two lemmas for the circuit
class ACC ◦ SYM ◦ (O(k)-THR)d.

Lemma 4.21. The class of ACC◦SYM◦(O(k)-THR)d circuits with n inputs and size 2logO(1) n

is weakly closed under AND.

Lemma 4.22. Let d = poly log n. There is a procedure that runs for given ACC ◦ SYM ◦
(O(k)-THR)d circuit of size 2nε

and outputs the number of satisfying assignments of the input
circuit. Moreover, there exist some constants ε > 0 and γ > 0 such that 2n−Ω(nε) for k ≤ nγ.

We note that Lemma 4.21 and Lemma 4.22 are respectively analogous to Lemma 4.13
and Lemma 4.14.

Proof of Lemma 4.21 We prove that there is a polynomial time procedure such that for

52



given two ACC ◦ SYM ◦ (k-THR)d circuits C1 and C2, the procedure outputs an ACC ◦ SYM ◦
(2k-THR)d circuit C3. Note that the AND of two ACC circuits is also an ACC circuit. By
similar arguments in the proof of Lemma 4.13, the size of independent threshold gate sets in
C3 is at most 2k, completing the proof of this lemma.

We give the following lemma about transformation of circuits.

Lemma 4.23. Let d = poly log n. There exists a procedure that converts given ACC ◦
SYM ◦ (k-THR)d circuit with n inputs and size O(S(n)) to an ACC ◦ SYM circuit with n

inputs and size at most O(k2d
(
S(n)
O(k)

)d
poly(S(n))). Moreover, this procedure runs in time

O
(
k2d
(
S(n)
O(k)

)d
poly(S(n))

)
.

Proof. Let C and G be respectively a class of circuits and a type of gates. Let {C,G}
denote a layer of circuits such that C or G is in the layer, where we regard a single gate as a
circuit. We note that Lemma 4.23 is analogous to Lemma 4.18 and the proof is also similar
to one of Lemma 4.18. By using Lemma 3.22, we construct a procedure that converts given
ACC◦SYM◦ (O(k)-THR)d circuit C1 with n inputs and size O(S(n)) to an OR◦AND◦{ACC◦
SYM,THR} circuit C2 with n inputs and size at most O(k2d

(
S(n)
O(k)

)d
poly(S(n))).

Note that the layer of AND gates in C2 corresponds to a set of ILP instances such that
(1) each ILP instance S is obtained by fixing outputs of threshold gates according to a
validly ordered restriction and (2) such validly ordered restriction agrees with the outputs of
threshold gates which are obtained by feeding a feasible solution of S to the circuit C1. We
also note that the layer of OR gates in C2 corresponds to the union of ILP instances for all
possible validly ordered restrictions of C1. Finally, we transform any threshold gate in C2

to an AC0 ◦ MAJ circuit by Claim 4.8. Since the class of ACC ◦ SYM circuits contains the
one of AC0 ◦MAJ circuits, we obtain an OR ◦ AND ◦ ACC ◦ SYM circuit, i.e., an ACC ◦ SYM
circuit.

We need another lemma to compute an Induced Hase Diagram Family and an abbreviated
circuit for given input circuit. The following lemma corresponds to Lemma 4.19.

Lemma 4.24. Let d = poly log n, where n is the number of input variables. There is a
procedure such that for given ACC ◦ SYM ◦ (O(k)-THR)d circuit C with n inputs and size

S(n) = 2no(1)
, the procedure outputs an abbreviated circuit C ′ and an Induced Hase Diagram

Family F of C ′ such that C ′ is equivalent to C. Moreover, there exist some ε > 0 and some
γ > 0 such that it runs in time 2n−Ω(nε) for k ≤ nγ.

Proof Sketch. The proof is similar to the one of Lemma 4.19. Recall the abbreviation
procedure in the proof of Lemma 4.19. By abbreviation procedures, pairs of equivalent
threshold gates are eliminated from given input circuit. Our algorithm computes from the
bottom layer to the top layer step by step. For each i, the (i + 1)-th threshold layer is
abbreviated by using an i-th Hasse diagram family. Remind that we call a d-th induced
Hasse diagram family an induced Hasse diagram family. We use the algorithm counting
the number of satisfying assignments for ACC ◦ SYM circuits in order to check if a pair of

53



threshold gates in a threshold layer of C is an equivalent one. A direct edge in Hasse diagram
corresponds to a pair of threshold gates having dependency, and we can decide if there is a
direct edge between two threshold gates which are not equivalent by this counting algorithm
for ACC ◦ SYM circuits.

We note that there is some constant ε > 0 such that the counting the number of as-
signments for given ACC ◦ SYM circuit of size 2nε

runs in time 2n−nε
. Thus, there is some

sufficiently small constant γ > 0 such that the size of circuits which are outputted by the
transformation procedure in Lemma 4.23 is at most 2nε

. Thus, we have that there exist some
ε > 0 and some γ > 0 such that the procedure which computes an abbreviated circuit and
its induced Hasse diagram family runs in time 2n−Ω(nδ).

Finally, we give a counting procedure to prove Lemma 4.22.

Proof of Lemma 4.22. We take the same approach to prove Lemma 4.14. By the
procedure in Lemma 4.24, for given input circuit C with depth d = poly log n and size
S(n) = 2no(1)

, we obtain an Induced Hasse Diagram Family F and an abbreviated circuit C1

such that C and C1 are equivalent. By Lemma 4.23, we have an ACC ◦ SYM circuit C2 with

size S2(n) = O
(
k2d
(
S(n)
O(k)

)
poly(S(n))

)
.

By S(n) = 2no(1)
and d = poly log n, it holds that S2(n) = 2no(1)

. Hence, there exist
ε1, γ > 0 such that this transformation from an ACC ◦ SYM ◦ (O(k)-THR)d circuit to C2 runs
in time 2n−Ω(nε1 ) for k ≤ nγ. Running the algorithm in Theorem 4.7 on C2, there is some
ε2 > 0 such that this algorithm runs in time 2n−Ω(nε2) . Thus, we have that there is some
constant ε > 0 such that counting satisfying assignments to ACC ◦ SYM ◦ (O(k)-THR)d can
be done in time 2n−Ω(nε).

54



Chapter 5

Conclusion

In this thesis, we give several results about algorithms and lower bounds for Boolean circuit
which is one of the most fundamental computation models. In particular, we study threshold
circuits and nonuniform computation models, because a basic purpose of computing theory
is to grasp differences between uniform computation and nonuniform one.

We show a nontrivial algorithm for a class of depth two threshold circuits, which is larger
than the class of depth two sparse threshold circuits in [25]. We also prove lower bounds for
nonuniform circuit classes containing threshold gates by using the criteria which Williams
developed in [46].

In Lemma 4.18, we implicitly prove that any boolean function computed by restricted
circuits of our form can be computed by OR◦AND◦{SYM,THR} circuits of exponential size.
Currently, there are no known exponential size lower bounds for OR ◦ AND ◦ {SYM,THR}
circuits, and a direct application of [46] is not workable because any exponential function
is not a half-exponential-type function. We give an explanation to understand the notion of
half-exponential-type functions.

The following claim is important to understand the relationship between the concept of
half-type-exponential functions and William’s lower bound method through witness circuits.

Claim 5.1. Let C be any circuit class. If P has nonuniform C circuits of S(n)O(1) size, then
there is a constant c > 0 such that any circuit family of size T (n) (uniform or not) has an
equivalent C circuit family of size S(n + O(T (n) log T (n)))c.

Proof. If P has nonuniform S(n)O(1)-size C circuits, then there is some constant c > 0
such that the Circuit Evaluation problem to decide if C(x) = 1 for given pair of a circuit
C with N inputs and a boolean string x of length N can be solved by S(n)c-size circuits.
Let {Dn(·, ·)}n∈N be a circuit family of size S(n)c for this problem. Now let {Cn}n∈N be
an arbitrary circuit family of size T (n). Define C|x|(x) = Dn1(C|x|, x) for an appropriate
length n1 ≤ n + O(T (n) log T (n)). Thus, we obtain an equivalent C circuit family of size
S(n + O(T (n) log T (n)))c.

The composition of functions S(n + O(T (n) log T (n)))c is an origin of the notion of half-
type-exponential functions. The notion of half-exponential-type functions is formally defined

55



as follows.

Definition 5.2. A function f : N → N is said to be sub-half-exponential, if for any constant
k it holds that f(f(nk)k)k ≤ 2no(1)

.
A function f : N → N is said to be sub-third-exponential, if for any constant k it holds

that f(f(f(nk)k)k)k ≤ 2no(1)
.

We can easily understand that an arbitrary quasi polynomial function q(n) = 2poly logn

is sub-third-exponential. We can also understand that the function S(n) = 2no(1)
is not

sub-third-exponential.
The following was originally conjectured by Impagliazzo, and proved in [45].

Theorem 5.3. Let S(n) be an arbitrary sub-half-exponential function such that S(n) ≥ n
for all n. If NTIME[2n] has S(n) size circuits, then any language in NEXP has universal
witness circuits of size S(S(n)c)c for some constant c depending on the language.

The following is proved in [45] by using this result.

Corollary 5.4. If NTIME[2n] has S(n)-size ACC circuits, then any NEXP language has uni-
versal witness circuits of S(S(S(n)c)c)c. for some c depending on the language.

Thus, we currently do not rule out a circuit family of size S(n) = 2no(1)
to compute NEXP

languages, and a direct application of [46] is not workable because any exponential function
is not a half-exponential-type function.

An obvious direction for the future is to develop methods to rule out 2no(1)
-size circuits

computing NEXP languages.
Another possible direction for the future is to rule out nonuniform circuits for PSPACE

languages. Recall Theorem 2.19, which is a critical tool for the lower bound method based
on the witness circuits.
Theorem 2.19(restated)

PSPACE ⊆ P/poly ⇒ PSPACE = MA

In the proof of this theorem, it is important to solve Circuit Evaluation problem for a
simulation of the prover in an interactive proof protocol. Circuit evaluation is P-complete
if given input circuit is in the class of general Boolean circuits with basis AND, OR, and
NOT gates, but we might obtain some meaningful results for some circuit class in which
evaluating the output value of an arbitrary circuit can be done with small space complexity.
If we can replace the complexity class MA in the statement of Theorem 2.19 with some
complexity class related to bounded space computation, we might derive a contradiction to
the space hierarchy theorem. We note that the only hierarchy theorem which is applied in
[44, 45, 46] is the nondeterministic hierarchy theorem. We might prove different complexity
class separations, if we are successful to apply the space hierarchy theorem.

56



Bibliography

[1] L. Adleman. Two theorems on random polynomial time. In Proc. FOCS’78, pages 75-83,
1978.

[2] E. Allender and Vivek Gore. On strong separations from AC0. Fundamentals of Com-
putation Theory, 8, 1991.

[3] K. Amano and A. Saito. A satisfiability algorithm for some class of dense depth two
threshold circuits, IEICE Trans. Inf. Sys., E98-D, No.1: 108-118, 2015.

[4] K. Amano and A. Saito. A Nonuniform Circuit Class With Multilayer of Threshold Gates
Having Super Quasi Polynomial Size Lower Bounds against NEXP, In Proc. LATA’15,
to appear.

[5] S. Arora and B Barak, Computational Complexity: A Modern Approach, Cambridge
University Press, 2009.

[6] R. Beigel and J. Tarui. On ACC. Computational Complexity 4:350-366, 1994.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic modelchecking without BDDs,
in Tools and Algorithms for the Construction and Analysis of Systems, March 1999,
193-207.

[8] R. B. Boppana and M. Sipser. Handbook of theoretical computer science (vol. a).chapter
The complexity of finite functions, 757-804. MIT Press, Cambridge, 1990.

[9] C. Calabro. The exponential complexity of satisfiability problems. PhD thesis, University
of California, San Diego, 2009.

[10] C. Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Parameterized and Exact Computation: 4th International
Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Se-
lected Papers, 75-85, 2009. Springer-Verlag.

[11] A. K Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
J. on Comput, 13(2):423-439, 1984.

[12] S. Cook. Short propositional fomulas represent nondeterministic computations. Infor-
mation Processing Letters, 26(5):269-270, 1988.

57



[13] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, 151-158, 1971.

[14] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput.
11(3):467-471, 1982.

[15] E. Dantsin and A. Wolpert. Max-SAT for formulas with constant clause density can be
solved faster than in O(2n) time. In Armin Biere and CarlaP. Gomes, editors, Theory
and Applications of Satisfiability Testing - SAT 2006, volume 4121 of Lecture Notes in
Computer Science, 266-276. Springer Berlin Heidelberg, 2006.

[16] M. Furst, J.Saxe, and M.Sipser. Parity, circuits, and the polynomial time hierarchy.
Mathematical Systems Theory 17:13-27, 1984.

[17] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. In Proc. STOC’85, pages 291-304, 1985.

[18] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of
bounded depth. In Proc. FOCS’87, 99-110, 1987.

[19] J. H̊astad. Almost optimal lower bounds for small depth circuits. Advances in Computing
Research 5:143-170, 1989.

[20] R. Impagliazzo, V. Kabanets, A. Wigderson. In search of an easy witness: exponential
time versus probabilistic polynomial time. J. Comput. and Sys. Sci. 65(4):672-694, 2002.

[21] R. Impagliazzo, W. Matthews, and R. Paturi. A Satisfiability Algorithm for AC0. In
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, 2012.

[22] R. Impagliazzo and R. Paturi. The complexity of k-SAT. Journal of Computer and
Systems Sciences, 62(2):367-375, March 2001. Preliminary version in 14th Annual IEEE
Conference on Computational Complexity, 237-240, 1999.

[23] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63:512-530, 1998.

[24] R. Impagliazzo, R. Paturi, and M. E. Saks. Size-depth tradeoffs for thresholdcircuits.
SIAM J. Comput. 26(3):693-707, 1997.

[25] R. Impagliazzo, R. Paturi, and Stefan Schneider. A satisfiability algorithm for sparse
depth two threshold circuits. In FOCS’13, 479-488, 2013.

[26] R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-randomization under a
uniform assumption. J. Comput. and Sys. Sci., pages 734-743, 1998.

[27] K. Iwama and H. Morizumi. An explicit lower bounds of 5n− o(n) for Boolean circuits.
In Proc. MFCS’02, Springer LNCS:2420:353-364, 2002.

58



[28] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. In
Computational Complexity, 2000. In Proc. CCC’98, pages 150-157, 2000.

[29] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity
classes. In STOC’80, pages 302-309, 1980.

[30] K. Lange, Unambiguity of circuits. Theoretical Computer Science 107(1993)77-94, 1993.

[31] L. Levin. Universal sorting problems. Problems of Information Transmission, 9:265-266,
1973.

[32] I. Lynce and J. Marques-Silva, Efficient haplotype inference with Boolean satisfiability,
in National Conference on Artificial Intelligence, July 2006.

[33] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Sys. Sci., 49(2):149-
167, October 1994.

[34] I. Oliverira. Algorithms versus circuit lower bounds. ECCC Technical Report TR13-117,
2013.

[35] J. Robson. An O(T log T) reduction from RAM computations to satisfiability. Theoret-
ical Computer Science, 82(1):141-149, 1991.

[36] A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis
with logical addition. Mathematical Notes of Academy of Sciences USSR 41(4):598-607,
1987.

[37] R. Santhanam. Fighting perebor: New and improved algorithms for formula and qbf
satisfiability. In Proc. FOCS’10, 183-192, 2010.

[38] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal
form. Journal of Algorithms, 54(1):40-44, 2005.

[39] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, October 1992.

[40] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas, Fault diagnosis and logic debugging
using Boolean satisfiability, IEEE Transactions on Computer-Aided Design, vol. 24, no.
10, . 1606-1621, 2005.

[41] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proc. STOC’87, 77-82, 1987.

[42] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. In Proc.
STOC’73, pages 1-9, 1973.

[43] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348:357-365, 2005.

59



[44] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Proc. STOC’10, 231-240, 2010.

[45] R. Williams. Non-Uniform ACC Circuit Lower Bounds. Journal of the ACM 61(1),
Article 22, January 2014.

[46] R. Williams. New algorithms and lower bounds for circuits with linear threshold gates,
In Proc. STOC’14, 194-102, 2014.

60


