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I don’t know anything,
but I do know that everything is interesting if you go into it deeply enough.

— Richard Feynman

Para kay nanay at tatay.





A B S T R A C T

Machine learning has proven itself to be a powerful tool in
different tasks such as classification, pattern recognition, and data
mining and analysis. However, with the increasing amount of
available information, different structures and nature of data require
different approaches for data utilization to warrant optimal results.
With the aim to exploit biological and physiological data used in
recently trending fields such as bioinformatics, chemoinformatics,
neuroinformatics and brain-computer interfaces, learning algorithms
that can outperform conventional methods in these areas are
developed in this thesis.

The first part of this work, which concerns the use of biological
data, focuses on predicting interactions between drugs and proteins,
and finding active sites in enzymes. For the first task, a variant of
canonical correlation analysis is introduced and utilized to improve
the performance of learning machines in predicting drug-protein
interactions, where the approach is derived from the generalized
eigenvalue problem. As for the latter, a learning algorithm exploiting
Bregman divergences is developed to determine a weighting scheme
to be used in the computation of the deviation in finding active sites
in enzymes.

The second part, which addresses physiological data, focuses on
task classification using EEG signals. The data signals can usually
be modeled as a vector sequence or set of vectors. For this type of
input in classification tasks, a kernel function is proposed. This thesis
also presents a link between the said kernel function and an existing
Grassmann kernel.

The performances of all methods proposed in this work are
investigated using real-world data. Empirical results show the
efficiency and potential advantages of the proposed algorithms over
conventional methods.
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1
I N T R O D U C T I O N

We are currently in the era of “big data.” This data deluge came
with the progression of modern technology. With the evolution of
the Internet, high tech machineries, advanced medical technologies,
and personal computers, a plethora of data of various types is
continuously being generated. And there has been a demand to
harness these to extract some valuable information that can be used
to our advantage.

Machine learning has proven itself to be a powerful tool in different
tasks such as classification, pattern recognition, and data mining and
analysis [16, 29, 52, 72, 74]. These tasks can further be extended to
varying applications such as in biometrics and security, computer
vision, data intrusion, drug design, medical imaging, and social
data analysis. However, with the increasing amount of available
information, different structures and nature of data require different
approaches for data utilization to warrant optimal results. Hence,
there is a need to continuously challenge the conventional methods.

Machine learning algorithms can be divided into 3 types:
supervised, unsupervised, and reinforcement learning. Supervised
learning makes use of a part of the whole data for training to allow
the algorithm to “learn” some mapping that can perform predictions.
Here, the presence of the training data set allows us to measure the
performance of the algorithm by defining error metrics, such as the
difference between the predicted values and the true values.

On the other hand, in the unsupervised approach, the goal is usually
to find some noteworthy patterns that can be utilized for data analysis.
Thus, this is also sometimes referred to as knowledge discovery [52].
Unlike in supervised learning, the type of patterns that are expected
to be uncovered are not explicitly known, neither can any error metric
be defined. Examples of this type include clustering, hidden Markov
models, and computational methods such as principal component
analysis and singular value decomposition, among others.

Reinforcement learning may be the less commonly used type
compared to the previous two. This form of learning is inspired by
behavioral psychology, where reward and punishment are usually
given to teach subjects how to act. By doing this, the subject is trained
on which tasks he/she is encouraged to perform, and which are not.
Thus, this also arises in areas such as control theory and robotics.
In this work, however, we will only focus on supervised learning.
In particular, we are interested in binary classification tasks where
training data are utilized to approximate some relationship between
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2 I N T R O D U C T I O N

input and output variables, which can further be used to categorize
new inputs into one of two classes.

T H E S I S O R G A N I Z AT I O N A N D C O N T R I B U T I O N S

The studies involved in this thesis contribute to the improvement
of machine learning methods for binary classification problems.
In particular, we focus our works on bioinformatics- and brain-
computer interface-related themes. Following a short introduction of
the binary classification problem, support vector machines (SVMs)
and kernel methods, and some notations introduced in Chapter 2, the
contributions of this thesis are divided and summarized accordingly:

• In Chapter 3, we present a variant of canonical correlation
analysis and use this to improve the performance of learning
machines in predicting interactions between ligands/drugs
and proteins. Protein-ligand interaction prediction plays an
important role in drug design and discovery. However, wet lab
procedures are inherently time consuming and expensive due
to the vast number of candidate compounds and target genes.
Hence, computational approaches became imperative and have
become popular due to their promising results and practicality.
Such methods require high accuracy and precision outputs
for them to be useful, thus, the problem of devising such an
algorithm remain very challenging. In this chapter, we propose
an algorithm employing both support vector machines and an
extension of canonical correlation analysis (CCA). Following
assumptions of recent chemogenomic approaches, we explore
the effects of incorporating bias on similarity of compounds.
We introduce kernel weighted CCA as a means of uncovering
any underlying relationship between similarity of ligands and
known ligands of target proteins.

• In the succeeding Chapter 4, we exploit some Bregman distances
to develop a learning algorithm that automatically determines
the weights for atoms in finding active sites in enzymes.
Prediction of active sites in enzyme is very important for the
study of proteins and for practical applications such as drug
design. Underlying mechanisms for enzyme reaction are based
on the local structures of their active sites. Because of this, the
mean square deviation has often been used for protein local
structure comparison. To improve the ability of such simple
measure, various types of template-based methods that compare
local sites have been developed to date. In this work, we
introduce parameters for the deviation, as well as regularization
functions using Bregman divergences to model a new machine
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learning algorithm that determines the parameters of the square
deviation.

• In Chapter 5, we propose a kernel function for data modeled
as vector sequences or sets of vectors, such as physiological
data like electroencephalography (EEG) signals. Classification
tasks in brain-computer interface research have presented
several applications, biometrics and cognitive training, for
instance. However, like in any other discipline, determining
suitable representation of data has been challenging, and recent
approaches have deviated from the familiar form of one vector
for each data sample. In this chapter, we consider a kernel
between vector sets, motivated by recent studies where data are
approximated by linear subspaces, in particular, methods that
were formulated on Grassmann manifolds. The kernel takes a
more general approach given that it can also support input data
that can be modeled as a vector sequence, and not necessarily
requiring it to be a linear subspace. We also discuss how the
kernel can be associated with the Projection kernel, a known
Grassmann kernel.

Finally, Chapter 6 concludes our work with a summary and discussion
of future works related to the proposed methods.

P U B L I S H E D R E S U LT S

The works contained in this thesis have resulted in 2 journal
publications in the Information Processing Society of Japan (IPSJ)
Transactions on Bioinformatics [61], and in the Institute of Electronics,
Information and Communication Engineers (IEICE) Transactions
on Information and Systems [62]. The contents have also been
disseminated at relevant conferences and SIG meetings, where a total
of 5 articles have been accepted for presentation [63, 64, 65, 66, 67].





2
P R E L I M I N A R I E S

In this chapter we introduce the basic notations and briefly review
some mathematical concepts that have been incorporated in this
thesis. References [11, 16, 29, 52, 72, 74] are recommended to readers
who wish to have more detailed information about support vector
machines, kernel methods, machine learning, and other related
subjects.

2.1 N O TAT I O N A L C O N V E N T I O N S

We will use R and N to denote the set of real and natural numbers,
Rn and Nn for the set of n-dimensional real and natural vectors, and
Rm×n for the set of m× n real matrices. The set of nonnegative real
numbers is represented by R+, and the set of positive real numbers by
R++. For any n ∈ N, we will use Nn to represent the set of natural
numbers less than or equal to n. We will denote vectors by bold-
faced lower-case letters and matrices by bold-faced upper-case letters.
Entries of vectors and matrices are not bold-faced. The transpose of a
matrixM is given byMT, the inverse isM−1, while the n×n identity
matrix is In. The n-dimensional vector whose entries are all one is
denoted by 1n, while 0n is the n× 1 vector of all zeros. The operation
diag(M) outputs a vector whose entries are the diagonal entries of
matrix M, while diag(v) returns the diagonal matrix with the entries
of vector v along the diagonal. We will use Sn to denote the set ofn×n
symmetric matrices, and Om×n the set ofm×n orthonormal matrices,
i.e. Om×n ≡ {M ∈ Rm×n|MTM = In}. This definition implies that
Om×n = ∅ if m < n. For simplicity, we shall also assume that the
input space X is a Euclidean space, i.e., X ⊆ Rn.

2.2 T H E B I N A R Y C L A S S I F I C AT I O N P R O B L E M

Before our introduction on support vector machines and kernel
methods, we start by formally defining the classification problem in
supervised learning.

As previously stated, classification, as supervised learning, aims to
learn or approximate a mapping from inputs denoted by x ∈ Rn to
outputs represented by y, given some data for training. The input
vectors x are usually called features or attributes. And the value of the
output variable y is either nominal or categorical, depending on the
classification task, which tells us the true class of the input.

5



6 P R E L I M I N A R I E S

In the simplest case where y is nominal and the number of classes
is equal to two, we have y ∈ {±1}. This is referred to as the 2-class
or binary classification problem. This may further be extended into N
number of classes, or what we call the multi-classification problem. In
the case where y ∈ R, we call it regression. In this work, we will mainly
focus on binary classification problems.

To formally define classification problem, suppose we have a set of
` training data D = {(xi,yi)}

`
i=1 consisting of input-output pairs. The

task is to find an approximate decision function f : x 7→ y using the D.

2.3 S U P P O R T V E C T O R M A C H I N E S

First introduced in 1992 by V. Vapnik and colleagues from the
AT&T Labs, support vector machines (SVMs) are known to have the
ability of being universal approximators of any multivariate function
much similar to neural networks. Despite their strong theoretical
background, SVMs did not receive much attention until publications
showing their excellent performance in practical applications such as
text categorization, digit recognition and computer vision arise (cf.
[16, 72] for some examples).

To address the task of classifying data, Vapnik et al. first considered
a class of hyperplanes with equation

〈w, x〉+ b = 0,

in some dot product space X, wherew ∈ X and b ∈ R, corresponding
to the decision function

f(x) = sgn (〈w, x〉+ b) . (2.1)

The value 〈w, x〉 + b is also sometimes referred to as the SVM score,
as it also provides a level or degree of confidence in classifying x.
Following this, they then proposed a learning algorithm for linearly
separable problems.
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Figure 2.1: An illustration of the margin. Here, the data points on the
left belong to the class where y = +1, while the points on
the right belong to y = −1. The two classes are separated by
the hyperplane with equation 〈w, x〉 + b = 0, where w is the
vector normal to the hyperplane. Between the dashed lines with
equations 〈w, x〉 + b = +1 and 〈w, x〉 + b = −1, the size of the
margin is equal to 2

‖w‖ .

In the context of the simple binary classification problem, SVMs
use hyperplanes to create classifiers that maximize the margin,
such as that in Figure 2.1. By maximizing the margin, classification
error is minimized when new data points are introduced. With
the classifier being more robust to perturbations in the data, the
problem of underfitting or loose classification, and overfitting or tight
classification of the data can be avoided. The binary classification
problem is then equivalent to the task of finding a hyperplane
that separates the data such that the margin of separation between
any training point and the hyperplane is a maximum. This can be
formulated as

maximize min {‖x− xi‖ : x ∈ X, 〈w, x〉+ b = 0, i = 1, . . . , `}

wrt w ∈ X, b ∈ R. (2.2)

A unique solution for this problem exists and is called the optimal
hyperplane, also referred to as the maximal margin classifier.

In order to construct the optimal hyperplane, the learning problem
for SVMs presented in (2.2) can be rewritten as the constrained
quadratic optimization problem

minimize
1

2
‖w‖2

wrt w ∈ X, b ∈ R,

subject to yi (〈w, xi〉+ b) > 1, ∀i = 1, 2, . . . , `, (2.3)
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where w is the normal vector to the hyperplane. To solve this
quadratic optimization problem, Lagrange multipliers αi ′s are
introduced, and the Lagrangian function is given by

L(w,b,α) =
1

2
‖w‖2 −

∑̀
i=1

αi (yi (〈w, xi〉+ b) − 1) .

Hence, problem (2.3) has the primal form

minimize L(w,b,α) =
1

2
‖w‖2 −

∑̀
i=1

αi (yi (〈w, xi〉+ b) − 1) ,

wrt w ∈ X, b ∈ R,

subject to yi (〈w, xi〉+ b) > 1, ∀i = 1, 2, . . . , `,

and dual form given by

maximize W(α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyj
〈
xi, xj

〉
wrt α ∈ R`,

subject to αi > 0, ∀i = 1, . . . , `, and
∑̀
i=1

αiyi = 0.

By minimizing the Lagrangian L with respect to the primal
variables w and b, and maximizing it with respect to the dual
variables αi ′s, we can obtain the saddle point which will lead us to
the solution. To do this, the Karush-Kuhn-Tucker (KKT) conditions are
imposed. The KKT conditions state that at the saddle point, the partial
derivatives with respect to the primal variables must be zero, i.e.,

∂

∂b
L(w,b,α) = −

∑̀
i=1

αi = 0 and

∂

∂w
L(w,b,α) = w−

∑̀
i=1

αiyixi = 0.

And thus we must have

∑̀
i=1

αi = 0 and w =
∑̀
i=1

αiyixi. (2.4)

The vectors xj in the solution vector w in Equation (2.4) whose
coefficients αj are nonzero are called support vectors. In Figure 2.1,
these are the data points x1 and x2, which are points lying on the
margin represented by the dashed lines. Finally, using the solution
in Equation (2.4) expressed in terms of support vectors, the decision
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function from Equation (2.1) can now be rewritten as the support vector
classifier

f(x) = sgn

(∑̀
i=1

αiyi 〈x, xi〉+ b

)
. (2.5)

It can be observed from the form that these classifiers only operate
with the inner product. Hence, they can still be very efficient even in
high dimensional input spaces.

There are also other variants of SVM such as that using soft-margin,
one-class SVM, and support vector regression. However, we will no
longer include the vast details of these types of SVM.

2.4 K E R N E L F U N C T I O N S

Kernel methods are a class of pattern recognition algorithms, with
their best known element as the support vector machine. Since linear
classifiers such as SVM may not work well when data has a more
complex pattern, a nonlinear mappingφ from the original input space
X to some higher dimensional space F is often introduced to address
this issue. A kernel is then defined as a function K such that for any
two data points x1, x2 in an input space X,

K(x1, x2) = 〈φ(x1),φ(x2)〉 ,

where φ is a mapping from X to an inner product space F called
a feature space. Hence, kernel methods are a class of algorithms that
perform by mapping the input data into a high dimensional feature
space. This is done using the so-called kernel trick which is primarily
based on Mercer’s theorem:

Theorem 2.1 (Mercer’s Theorem). Any continuous, symmetric, positive
semidefinite kernel function K(x,y) can be expressed as a dot product in a
high dimensional space.

The theorem implies that any algorithm employing the inner product
operation can be applied with the kernel trick. For instance, the binary
decision function in (2.5) for the support vector classifier can easily be
rewritten as

f(x) = sgn

(∑̀
i=1

αiyi 〈φ(x),φ(xi)〉+ b

)
= sgn

(∑̀
i=1

αiyiK(x, xi) + b

)
.

The kernel trick is utilized especially in cases when data is not
linearly separable. By applying the kernel trick, data is projected in
a higher dimensional space F before performing classification. This
gives rise to linear classifiers or hyperplanes in the feature space
F, and hence creating nonlinear classifiers or hypersurfaces when
projected back to the original input space, like in the example in Figure
2.2.
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linear classi�er
hyperplane

classi�er

nonlinear 

classi�er

Figure 2.2: An illustration of the kernel trick.

Indeed, kernel-based algorithms have come a long way since their
introduction due to their many advantages and potential. At present,
there is an extensive list of kernels used in varying applications
and types of data. Among them, the most recognized and widely-
used are the linear kernel (k(x1, x2) = 〈x1, x2〉), the polynomial
kernel

(
k(x1, x2) = 〈x1, x2〉d + c, c ∈ R

)
, and the Gaussian RBF

kernel
(
k(x1, x2) = exp

(
−
‖x1−x2‖2
2σ2

)
, σ > 0

)
functions. Aside

from the fact that kernel functions have provided algorithms a bridge
between linearity and nonlinearity, their performance have been
proven comparable to, if not better than, existing algorithms in various
areas where they have been exploited. Also, applying the kernel trick
is very straightforward and new kernels are easy to construct. And
lastly, there is less concern given to the dimension of the feature space
due to the simple dot product operation that renders the algorithms
computationally inexpensive than usual. For these reasons, recent
machine learning trends have involved “kernelizing” some already
established algorithms.
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P R E D I C T I N G P R O T E I N - L I G A N D I N T E R A C T I O N S

Drug discovery is a multi-staged process which involves the
determination of existing interactions between a compound and a
protein. Many drugs are developed depending on the reaction they
produce when coupled with the respective proteins acting during
a biological process in the body. However, only a few existing
interactions have actually been validated through experiments.
Moreover, wet lab procedures are inherently time consuming and
expensive due to the vast number of candidate compounds and target
genes. Hence, computational approaches became imperative and have
become popular due to their promising results and practicality.

The protein-ligand interaction prediction problem can be viewed as
a task of filling up a protein-ligand matrix whose rows represent the
candidate compounds and the columns represent the target proteins
as shown in the example in Figure 3.1a. A matrix entry is +1

if there is interaction between the corresponding drug and target.
Otherwise, −1. Only a few interactions have actually been verified and
recorded which makes the protein-ligand matrix sparse. Termed as the
‘chemogenomic approach’ by Rognan [68], the ultimate goal of this
task is to identify all the ligands of each target, thus, fully matching
the ligand and target spaces [3].

Many in silico methods have already been developed to address
this problem. We can classify these methods into two: the structure
or docking approach and the ligand-based approach. Docking
approaches make use of 3D structures of the chemical compounds
or the proteins to find protein-ligand pairs which are more likely to
bind [2, 4, 7]. On the other hand, ligand-based techniques usually
employ machine learning algorithms in comparing known ligands
and candidate ligands of a certain target even without any prior
information regarding their structure [14, 33, 80]. In this study, we
shall make use of the ligand-based approach.

There are two ways of approaching the task of interaction
prediction: one is by using the global model [2, 56], and another
one is via the local model [3, 33, 80]. The global model utilizes a
large interaction matrix and imputation of missing values is done
simultaneously. Each cell in the interaction matrix is considered as
a sample to which statistical methods are applied. Descriptors of
ligands in the form of a feature matrix and some information for
target proteins are combined to generate a fused profile for each cell
in the interaction matrix. An advantage is that interaction prediction
for target proteins with few known interactions can still be formed.
However, since the model aims to exploit information from similar

11
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(a) Feature Matrix and
Interaction Matrix
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L1

L2
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L1

L2

L3

L4

L5
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L1

L2

(b) Chemical Descriptors

Figure 3.1: Protein-ligand matrix and descriptors. In the example depicted
in (a), the prediction task is to impute 11 missing entries in the
6× 5 protein-ligand matrix using 10-dimensional raw descriptors
of ligands. The problem can be divided into six sub-problems,
each of which is to complete a row in the protein-ligand matrix.
Our algorithm extracts compact descriptors specialized in each
sub-problem.

columns, some useful information for learning the rule for prediction
may be corrupted by information from irrelevant columns.

Meanwhile, in the local model approach, prediction is made
for each column of the protein-ligand table independently — the
approach finds unknown chemical compounds which are similar to
known ligands interacting with the target protein of interest. The local
model often suffers from a small-sample problem. Many columns in
the protein-ligand interaction matrix include few positive interactions,
causing machine learning algorithms to be trained with few positive
samples despite very high dimensionality of ligand descriptors.

The goal of determining interactions between targets and
compounds is established under twofold assumptions [3, 68]: First
is that compounds with similar properties tend to share targets.
And, targets with similar ligands share similarities in structures
such as binding sites. These have been verified by recent studies
by considering drug side effects [12] and similarities among ligands
[51]. Moreover, integrated approaches exploring both protein and
compound similarities have also been investigated [10, 33, 85].
Thus, recent methodologies have allowed us to make predictions on
interactions based on similarity measures for ligands and targets.

Motivated by the assumption that similar ligands tend to have
similar target proteins [42, 73], our goal is to uncover any underlying
relationship between a set of ligands and exploit this relationship,
together with some known ligand-target interactions, to predict new
interactions. We search for ligands with strong associations by finding
correlations between them using their features.

In this chapter, we present a weighted extension of canonical
correlation analysis (WCCA) in the reproducing kernel Hilbert space
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(RKHS) in an attempt to introduce advantageous properties of local
models to the global model approach. To estimate the missing entries
in each row of the interaction matrix, we use kernel WCCA (KWCCA)
to extract essential features which are specialized in imputation of the
corresponding row. The extracted features are compact enough for
local models to be trained with a small training set composed from
the column. Through the experiments with data of G protein-coupled
receptors (GPCRs) and odorants, the prediction performance is shown
to be improved when our algorithm is applied compared to several
existing methods.

3.1 R E L AT E D W O R K S

A popular and useful technique in investigating relationships between
sets of data is the so-called canonical correlation analysis (CCA)
[28]. First introduced by Hotelling [30], CCA generally aims to find
linear transformations which maximize the correlation between a
pair of data. However, the common information extracted from the
data sources may not be as useful if nonlinear correlations exist.
For this reason, kernel CCA (KCCA) was introduced to offer an
alternative solution via the kernel trick, where CCA is performed
in a reproducing kernel Hilbert space (RKHS), typically a higher
dimensional feature space [1].

Several variants of CCA have been developed and applied to
different problem settings. For instance, Yu et al. [93] introduced
weights to CCA. Although we also introduce weighting in our
proposed method, the authors’ purpose and formulation are totally
different from ours: they assumed more than two data sources and
weight each source, whereas, in our formulation, we assume two
data sources and each sample is weighted. On the other hand, in a
biologically-related setting, Yamanishi et al. [90] employed multiple
KCCA and integrated KCCA for gene cluster extraction. One is done
by maximizing the sum of pairwise correlations and the other by
maximizing correlation of combination of attributes.

For the problem of functional site prediction, Gonzalez et al. [24]
incorporated KCCA to find amino acid pairs and protein functional
classifications which are maximally correlated. This technique was
motivated by the Xdet method [57] and CCA was employed as an
alternative to computing Pearson correlation.

The indefinite kernel CCA (IKCCA) was developed by Samarov
et al. [71] with a motivation similar to ours. They removed the
similarity of samples outside the neighborhood to refine the analysis.
The operation often yields an indefinite matrix. IKCCA finds a definite
matrix close to the indefinite matrix to perform CCA on the definite
matrix. However, their usage of employing CCA is different from ours:
the inputs of their approach are positive pairs of ligands and proteins,
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whereas our approach applies CCA to two different types of ligand
profiles. IKCCA is formulated with a saddle-point problem that is
solved by minimizing a maximum, but the numerical algorithm to
solve the problem has not been shown.

Another important variant is sparse CCA [87, 91] which uses lasso
or elastic net techniques to encourage loading matrices to be sparse.
This approach was also applied to a set of protein-ligand pairs
with positive interactions in order to elucidate meaningful chemical
descriptors in [91]. Another is the Supervised Regularized CCA [23]
which allows integration of multimodal data. Such method can be
very useful when involving non-image and image data samples.

3.2 M E T H O D O L O G Y

3.2.1 Overview of the Algorithm

Our approach consists of two stages: First, we consider sub-
problems, each of which involves imputation on a single row in
the interaction matrix, and use weighted CCA to extract a compact
vector representation for each sub-problem. Then, we apply SVM for
prediction of each cell using the corresponding descriptor extracted in
the previous stage. This technique is overviewed as follows.

Chemical profiles obtained from chemical structures contain
numerous features that are not important for prediction. Extracting
significant features from such profiles is crucial for accurate prediction
of protein-ligand interaction. To accomplish this, we have to find
effective low-dimensional representations of the original chemical
profiles lying in the extremely high-dimensional chemical space.

Interaction profiles describe the existence and the absence of
interactions with several target proteins. More often than not, target
proteins share similar properties. For this reason, interaction profiles
approximately span a low-dimensional space, say Rm, which we shall
also extract from a high-dimensional interaction space, in a similar
fashion as the chemical profiles.

Canonical correlation analysis uses a set of chemical profiles and
interaction profiles to find two projection functions, φch and φin,
simultaneously: The projection φch is from the chemical space to the
low-dimensional canonical space Rm, and φin is from the interaction
space to Rm. The images of φch are used to approximate the images
ofφin. The projections obtained by CCA are shown mathematically to
be the minimizer of the expected deviation of the image of φch from
the image ofφin.

Figure 3.2a is an illustration of how CCA works with chemical
profiles and interaction profiles. In this figure, the shaded squares
are data representations of the feature vector of each ligand in the
chemical space. While the open circles are the data representation
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of the interaction vector of each ligand in the interaction space. The
images under φch and φin of these data points are plotted in the
canonical space, and their corresponding images are linked with a
dashed line. CCA finds the projectionsφch andφin so that the average
squared length of the dashed lines is minimized.

In application to protein-ligand interaction prediction, estimating
the images for all ligands is not necessary; it is only for the
ligand whose interactions we wish to predict that the image of the
chemical compound is desired to be well approximated. To obtain
a good approximation for a ligand of interest, it is sufficient to
estimate projections so that only the images of similar ligands are
approximated well. The precisions of the approximations for ligands
dissimilar to the ligand of interest barely affect the accuracy of the
solution. This consideration motivated us to assign weights to ligands
according to their similarity to the ligand of interest, and to extend the
classical CCA so that the weighted average deviation is minimized.
The weighted CCA almost disregards ligands with small weights
to find projections, achieving more accurate approximations for the
ligand of interest. We refer to the extension of CCA as weighted CCA.

Figure 3.2b illustrates the effects of weighted CCA when weights
are added to similar ligands. In this context, we define similarity as
the measure of affinity between features of compounds. This can be
represented by the distance between the data representation of the
ligands in the chemical space. In the given figure, the chemical profile
for a ligand of interest is marked with a star, and profiles of similar
ligands are colored red. In a similar manner, we interpret points of the
same color as ligands sharing similarities in their chemical properties,
hence their grouping in the chemical space. The two figures, (a) and
(b), allow us to compare classical CCA with weighted CCA: the
deviations for red points in (b) are smaller than those in (a). The
deviations for other ligands are larger, which hardly worsen the
performance of predicting the interaction of the protein of interest.

The final prediction result is obtained in the post-processing stage
using SVM. The images of the projections are used for SVM learning.
SVM is trained well if a good training set is given. Hence, ligands
with poor approximations by CCA, which are noisy for SVM learning,
are preferably excluded. The images are already in a low-dimensional
space in which SVM learning works well even with a small training
set, encouraging us to assign smaller weights to ligands with poor
approximations for SVM learning.
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Figure 3.2: Illustration of Classical CCA vs Weighted CCA. Our approach
projects chemical and interaction profiles into a low-dimensional
canonical space so that the images are close to each other. The
star point represents the ligand of interest, and red points are
ligands sharing similarities with the ligand of interest. Although
the classical CCA minimizes the average deviation over all the
ligands, to achieve accurate prediction, it is sufficient that the
deviations between the images of the target ligand and the
ligands similar to it are small. The weighted CCA works with
arbitrarily specified weights, which ensures small deviations for
red points by giving them larger weights.
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3.2.2 Weighted CCA

In this subsection we present the details of weighted CCA. We denote
the chemical profile and the interaction profile, respectively, by a pch-
dimensional vector xch and a pin-dimensional vector xin. Assuming
that the functions φch : Rpch → Rm and φin : Rpin → Rm are affine
transformations allows us to express them as

φch(x
ch) =WT

ch
(
xch − µch

)
, φin(x

in) =WT
in
(
xin − µin

)
,

where Wch ∈ Rpch×m, µch ∈ Rpch , Win ∈ Rpin×m, and µin ∈ Rpin

are their respective parameters. We wish to find the pair of projection
functions minimizing the expected deviation between the images
given by

J
(
φch,φin

)
≡ E

[
‖φch(x

ch) −φin(x
in)‖2

]
,

where E is the expectation operator.
The expected deviation can be reduced arbitrarily by setting the

projections so that the images are scaled down. A trivial solution
is Wch = 0 and Win = 0 at which the expected deviation
vanishes for any dataset. To avoid trivial solutions, the size of
the images is adjusted by fixing the second moment matrices,
E
[
φch(x

ch)φch(x
ch)T

]
and E

[
φin(x

in)φin(x
in)T

]
, to identity matrices.

The expectation appearing in the derivation and the second moment
matrices operates according to an empirical probabilistic distribution.
Supposing n ligands are given, the chemical profiles are denoted by
xch
1 , xch

2 , . . . , xch
n , and the interaction profiles by xin

1 , xin
2 , . . . , xin

n . If we
define an empirical distribution as

q(xch, xin) =

n∑
j=1

vjδ
(
xch − xch

j

)
δ
(
xin − xin

j

)
,

with weights v1, v2, . . . , vn whose sum is one and δ(·) is the Dirac
delta function, then the expected deviation is reduced to the weighted
average of deviation and can be expressed as

J
(
φch,φin

)
=

n∑
j=1

vj
∥∥φch

(
xch
j

)
−φin

(
xin
j

)∥∥2. (3.1)

This implies that approximations are refined locally by setting the
weights so that ligands dissimilar from the target ligand are given
smaller weights.

The optimal projections can be computed via the generalized
eigendecomposition, as given in Algorithm 3.1 in Subsection 3.5.2.
When setting vj = 1/n, the algorithm is shown to be equivalent to the
classical CCA. Hence, we can say that weighted CCA is an extension
of the classical CCA.

Kernelization of weighted CCA is formulated with a similarity
function of chemical profiles Kch

(
xch
i , xch

j

)
and a similarity function of
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interaction profiles Kin
(
xin
i , xin

j

)
without using the vectors themselves

explicitly. These similarity functions are said to be valid kernels
guaranteeing the theory of the algorithms, which map the profiles
nonlinearly into other (typically high-dimensional) spaces Hch and
Hin, respectively, called an RKHS. Kernelized weighted CCA finds
affine-transforms from RKHS to a canonical space Rm, so that the
expected deviation between images in Rm is minimized. If we denote
the composite mapping functions by ψch and ψin, respectively, the
optimal solution is given by

ψch(x
ch) = AT

chD
1/2
v k̄ch(x

ch), ψin(x
in) = AT

inD
1/2
v k̄in(x

in).

The algorithm for computing the two matrices, Ach ∈ Rm×n and
Ain ∈ Rm×n, is presented in Algorithm 3.2 in Subsection 3.5.3. The
functions k̄ch(·) and k̄in(·) are called empirical kernel mappings, and their
definitions can be derived from Equation (3.10), also in Subsection
3.5.3.

3.2.3 Weighted SVM

Prediction of the interaction between ligand i and target t is
performed with the SVM score given by

f
(
xch
i ; w(i,t),b(i,t)

)
= wT

(i,t)ψch
(
xch
i

)
+ b(i,t),

where xch
i is the chemical profile of ligand i. The SVM parameters,

w(i,t) and b(i,t), are obtained beforehand by the SVM learning
algorithm. This is performed only with ligands whose interaction with
the target t is known. This study employs the similarity of ligands as
weights in the learning process, as presented in Subsection 3.5.4.

3.2.4 Weighting schemes

Ligands are given weights in both stages of the weighted CCA and
the weighted SVM. These weights are dependent on the ligand to be
predicted. Larger weights are given for ligands that are more similar
to the ligand of interest. In predicting the interaction of the ith ligand,
the weight of jth ligand is given by the normalization of

v ′j =
1∥∥k̄ch

(
xch
j

)
− k̄ch

(
xch
i

)∥∥+ ∥∥k̄in
(
xin
j

)
− k̄in

(
xin
i

)∥∥+ ε , (3.2)

where ε is a positive constant and set to 10 in our analysis.
Normalization is done by setting

vj =
v ′j∑n
k=1 v

′
k

so that the sum of the weights is one.
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3.3 E X P E R I M E N T S A N D R E S U LT S

3.3.1 Data and Experimental Settings

The data used for this study was originally from [69]. The given
interaction matrix consists of 62 mammalian odorant receptors as
target proteins and 63 odorants as candidate ligands. It is binary in
form and contains 340 positive interactions. The number of known
positive interactions for each target protein is at least one and at
most thirty-seven, while the median is three. Some randomly selected
protein-ligand pairs are assumed to be unknown to test prediction
methods, and the values of the cells are set to zero. Each row in the
interaction matrix provides an interaction profile of the ligand.

From the chemical IDs supplied, we searched PubChem1 for the
chemical structures of the odorants to obtain the descriptors of
the ligands. Frequent substructures are employed as descriptors of
ligands. The frequent substructures are mined with a software named
gSpan [92]. The software is applied to the 63 chemical structures, and
the 60, 311 binary descriptors are obtained as chemical profiles.

To illustrate the effectiveness of the kernel weighted CCA
(KWCCA), we carried out experiments on an interaction dataset of G
protein-coupled receptors and odorants as previously described. For
evaluation of prediction performance, we applied a 10-fold Monte-
Carlo cross validation, where data is randomly divided into 2 disjoint
sets of training and test data for 10 repetitions. Data was partitioned
such that for each target protein, 50% of the positive and negative
interactions are used for training, and the other half for testing. KCCA,
KWCCA, and the weighted SVM were implemented in Matlab, and
LIBSVM [13] was used for the classical SVM.

We also performed prediction using SVM in the global model
setting for comparison. The kernel function for the global model here
is defined as the product of the inner product among chemical profiles
and the inner product among columns of the interaction matrix.

Parameters of the local models are determined by finding respective
values where the test data perform best using SVM and KCCA.
Namely, the regularization parameter C and the kernel function
for SVM are chosen so that SVM achieves the highest prediction
performance, while the regularization parameters for CCA γch and
γin, and the number of dimensions of the canonical space m, are
determined via the performance of KCCA. As a result, the values of
the parameters are set as C = 1000, γch = γin = 1, and m = 4. The
RBF kernel is applied and the kernel width is determined as the mean
of the distance within sets. These mentioned parameters are then fed
into the algorithm employing KWCCA. The parameters are not tuned
specifically for KWCCA. Thus, it is believed that there is a chance

1 http://pubchem.ncbi.nlm.nih.gov/
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Table 3.1: Abbreviation of methods.

Abbreviation Description

WW KWCCA + Weighted SVM

WU KWCCA + Classical SVM

KW Classical KCCA + Weighted SVM

KU Classical KCCA + Classical SVM

S SVM of local model

SGL Linear SVM of global model

SGR RBF SVM of global model

of improvement in the performance of this algorithm if careful and
suitable parameter selection is done.

For the global model, the kernel which achieves the best
performance is the linear kernel. The regularization parameter is
chosen as C = 10, achieving the best performance among other values.
Results for the case of the RBF kernel with the best C value obtained
are also reported for comparison.

The methods based on KWCCA involve two stages upon
implementation. First, we exploit KWCCA to extract a set of
features for each compound. Second, we use them for training a
machine learning algorithm employing SVMs before testing them to
make predictions. In total, seven methods are implemented in the
experiments: two using SVM in the global model setting, and the other
five following the local model. One of the two global model methods
uses RBF kernel for SVM, and the other uses the linear kernel. On
the other hand, the methods used for the local models are as follows:
SVM, KCCA with classical SVM, KCCA with weighted SVM, KWCCA
with classical SVM, and KWCCA with weighted SVM. For simplicity
of notation, we shall refer to each of the seven methods using the
abbreviations in Table 3.1.

3.3.2 Performance Evaluation Criteria

The following criteria were used to compare the seven prediction
methods:

1. Area under the ROC curve (AUC) – The receiver operating
characteristic (ROC) curve is a plot of the true positive rate (TPR)
versus the false positive rate (FPR) where

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

,
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and TP, FN, FP, and TN are the number of true positives,
false negatives, false positives, and true negatives, respectively.
For performance comparison using the ROC, the AUC value is
further computed.

2. F-measure – A value which is given by the harmonic mean of
precision and recall:

F =
2Prec×Recall
Prec + Recall

where the precision Prec and the recall Recall are defined by

Prec =
TP

TP + FP
and Recall =

TP
TP + FN

,

respectively. Since the problem is presented as a binary
classification problem, only the maximum value of the F-
measure values for each target is considered. The scores
obtained via SVM are used as confidence levels, thus, changing
the threshold yields different predictions.

These values are calculated for each target protein and averaged
over the ten data divisions. However, there are instances when the
test set does not contain a true positive interaction, hence AUC
and F-measures cannot be computed. Therefore, these values were
disregarded and, out of 62 target proteins, AUC and F-measures were
computed for 49 of them. The Wilcoxon signed test was used for
the statistical significance of the difference among the values of the
evaluation measures.

3.3.3 Effects of Using CCA and Weighting

The average AUCs and F-measures are reported in Figures 3.3a
and 3.3b, respectively. In comparison with the local models, four
CCA-based methods, WW, WU, KW, and KU, achieve remarkably
better AUCs and F-measures compared to those of S: the differences
between the AUCs and F-measures of KW, the worst among the
four CCA-based methods, and S are 0.014 and 0.053, respectively,(
P-values: 5.81× 10−7 and 9.49× 10−9 respectively

)
. The AUC of the

global model SGL is comparable to some of the local models, whereas
the F-measure is not worse than that of S. A closer inspection on
the results of SGL indicate that it has the lowest average number of
true positives over all cross-validations among all models, around 161,
which may be the reason behind a very small F-measure value.
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Figure 3.3: Average performance of the methods. Data was randomly split
into training and test sets, and 10 training-testing data divisions
were used for each method. Following the local model, AUC and
F-measure were computed for each of the 62 targets. The bar
plots represent the average AUC and average F-measure values,
respectively, over the 10 cross validation sets and the 49 targets
containing true positives. The two KWCCA-based methods,
WW and WU, and the other methods were implemented for
comparison. The difference of the performances of WW and WU
from the other five methods showed to be statistically significant
in terms of the P-values (by Wilcoxon signed rank test).

The effects of the weighted extension of CCA are manifested
via comparison among four CCA-based methods. WW achieves
significantly higher AUC and F-measures in average compared to
KW and KU, where the P-values for the difference in the AUCs are
4.85 × 10−11 and 6.91 × 10−10, and the P-values for the F-measures
are 3.59× 10−7 and 3.96× 10−6, respectively.

The frequencies of WW besting the AUC or F-measure values of the
other methods in predicting interactions for a certain target protein
are shown in the histograms in Figure 3.4a. These values represent the
number of target proteins such that the evaluated AUC and F-measure
values for the method WW is better than the AUC and F-measure
values of the other method in comparison. Instances when there are
ties between the methods were unaccounted. For the evaluated AUC
and F-measure values, WW outputs are more desirable than most of
the others which indicates higher quality of prediction performance.
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(a) Histogram comparisons of the proposed method WW vs. other methods.

(b) Histogram comparisons of Weighted SVM using the
weighting scheme in Equation (3.3) vs. Classical SVM.

Figure 3.4: Histograms illustrating the comparisons between the proposed
method WW and other methods. Frequencies when the AUC,
AUC between 0 and 0.05, and F-measure values of WW
outperform the other methods, and vice-versa, are illustrated. It
can be observed that AUC and F-measure values histograms for
WW are more desirable than the rest.
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3.3.4 Weighted SVM vs Classical SVM

Method WU yields interesting results in the histogram (Figure 3.4a):
The frequency of WW yielding better AUCs are comparable to that of
WU’s, although frequency of better F-measures are relatively higher
for WW than WU. To further investigate the comparison between
WW and WU, we compute the area under the curve of the region of
FPR between 0 and 0.05. This area, which we shall refer to as AUC05,
allows us to evaluate the true positive rate with higher confidence. The
histogram on AUC05 shows WW bests WU more frequently than WU
does, which implies the use of weights in the SVM stage can find more
true positives confidently than the classical SVM.

The motivation to endow the weights with training data in SVM
learning is that the projections in the canonical space from chemical
profiles with larger weights are expected to be better approximations
of the projections from interaction profiles. It is possible to directly
evaluate how good the approximations are by computing the
distances among the projections. This motivation leads to another
weighting scheme using the normalization of

v ′j =
1∥∥φch

(
xch
j

)
−φin

(
xin
j

)∥∥+ ε (3.3)

instead of that in (3.2) during the SVM learning stage. We investigate
the performance when the weighting scheme is changed to (3.3) in the
SVM learning stage, and refer to this approach as WWUW hereinafter.
The average AUC and F-measure of WWUW are 0.802 and 0.649,
respectively, which are slightly worse than those of WW. The number
of target proteins, for which the prediction performance of WWUW

is better than that of WW is not larger than the number of WW
besting WWUW, as depicted in Figure 3.4b. These facts imply that
the changing weighting scheme in SVM learning does not achieve
significant improvements.

3.3.5 Using Interaction Profiles

When a sufficient number of known positive and negative interactions
are given for a certain ligand, the image of the interaction profile in
the canonical image can provide good descriptors for predicting the
remaining interactions. We further implemented two methods, herein
referred to as WWI and WWIC, to investigate the performance of the
interaction profile. WWI replaces the image of a chemical profile with
the image of the interaction profile in the SVM stage, while WWIC
concatenates the two images to feed them to the weighted SVM. The
two methods achieved significant improvement. WWI achieved an
average AUC of 0.857 and average F-measure of 0.699, while WWIC
obtained a 0.835 average AUC and a 0.692 average F-measure. The
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P-values of the differences on AUC from WW are 5.27 × 10−9 and
0.021, respectively, and P-values on F-measures are 1.05 × 10−5 and
9.17× 10−7, respectively. Figure 3.5 shows the average ROC curves of
WW, WWI, and WWIC. The curves of WWI and WWIC are evidently
higher than that of WW, which supports the claim that introducing the
interaction profiles improves the prediction performance.

Figure 3.5: ROC curves. WWI uses the projections from interaction profiles
in the SVM stage, and WWIC uses the projections from both
chemical and interaction profiles for SVM.

3.4 S U M M A R Y

A kernel version of weighted canonical correlation analysis is
proposed, which is implemented using a derived form of the
generalized eigenvalue problem. Similar to the linear CCA and its
kernelized version, this can be applied to machine learning problems
for dimension reduction and feature extraction. The paper presents
an application to improving the prediction quality obtained in the
protein-ligand interaction problem setting. By adding bias to more
similar samples, better prediction can be made which is evident on
the higher AUC and F-measure values obtained. Weighting scheme
on SVM based on CCA outputs were also explored and are judged to
be better than classical SVM.
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3.5 S U P P O RT I N G T H E O R I E S A N D P R O O F S

Here we present the details of some of the concepts employed in this
chapter.

3.5.1 Generalized Eigendecomposition

The generalized eigendecomposition is defined as follows.

Theorem 3.1 (Generalized Eigendecomposition). Let n ∈ N. For any
A ∈ Sn and any B ∈ Sn++,

∃U ∈ Rn×n,∃λ ∈ Rn, such that AU = BUDλ,

UTBU = In.

The entries of λ are called generalized eigenvalues, and the columns
ofU are called generalized eigenvectors.

This subsection deals with the case when two matrices A ∈ Sn+m

and B ∈ Sn+m++ are of the form

A =

[
0m×m C

CT 0n×n

]
, B =

[
Bx 0m×n

0n×m By

]
,

where C ∈ Rm×n with r ≡ rank(C). Let us denote the generalized
eigendecomposition of (A,B) by

AUall = BUallΛall,

where UT
allBUall = Im+n, Λall = diag(λall), and λall =

[λ1, λ2, . . . , λm+n]
T, such that λ1 > λ2 > · · · > λm+n. We denote the

columns inUall by

Uall = [u1,u2, . . . ,um+n] =

[
ux,1,ux,2, . . . ,ux,m+n

uy,1,uy,2, . . . ,uy,m+n

]
,

where ∀i ∈Nm+n, ux,i ∈ Rm, uy,i ∈ Rn, and define

Ux ≡ [ux,1,ux,2, . . . ,ux,r], Uy ≡ [uy,1,uy,2, . . . ,uy,r].

The following theorem is the main result of this subsection.

Theorem 3.1. Consider the following optimization problem

maximize tr(XTCY)

wrt X ∈ Rm×k,Y ∈ Rn×k,

subject to XTBxX = YTByY = Ik.

An optimal solution is given by

X =
√
2[ux,1,ux,2, . . . ,ux,k], Y =

√
2[uy,1,uy,2, . . . ,uy,k].
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To prove Theorem 3.1, we will use the following lemma.

Lemma 3.1.

UT
xBxUx = UT

yByUy =
1

2
Ir.

Proof. Let
Λ ≡ diag{λ1, λ2, . . . , λr}.

Here we assume that λr > 0. From this assumption,

CUy = BxUxΛ, and CTUx = ByUyΛ.

Pre-multiplying the former equation by UT
x and post-multiplying the

transpose of the latter equation byUy yield

UT
xBxUxΛ = UT

xCUy = ΛUT
yByUy.

For the diagonal entries of the above equality,

λiu
T
x,iBxux,i = λiu

T
y,iByuy,i, ∀i ∈Nr,

resulting in

uT
x,iBxux,i = u

T
y,iByuy,i =

1

2
(3.4)

since λi > 0 and from the assumption that UT
allBUall = Im+n. For the

off-diagonal entries,

uT
x,iBxux,j −

λi
λj
uT
y,iByuy,j = 0. (3.5)

Again fromUT
allBUall = Im+n, we also have[

ux,i

uy,i

]T

B

[
ux,j

uy,j

]
= uT

x,iBxux,j +u
T
y,iByuy,j = 0. (3.6)

From the two equations (3.5) and (3.6), we obtain

uT
x,iBxux,j = u

T
y,iByuy,j = 0. (3.7)

Thus, equations (3.4) and (3.7) establish Lemma 3.1.

Proof. (of Theorem 3.1) Let

Z ≡ 1√
2

[
X

Y

]
.

There exists R ∈ R(m+n)×k such that Z = UallR, and matrix R is
orthonormal, i.e. R ∈ O(m+n)×k, since

RTR = RTI(m+n)R = RTUT
allBUallR = ZTBZ

=
1

2
XTBxX+

1

2
YTByY = Ik.
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Let ri ∈ Rk denote the ith row vector, i.e.

R =


rT1

rT2
...

rTm+n

 .

Then we have

tr(XTCY) =
1

2
tr(XTCY) +

1

2
tr(YTCTX)

=
1

2
tr

([
XT,YT][ 0m×m C

CT 0n×n

][
X

Y

])
= tr(ZTAZ) = tr

(
RTUT

allAUallR
)

= tr
(
RTUT

allBUallDλallR
)
= tr

(
RTDλallR

)
=

m+n∑
i=1

λi‖ri‖2 = 〈w,λall〉, (3.8)

where w ∈ Rm+n
+ is a nonnegative vector in which the ith entry is

defined by wi = ‖ri‖2. To conclude the proof, we shall make use of
the following two properties:

First, note that there exists S ∈ O(m+n)×(m+n−k) such that RTS =

0k×(m+n−k). Then [R,S] ∈ O(m+n)×(m+n). Let si ∈ R(m+n−k)

denote the ith row vector, i.e.

S =


sT1

sT2
...

sTm+n

 .

Then ∀i ∈Nn we have

1 =

∥∥∥∥[ ri
si

]∥∥∥∥2 = ‖ri‖2 + ‖si‖2 > ‖ri‖2 = wi,
where the first equality follows from the property of the square
orthonormal matrix: [R,S][R,S]T = In. Second, observe that

‖w‖1 =
n∑
i=1

wi =

n∑
i=1

‖rk‖2 = tr(RRT) = tr(RTR) = tr(Ik) = k.

Now the objective function tr(XTCY) is maximized when

wi =

1, if 1 6 i 6 k,

0, if k < i 6 n,
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and so the value of (3.8) is bounded above by

〈w,λ〉 6
k∑
i=1

λi.

Finally, we show that equality holds when

R =

[
Ik

0(m+n−k)×k

]
.

Since Z = UR = Uma, whereUma ≡ [u1,u2, . . . ,uk], we have

tr(ZTAZ) = tr
(
UT

maAUma
)
=

k∑
i=1

λi.

Thus, Z = Uma is an optimum, which implies

X =
√
2[ux,1,ux,2, . . . ,ux,k], Y =

√
2[uy,1,uy,2, . . . ,uy,k].

3.5.2 Linear Weighted CCA

Algorithm 3.1 (Linear Weighted CCA). Define two matrices,

Xch ≡
[
xch
1 , xch

2 , . . . , xch
n

]
and Xin ≡

[
xin
1 , xin

2 , . . . , xin
n

]
,

and let v = [v1, v2, . . . , vn]T. Then the optimal offsets, µch and µin, are
computed as

µch = Xchv and µin = Xinv.

We use the optimal offsets to define Cch,ch,Cch,in,Cin,ch,Cin,in as

Cch,ch ≡ XchDvX
T
ch − µchµ

T
ch, Cch,in ≡ XchDvX

T
in − µchµ

T
in,

Cin,ch ≡ XinDvX
T
ch − µinµ

T
ch, Cin,in ≡ XinDvX

T
in − µinµ

T
in,

and consider the following generalized eigendecomposition problem:[
0pch×pch Cch,in

Cin,ch 0pin×pin

][
wch

win

]
=

[
Cin,in 0pin×pch

0pch×pin Cch,ch

][
wch

win

]
.

Denote the hth major eigenvector by
[
wch
h

win
h

]
. The optimal loading matrices

Wch andWin are computed by setting the hth columns ofWch andWin to
wch
h andwin

h , respectively.
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Theorem 3.2. Algorithm 3.1 yields the parameters of the mapping
functions (φch,φin) which minimize the expected deviation subject
to the scaling constraints that the second moment matrices are the
identity matrix.

To prove this theorem, we employ the following result.
Let two affine mapping functions φch : Rpch → Rm and φin :

Rpin → Rm be parametrized by

φch(xch) =W
T
ch
(
xch − µch

)
and φin(x

in) =WT
in
(
xin − µin

)
,

respectively. For a probabilistic distribution p(xch, xin), define the
expected deviation by

J = Ep(xch,xin)

[
‖φch(x

ch) −φin(x
in)‖2

]
.

If we consider the optimization problem for minimizing the expected
deviation with respect to the parameters (Wch,µch,Win,µin) subject
to

Ep(xch)

[
φch(x

ch)φch(x
ch)T

]
= Ep(xin)

[
φin(x

in)φin(x
in)T

]
= Im,

a minimizer of the optimization problem is found by the following
optimization problem.

Set the offset vectors as

µch = Ep(xch)[x
ch] and µin = Ep(xin)[x

in].

The optimal loading matrices Wch and Win are computed by setting
the hth columns of Wch and Win to wch

h and win
h , respectively, and

denoting by

[
wch
h

win
h

]
the hth major eigenvector of the generalized

eigendecomposition: [
0pch×pch C̆ch,in

C̆in,ch 0pin×pin

][
wch

win

]

=

[
C̆in,in 0pin×pch

0pch×pin C̆ch,ch

][
wch

win

]
, (3.9)

where the covariance matrices are given by

C̆ch,ch ≡ Ep(xch)

[
(xch − µch)

(
xch − µch)

T],
C̆ch,in ≡ Ep(xch,xin)

[
(xch − µch)(x

in − µin)
T],

C̆in,ch ≡ C̆
T
ch,in,

C̆in,in ≡ Ep(xin)

[
(xin − µin)(x

in − µin)
T].

To verify this, we let

x ≡
[
xch

xin

]
, and µtot ≡

[
µch

µin

]
.
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Then the second order moment matrices are rewritten as

E
[
φch(x

ch)φch(x
ch)T

]
= WT

chE
[
(µch − x

ch)(µch − x
ch)T

]
Wch,

E
[
φin(x

in)φin(x
in)T

]
= WT

inE
[
(µin − x

in)(µin − x
in)T

]
Win,

respectively, and the expected deviation is arranged as

J = E
[
‖φch(x

ch) −φin(x
in)‖2

]
= E

[
‖WT

ch(x
ch − µch) −W

T
in(x

in − µin)‖2
]

= tr
(
WT

chE
[
(xch − µch)(x

ch − µch)
T]Wch

)
+tr
(
WT

inE
[
(xin − µin)(x

in − µin)
T]Win

)
−2tr

(
WT

chE
[
(xch − µch)(x

in − µin)
T]Win

)
= 2m− 2tr

(
WT

chE
[
(xch − µch)(x

in − µin)
T]Win

)
.

From here, we will first derive the optimal value of µtot, and then
give the algorithm to find the optimal Wch and Win. Introducing the
Lagrangian multipliers Λch ∈ Spch and Λin ∈ Spin , the Lagrangian
function is written as

LA = 2m− 2tr
(
WT

chE
[
(µch − x

ch)(µin − x
in)T

]
Win

)
−

〈
Λch, Im −WT

chE
[
(µch − x

ch)(µch − x
ch)T

]
Wch

〉
−

〈
Λin, Im −WT

inE
[
(µin − x

in)(µin − x
in)T

]
Win

〉
.

To obtain the values of µch and µin at the saddle point, we set the
derivative of the Lagrangian to zero:

∂LA

∂µch
= 2WchW

T
in
(
µin − E[xin]

)
+ 2WchΛchW

T
ch
(
µch − E[xch]

)
,

∂LA

∂µin
= 2WinW

T
ch
(
µch − E[xch]

)
+ 2WinΛinW

T
in
(
µin − E[xin]

)
.

The two derivatives vanish simultaneously when

µch = E[xch] and µin = E[xin].

Next we derive the optimal Wch and Win. Substituting the
definitions of the covariance matrices into the expected deviation and
the second moments of the affine transformations, we have

J = 2m− 2tr
(
WT

chC̆ch,inWin
)

and

Ep(xch)

[
φch(x

ch)φch(x
ch)T

]
= WT

chC̆ch,chWch,

Ep(xin)

[
φin(x

in)φin(x
in)T

]
= WT

inC̆in,inWin.

Then, by omitting the constants, the problem for finding the optimal
Wch andWin is reduced to the following optimization problem:

maximize tr(WT
chC̆ch,inWin)

wrt Wch ∈ Rpch×m,Win ∈ Rpin×m,

subject to WT
chC̆ch,chWch =WT

inC̆in,inWin = Im.
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From Theorem 3.1, the optimization problem is solved by generalized
eigendecomposition (3.9) previously described. Hence, the given
algorithm finds a minimizer of the optimization problem.

Now we present the proof of Theorem 3.2.

Proof. Observe that if we substitute the probabilistic distribution
p(xch, xin) to the empirical distribution q(xch, xin) defined in the main
text, the first moments and the second moments are expressed as

Ep(xch)[x
ch] = Xchv, Ep(xin)[x

in] = Xinv,

C̆ch,ch = XchDvX
T
ch − µchµ

T
ch, C̆ch,in = XchDvX

T
in − µchµ

T
in,

C̆in,ch = C̆
T
ch,in, C̆in,in = XinDvX

T
in − µinµ

T
in,

which implies that the optimization algorithm given in the result
above is equivalent to Algorithm 3.1 in this case. Thus, Theorem 3.2
is established.

3.5.3 Kernel Weighted CCA

Suppose we are given n drug samples. The kernel matrices of the
chemical and interaction kernels Kch ∈ Sn×n and Kin ∈ Sn×n are
defined so that their respective entries are the values of the kernel
functions, as given by

Kch
i,j = Kch

(
xch
i , xch

j

)
, Kin

i,j = Kin
(
xin
i , xin

j

)
, ∀i, j ∈Nn.

The kernel empirical mapping of the two information sources are
defined as

kch(x
ch) ≡

[
Kch
(
xch
1 , xch),Kch

(
xch
2 , xch), . . . ,Kch

(
xch
n , xch)]T,

kin(x
in) ≡

[
Kin
(
xin
1 , xin),Kin

(
xin
2 , xin), . . . ,Kin

(
xin
n , xin)]T.

KWCCA needs the kernel values among shifted vectors in the kernel
Hilbert spaces. The shifted kernels for chemical profiles can be
computed as

K̄ch
(
xch
i , xch

j

)
≡ Kch

(
xch
i , xch

j

)
− vT(kch

(
xch
i

)
− kch

(
xch
j

))
+ vTKchv,

k̄ch(x
ch) ≡

(
In − 1nv

T)(kch(x
ch) −Kchv

)
, (3.10)

K̄ch ≡
(
In − 1nv

T)Kch
(
In − v1T

n

)
,

and K̄in
(
xin
i , xin

j

)
, k̄in(x

in), and K̄in are defined similarly.
If we define

˜̄Kch ≡ D
1/2
v K̄chD

1/2
v and ˜̄Kin ≡ D

1/2
v K̄inD

1/2
v ,

then the expected deviation between the images in Rm is expressed as

E
[
‖ψch(x

ch) −ψin(x
in)‖2

]
= 2m− 2tr

(
AT

ch
˜̄Kch

˜̄KinAin
)
. (3.11)
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The second moment matrices can be written as

E
[
ψch(x

ch)ψch(x
ch)T

]
= AT

ch
˜̄K2chAch,

E
[
ψin(x

in)ψin(x
in)T

]
= AT

in
˜̄K2inAin.

Hence, the algorithm can be reduced to the following maximization
problem:

maximize tr
(
AT

ch
˜̄Kch

˜̄KinAin
)

wrt Ach,Ain ∈ Rn×m,

subject to AT
ch

˜̄K2chAch = AT
in

˜̄K2inAin = Im.

Since the rank of In−v1T
n is n− 1, the two shifted kernel matrices, ˜̄Kch

and ˜̄Kin, are always singular. To avoid overfitting, we introduce two
regularization terms γchA

T
chAch and γinA

T
inAin to scale constraints as

AT
ch

˜̄K2chAch + γchA
T
chAch = AT

in
˜̄K2inAin + γinA

T
inAin = Im, (3.12)

where γch and γin are constants. The following algorithm finds Ach

and Ain minimizing the expected deviation subject to the regularized
constraints.

Algorithm 3.2 (Kernel Weighted CCA). Solve the following generalized
eigendecomposition:[

0n×n
˜̄Kch

˜̄Kin
˜̄Kin

˜̄Kch 0n×n

][
αch

αin

]
=

[ ˜̄K2ch + γchIn 0n×n

0n×n
˜̄K2in + γinIn

][
αch

αin

]
.

The matrix
[
Ach

Ain

]
is set so that its hth column is set to the hth major

generalized eigenvector.

Theorem 3.3. Algorithm 3.2 yields the parameters of the mapping
functions (ψch,ψin) which minimize the expected squared deviation
(3.11) subject to the scaling constraints given in (3.12).

Proof. The problem of minimizing (3.11) subject to (3.12) can be
rewritten as

maximize tr
(
AT

ch
˜̄Kch

˜̄KinAin
)

wrt Ach ∈ Rn×m,Ain ∈ Rn×m,

subject to AT
ch

˜̄K2chAch + γchA
T
chAch = AT

in
˜̄K2inAin + γinA

T
inAin = Im.

From Theorem 3.1, this optimization problem is solved by the
generalized eigendecomposition in Algorithm 3.2.
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3.5.4 Weighted SVM

Let us denote the protein-ligand interaction table by Y ∈ {±1, 0}n×pin ,
where each row represents a ligand, and each column represents a
target protein. Each cell in the table Y takes one of three values,±1 and
0: +1 and −1 indicate the existence and the absence of the interaction,
respectively, and unknowns are 0.

SVM learning algorithm finds a classification boundary minimizing
the violations for the constraints that training points are kept out of
the margin. The weighted SVM employed in this study counts the
violations with weights vj (See Subsections 3.2.4 and 3.3.4) given to
each training data.

When the interaction between a ligand i and a target t is predicted,
ligands whose interactions with the target t are known are selected as
training data. If the index set of the ligands for training is denoted by
Ii, then the weighted SVM minimizes

1

2
‖w‖2 +C

∑
j∈Ii

vjmax
(
0, 1− Yj,tf

(
xch
j ;w,b

))
,

where C is constant. This algorithm is reduced to the classical SVM if
all vj’s are set to be equal in value. The dual problem of the weighted
SVM learning algorithm can be derived as a quadratic program with
box constraints and a single equality linear constraint, enabling fast
learning with kernels.
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Enzymes are protein molecules, each of which plays an important role
in several metabolic reactions in the body needed to sustain life. These
proteins consist of atoms, and can be modeled using 3-dimensional
structures such as that shown in Figure 4.1b. In fact, there are many
proteins for which the corresponding structures are known, that is, the
3D coordinates of their atoms have been measured and documented.
However, among these, many still have unknown functions. Studying
enzymes and their structure aids in determining their function in the
body. And if their functions should be uncovered, they would be very
useful to scientists and pharmacists. Therefore, searching for proteins
with specific enzyme function or reaction, for instance, has been an
active research theme [6, 15, 19, 31, 43, 47, 36, 37, 77, 79, 84].

Aside from predicting protein and ligand interactions, determining
active sites of enzyme proteins are also useful for drug discovery
and development. Active sites are localized positions among the
atoms that comprise an enzyme molecule responsible for the catalytic
reactions. As in Figure 4.1c, these localized regions are very small
compared to the entire protein molecule. In spite of this, two enzymes
with different overall molecular shape may also have common
enzymatic reactions as long as they have active sites with similar
forms. Aside from determining their functionality, by analyzing the
structures of enzymes and identifying the active sites, drugs can be
designed by identifying which substrates or chemical compounds can
fit into the active sites to produce some desired reaction or product.

Recent results imply that cases where analogous enzymes share
active sites are not rare [22]. Thus, it is necessary to examine
explicit local structures of active sites that may possibly reveal
enzyme functionality, rather than global structures [50]. There have
been several “template-based” methods performing local structure
comparison for detecting similar active sites [84, 19, 43, 77, 6, 15,
31, 47, 79]. Using a predefined template, these methods search for
occurrences of the active site residue atoms contained in the template
within the structure of the target protein. However, there remain some
difficulties and questions that need to be challenged in relation to
these template-based methods. One complication is that prediction
accuracy may be dependent on the atom type and number of atoms in
the template. Determining which atoms in the catalytic site should be
included is often very difficult, and even experts on enzyme structure
and function might resolve to trial and error to create the best template.
In addition to the aforementioned, template-based methods not only

35
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yield many site matches, but also a huge number of mismatches.
Thus, the possibility of reducing the number of mismatches is always
contested.

Two well-known template-based methods are TESS [84] and
JESS [6]. While TESS uses geometric hashing to search for local
structures [84] and JESS uses kd-tree data structures [6], both methods
compute the mean square deviation for the search results. In this work,
we give a weight coefficient to each atom to employ the weighted
squared deviation, and developed a new machine learning algorithm
for determining the weights. While Kato and Nagano have previously
proposed another algorithm based on a linear program [36], the
new algorithm presented in this chapter applies a more natural
formulation in terms of machine learning. The mainstream of modern
machine learning methods involves minimizing an objective function
defined by the sum of a loss function and a regularization function to
determine the values of the model parameters, which are the weights
for the atoms for the task at hand. The previous method [36], however,
is different from this approach, from which we pose some questions: Is
the active site prediction task so particular that a specialized method
which does not follow the typical modern approach is necessary? Or,
is it possible to replace the learning algorithm with one developed in
a more natural fashion?

One contribution of this work is to show that comparable prediction
performance can be achieved even with algorithms that adopt modern
machine learning techniques. A regularization function, which is
combined with a loss function to form the objective function is similar,
in some sense, to the prior distribution in maximum a posteriori
(MAP) estimation. The regularization function is chosen so that the
model parameter is set to a non-informative point when minimizing
only the regularization function. In our task, the non-informative
parameters are equal weights. To incorporate the differences with
the equal weights in the regularization, this work employs two
Bregman divergences [40]: the squared Euclidean distance and the
Kullback-Leibler divergence. The learning algorithm with either of
the two regularization functions is an instance of Bregman divergence
regularized machine (BDRM) [40], and its framework can be used for
learning.

The rest of this chapter is organized as follows. The succeeding
section reviews a typical procedure for active site search, which is also
employed in this study. The procedure for active site search quantifies
how much the candidate local sites are deviated from the template.
For the quantification of the deviation, weight coefficients are adopted,
and algorithms that automatically determine the weight coefficients
are presented in Section 4.2. Experimental results are reported in
Section 4.3.
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4.1 A C T I V E S I T E S E A R C H M E T H O D

This work addresses the active site search problem described in
Figure 4.1. The input in the active site search problem is composed
of the template describing an active site of interest and function-
unknown protein structures. The task is to identify the active sites if
they exist; otherwise, the search algorithm will output “Not Found.”

(a) Input: Template. (b) Input:
Function-unknown
protein structure.

(c) Output: Active sites.

Figure 4.1: The active site search problem. In this problem, the inputs are
a template and a function-unknown protein structure, and the
output is a set of active sites in the protein structure. (a) A
template is a set of atoms in an active site of interest. (b) The
3D coordinates of the atoms and the atom types are given for
the function-unknown protein structure. (c) Estimated active sites
have a similar shape to the template.

The typical procedure for the active site search problem consists
of two stages: Local Site Search stage and Deviation Computation
stage. In the Local Site Search stage, an algorithm such as TESS [84]
or JESS [6] is used to enumerate local sites whose shapes are possibly
similar to the template. These local sites also contain the same atoms
corresponding to the ones in the template.

Conventionally, the mean square deviation between the template
and each candidate of local sites is computed in the Deviation
Computation stage. Suppose a template has n atoms. Then each local
site candidate also contains exactly n atoms. These two sets of n atoms
have a one-to-one correspondence, as depicted in Figure 4.2.
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Figure 4.2: Comparison between a local site and a template. Basically, each
atom in a local site is of the same type as the corresponding
atom in the template. For example, a carbon atom in the local
site corresponds to a carbon atom in the template, and an oxygen
atom in the local site to an oxygen atom in the template. Atoms
in local sites outputted from the local site search stage have a one-
to-one correspondence with the atoms in the template. For each
atom i in the template located at xtmplt

i ∈ R3, the corresponding
atom in a local site candidate located at x′i ∈ R3 is rotated and
shifted, and the deviation

∥∥xtmplt
i −Rx′i − v

∥∥ is assessed.

Essentially, the type of the ith atom in a local site candidate is the
same as the type of the ith atom in the template. Let us denote by
x

tmplt
i ∈ R3 the 3D coordinates of the ith atom in the template, and by
x′i ∈ R3 the 3D coordinates of the ith atom in the corresponding local
site candidate. Let

Xtmplt :=
[
x

tmplt
1 , xtmplt

2 , . . . , xtmplt
n

]
∈ R3×n and

X′ :=
[
x′1, x′2, . . . , x′n

]
∈ R3×n.

In case of unweighted atoms, the mean square deviation is given by

Dunwei(X
′,Xtmplt;R, v) :=

1

n

n∑
i=1

∥∥xtmplt
i − (Rx′i + v)

∥∥2
where R ∈ R3×3 and v ∈ R3 are parameters for rigid-body
transformation; R and v represent a rotation matrix and a translation
vector, respectively, with the rotation matrix satisfying RTR = I. The
two parameters (R, v) that minimize the mean square deviation are
used, and the minimizer can be found in O(1) computation.
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If we give weight coefficientsw = [w1,w2, . . . ,wn]
T to n atoms, the

weighted square deviation is given by the linear combination

D(X′,Xtmplt;w,R, v) :=
n∑
i=1

wi
∥∥xtmplt
i − (Rx′i + v)

∥∥2, (4.1)

which contains the mean square deviation with the weightsw = 1/n.

4.2 L E A R N I N G A L G O R I T H M

In this work, the weighted square deviation (4.1) is employed, and the
weight coefficientsw are determined by learning from a training data
set.

A data set for training (Figure 4.3) is constructed as follows.

1. Collect the protein structures of enzymes whose active sites are
known.

2. Apply the TESS algorithm to the collected protein structures to
get the local sites that are possibly similar to the template.

3. For each local site obtained in the previous step, give a class label
yi ∈ {±1}. If the local site is actually an active site represented by
the template, set yi = +1; otherwise, yi = −1.

Figure 4.3: Dataset for training. The proposed method weights atoms in a
template, and the weights are determined via machine learning
using a training dataset. Protein structures whose active sites are
known are used for the construction of a training dataset. For
these protein structures, TESS is used to search local sites similar
to the template. Class label yi = +1 is assigned to local sites which
are true active sites, and class label yi = −1 is given to non-active
sites.
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The number of atoms in each local site is equal to the number
of atoms in the template, n. Moreover, each atom in the local site
bijectively corresponds to one of the n atoms in the template. Suppose
that ` local sites are obtained. Then the 3D coordinates of the kth local
site are expressed as x1,k, x2,k, . . . , xn,k ∈ R3, and for future reference,
we define

X(k) := [x1,k, x2,k, . . . , xn,k] .

This work employs the regularized loss minimization approach
using a regularization function and a loss function. The regularized
loss minimization is similar to the MAP estimation [8] that maximizes
the product of the likelihood function and the prior density function,
where the likelihood function corresponds to the loss function and
the prior density function to the regularization function. The loss
function is designed so that, for positive sites, a nonzero loss is given
if the weighted square deviation is smaller than a threshold θ, and for
negative sites, a nonzero loss is given if the weighted square deviation
is greater than the threshold θ. The definition of the loss function is
given by

loss(w, θ) :=
∑̀
k=1

ck
(
yk
(
θ−D

(
X(k),Xtmplt;w,R(k), v(k)

)))2
+

where ck is a positive constant. The rigid-body parameters
(
R(k), v(k)

)
are set to the minimizers of D

(
X(k),Xtmplt; 1/n,R(k), v(k)

)
, and the

operator (·)+ is defined as (x)+ = max(x, 0), ∀x ∈ R.
The regularization function is designed as follows. The prior

distribution in the MAP estimation is often chosen so that the
estimated model is non-informative if the training data is not given.
Similarly, the regularization function employed in this study is
minimized when no data is provided. In this work, the weight
coefficients are the model parameters, and the most non-informative
parameters are equal weights:

w1 = w2 = · · · = wn = 1/n

Hence, we constructed the regularization function so that it is
minimized at

w0 = [w1,0,w2,0, . . . ,wn,0]
T := 1n/n.

The following two regularization functions are employed in this
analysis:

• `2 regularization

r2(w) :=
1

2
||w−w0||

2.
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• KL (Kullback-Leibler) regularization

rKL(w) :=

n∑
i=1

wi log
wi
wi,0

−wi +wi,0.

As a result, we obtain the following minimization problem:

minimize r(w) +
λ

2
(θ− θ0)

2 + loss(w, θ),

wrt w ∈ Rn+, θ ∈ R+, (4.2)

where either `2 regularization or KL regularization is used as the
regularization function r(·), λ is a positive constant, and θ0 is set to
1 in the experiments described in the succeeding section.

4.2.1 Optimization Algorithm

Both `2 regularization function and KL regularization function are
examples of Bregman divergence, which is defined as follows.

Let ϕ be a seed function which is continuously-differentiable, real-
valued, and strictly convex. A Bregman divergence Dϕ : domϕ ×
ri(domϕ)→ [0,+∞) is constructed with ϕ as

Dϕ(x;y) := ϕ(x) −ϕ(y) − 〈x−y,∇ϕ(y)〉 ,

where domϕ is the domain of ϕ, and ri(domϕ) is the relative
interior of domϕ. For example, the seed function ϕ(w) = 1

2 ||w||2

yields Dϕ(w;w0) = r2(w), and ϕ(w) =
∑n
i=1wi logwi generates

Dϕ(w;w0) = rKL(w).
The learning algorithm from problem (4.2) is an instance of BDRM

[40] with either of the two regularization functions, r2(·) and rKL(·),
but with an additional constraint that the weight coefficients have to
be non-negative when using r2(·). The resulting algorithms are shown
in Algorithm 4.1 for `2 regularization and in Algorithm 4.2 for KL
regularization, where ak = [a1,k,a2,k, . . . ,an,k]

> is an n-dimensional
vector whose entry is defined as

ai,k := yk
∥∥xtmplt
i −

(
Rx′i + v

)∥∥2, i = 1, 2, . . . ,n.

Algorithm 4.1 `2 Regularized Learning Algorithm
1: (α,β) := (0`, 0d); (w, θ) := (w0, θ0);
2: for t = 1, 2, . . . do
3: for k = 1, 2, . . . , ` do
4: w̄ := w+αkak; θ̄ := θ− 1

λαkyk;

5: αk :=
(〈ak,w̄〉−ykθ̄)+
1/λ+1/ck+||ak||2

;

6: w−1/2 := w̄−αkak; θ := θ̄+ 1
λαkyk;

7: w :=
(
w−1/2 −β

)
+

; β := wt−1/2 −β−w;
8: end for
9: end for
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Algorithm 4.2 KL Regularized Learning Algorithm.
1: α := 0`; v := log(w0); θ := θ0;
2: for t = 1, 2, . . . do
3: for k = 1, 2, . . . , ` do
4: v̄ := v+αkak;
5: θ̄ := θ− 1

λαkyk;
6: if 〈ak, exp(v̄)〉 6 ykθ̄ then
7: αk := 0;
8: else
9: Find positive αk satisfying a nonlinear equation

〈ak, exp(v̄−αkak)〉 = ykθ̄+ (1/λ+ 1/ck)αk.

10: end if
11: v := v̄−αkak; θ := θ̄+ 1

λαkyk;
12: end for
13: end for

4.3 E X P E R I M E N T S A N D R E S U LT S

To investigate the performance of our methods, experiments were
conducted over PDB datasets. We used PDB entries that are
annotated in EzCatDB [53, 54], which provides information of enzyme
classifications and the amino acid residues of active sites. A total
of 31 enzyme classes having a sufficient number of proteins were
chosen, and these templates were generated from the amino acid
residues in their active sites. The resulting dataset contains 5,538
protein structures, some of them containing multiple active sites.

Each amino acid in the active site is classified into one of four
types: catalytic-site residues, cofactor binding site residues, modified
residues, and mainchain catalytic residues. For cofactor binding site
residues, all atoms are included in the template, whereas atoms from
the sidechains of residues were included in the template for modified
residues and catalytic-site residues. For mainchain catalytic residues,
only mainchain atoms were included in the template.

Two proposed methods, `2-regularized and KL-regularized BDRMs
(abbreviated to L2 and KL), were examined. These methods were
compared with the (unweighted) mean square deviation (UD) and
Kato and Nagano’s method (KND) [36].

Half of the 5,538 protein structures in the data set were chosen
randomly and used for training, and the rest is used for testing.
This is repeated three times to get three divisions. Sensitivity at 95%
specificity and AUC values were obtained from each of testing data
set. Sensitivity is defined as the ratio of true positive sites that are
correctly identified whereas specificity is the ratio of true negative
sites that are correctly identified. The AUC value is the area under
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the ROC curve, which plots the ratio of true positives against the ratio
of false positives for different possible thresholds. Since 31 templates
are used in three divisions, 93 sensitivities and 93 AUC scores were
obtained. The averages are reported hereinafter.

0.95 0.96 0.97 0.98 0.99 1

L2

KL

KND

UD

(a) AUC values

0.86 0.88 0.9 0.92 0.94 0.96

L2

KL

KND

UD

(b) Sensitivity at Specifity 0.95

Figure 4.4: Average performance of all methods.

Figures 4.4a and 4.4b illustrate the average AUC and sensitivity
scores for all methods, respectively. For both evaluation measures,
KL achieved the highest performance, and the second highest was
KND. The performance of UD was lower than any weighted square
deviation method. To detect the statistical difference, one-sample t-test
was performed. P-value for the difference of AUC scores between L2
and UD was 4.88 · 10−4 and P-value for KL and UD was 1.30 · 10−4.
For sensitivity, P-values for the difference of UD from L2 and KL
were 2.68 · 10−3 and 1.26 · 10−3, respectively. These facts imply that
the weighted square deviations are significantly better than UD. The
statistical test also allows us to conclude that the performance of
L2 is not significantly worse than KND, since the P-values for the
AUC score and sensitivity, which are 0.137 and 0.204, respectively,
are not small enough. P-values between KL and KND are 0.0427 and
0.0810 for AUC score and sensitivity, respectively, making it hard to
insist that KL is significantly better than KND. However, these results
suggest that KL and L2 achieves predictive performances that are
comparable to KND.

4.4 S U M M A R Y

In this chapter, we presented a new machine learning algorithm
that determines the values of weight coefficients for atoms in the
template used for enzyme active site search. An existing state-of-the-
art method [36] has already proposed introducing weights for atoms
and determining the weights automatically, although their algorithm
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was not formulated in the framework of regularized loss minimization
which is a recent trend in the machine learning community [29].
Experimental results showed that the proposed methods possess
comparable prediction performance to the existing state-of-the-art
method, suggesting that there is no more need to resort to the learning
algorithm specialized to the enzyme active site search problem at the
sacrifice of the typical machine learning framework.
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Among currently trending fields, research efforts particularly related
to biometrics and brain-computer interface (BCI) have been aimed at
modeling data either as a low-dimensional subspace or a sequence
of vectors. There have been studies in these areas dedicated to
algorithms for such type of input [5, 9, 17, 32, 60, 86]. This may be
induced by the nature of the data, which is commonly time series,
such as electroencephalography (EEG) signals collected while subjects
perform motor tasks or during induction of visual stimuli. EEG data
is generated by placing several sensors accordingly on the head of the
subject as shown in Figure 5.1, and each sensor records neural activity
depicted by the signals. The vector sequence illustrated in Figure 5.2
corresponds to the signals collected from all sensors.

Appropriate data representation has been considered as one
of the most important challenges in dealing with classification
tasks. Vector form may be the simplest and most common
representation of samples in existing literatures, especially when
using popular techniques such as support vector machines and
kernel methods. However, this may not be the best representation
to encompass significant, if not all, attributes and information useful
for discrimination. To address this problem, new modes of data
representation are constantly being explored [18, 25, 27, 35, 41, 44,
45, 46, 48, 49, 55, 59, 75, 76, 81, 83]. Along with this, various feature
extraction techniques and discrimination methods are also being
investigated, and several studies have proven kernel methods to
be a flexible technique in supporting various data structures, such
as graphs [35, 45, 46, 55, 75, 83], strings [48, 49, 59, 81], and even
subspaces and sets of vectors [18, 25, 27, 41, 76].

Kernel-based algorithms [16, 72, 74] have become prevalent in
recent years. Aside from yielding promising results, they have been
proven suitable for problems with complex data patterns, and those
that suffer from the curse of dimensionality. Along with SVM, kernel
methods have become one of the most valuable tools in machine
learning.

45
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Figure 5.1: Sample position map of EEG sensors.

Figure 5.2: EEG signals as a sequence of vectors. For BCI, EEG signals
are recorded over a certain time interval using several channels
or sensors. Each vector in the sequence corresponds to a
channel used in the procedure, and vector entry represents an
instantaneous signal intensity. The vector sequence is usually
concatenated to represent the vector set input.

In this chapter, we focus on data represented as sets of vectors.
Different algorithms have been formulated in such a way that data
are approximated by low-dimensional linear subspaces [20, 26, 27,
41, 70, 76, 88, 89]. However, as previously pointed out [26], the
task of appropriately handling data has become an issue, such
as inconsistency in strategy when feature extraction is done in a
Euclidean space while non-Euclidean metrics are used. For this
purpose, they proposed a unified framework for subspace-based
approaches by formulating the problem on the Grassmann manifold,
a space of linear subspaces with a fixed dimension. On the other
hand, these methods involve dimension reduction, and even with the
use of the usual dimension reduction techniques such as Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA),
there is always a possibility of information loss. This makes the
selection of the subspace dimension a crucial step. Furthermore,
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methods such as PCA and LDA usually employ eigendecomposition,
and hence, may be very time consuming especially for high
dimensional data.

With the aforementioned issues in mind, the goal of this work
is to examine a kernel function, which we refer to as the mean
polynomial kernel, that can retain data information while being
computationally inexpensive. Also, as a more general approach than
kernels for subspaces, we treat data as a common collection of vectors,
instead of a linear subspace. The kernel is invariant of the permutation
order of the vectors in the set. In addition, we present an interesting
relationship between this kernel and the Projection kernel, which is
a known Grassmann kernel. We give emphasis to BCI applications
posed as a binary classification problem, which are of particular
interest due to their practicality in various areas, biometrics and
cognitive training and improvement, among others.

5.1 P R E L I M I N A R I E S

Consider a set of data x1, x2, . . . , x` ∈ Rd, where ` is the number of
data points. Let us denote the hth entry in the ith data point xi by xh,i.
A sample statistic,

1

`

∑̀
i=1

d∏
h=1

x
ph
h,i,

is said to be the qth order moment if the d-dimensional vector p ∈
(N ∪ {0})d satisfies p1 + p2 + · · ·+ pd = q. The uncentered covariance
matrix defined by

1

`

∑̀
i=1

xix
T
i

contains all the second order moments. Indeed, the (h,k)th entry in
the uncentered covariance matrix is the the second order moment with
p = eh + ek, where eh is a unit vector whose hth entry is one and
the rest of the entries are zero. Let x̄ = [x̄1, x̄2, . . . , x̄d]T be the mean
vector of the data points. With the d-dimensional vector p satisfying
p1 + p2 + · · ·+ pd = q, the qth order central moment is defined as

1

`

∑̀
i=1

d∏
h=1

(xh,i − x̄h)
ph .

Every second order central moment is included in the central covariance
matrix

1

`

∑̀
i=1

(xi − x̄)(xi − x̄)
T,

which is usually referred to simply as the covariance matrix.
For succeeding sections, we refer to a matrix U as orthonormal if

UTU = I, and define the vectorization of an m × n matrix A as the
column vector vec(A) = [a11,a12, . . . ,a1n, . . . ,am1,am2, . . . ,amn]T.
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5.2 G R A S S M A N N K E R N E L S A N D R E L AT E D M E T H O D S

We give a concise discussion of the Grassmann kernels [27, 26, 82],
their analogy with the mean polynomial kernel, and some related
methods.

A Grassmann manifold, or Grassmannian, is defined as a set of
linear subspaces with a fixed number of dimensions, say, m. Several
metrics used in literatures have been specified in this manifold, mostly
incorporating principal angles or angles between subspaces in their
characterization [20, 26, 27, 70, 76, 82, 88, 89]. Moreover, kernels
over these manifolds have also been introduced. In particular, we are
interested in the following kernels:

Definition 5.1. Let Ux and Uy be orthonormal matrices whose
columns are bases of linear subspaces. The Projection kernel is defined
as

kPROJ(Ux,Uy) =
∥∥UT

xUy
∥∥2
F,

where ‖·‖F denotes the Frobenius norm, and the Binet-Cauchy kernel is
given by

kBC(Ux,Uy) = (detUT
xUy)

2 = detUT
xUyU

T
yUx.

Many existing problems can be realized on nonlinear manifolds
such as the Grassmannian. This being said, various methods in the
Grassmannian setting have been proposed. One such technique is
the use of Grassmann kernels in conjunction with support vector
machines (GK-SVM) [76]. This approach entails the computation of
kernel matrices, which then proceed as the SVM input. Analogously,
the mean polynomial kernel given in Section 5.3 is applied in
this manner when SVM is the classifier. Figure 5.3 gives a general
illustration of the flow of computation of the Grassmann kernels
and the mean polynomial kernel, and also highlights the difference
between the two kernels.

Another comparable method is the Grassmann Distance Mutual
Subspace Method (GD-MSM) [76]. This technique integrates the
Grassmann metrics in the Mutual Subspace Method (MSM) [89].
Furthermore, the task of subspace classification can be approached
in two ways. The first one, which is referred to as the subject-wise
dictionary, is done by assuming that one subject or object corresponds
to one principal subspace. During the training stage, the total of
principal subspaces calculated is the same as the number of subjects.
These serve as the bases to which the unlabeled principal subspaces
of test subjects are compared to, and the subspace with the minimal
Grassmann distance from the unlabeled subspace is determined. The
second approach is done by assuming one principal subspace per
class. The principal subspaces, which in this case is referred to as the
class-wise dictionary, are derived from each class among the training
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data. This being said, we have only two principal subspaces in the case
of binary classification, regardless of the number of subjects. In the
testing stage, unlabeled principal subspaces are classified according
to which subspace they are closer to in terms of metric.

Vector sequences Data points

Data

arrangement
PCA Grassmann

kernel

Kernel matrix

Principal subspaces

(a) Flow for Grassmann kernels.

Mean polynomial kernel

Vector sequences Data points

Data

arrangement

Kernel matrix

(b) Flow for Mean Polynomial kernel.

Figure 5.3: Flow of methodology for computing the kernel value for
the Grassmann kernels and the mean polynomial kernel.
Grassmann kernels are defined on a Grassmann manifold which
is a set of linear subspaces. When employing these kernels,
each vector sequence, represented by a set of data points
on space, is approximated by a principal subspace obtained
via PCA. However, this poses a threat of some degree of
information loss, and is more likely to consume more time due
to eigendecomposition. The mean polynomial kernel, on the
other hand, can be directly applied to compute the kernel value
between the sets of data points. It can avoid information loss
while being more time efficient.

The score function can be considered for the two aforementioned
mutual subspace methods. The SVM score, mentioned in Section 2.3,
can serve as a confidence level. Namely, a higher score may provide
higher certainty of assigning the data to the positive class. For the class-
wise dictionary, the difference between the distance to the subspace of
the negative class, d−, and the distance to the subspace of the positive
class, d+, represents how confidently unknown labels are classified
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as positive. Hence, we define the score function as d− − d+. For the
subject-wise dictionary, we define the score function by the difference
between the minimal distance to negative class subspaces and the
minimal distance to the positive class subspaces.

5.3 M E A N P O LY N O M I A L K E R N E L

In this section, we discuss the details of the mean polynomial kernel,
which can be directly applied to data in the form of vector sets.

Consider two sets of vectors X = {xi}
`
i=1 and Y = {yj}

`′
j=1, where

xi,yj ∈ Rd. To define a kernel for such types of data, we introduce a
notation of a set of vector sequences as

S =
{
{zi}

n
i=1|n ∈N and ∀i ∈Nn, zi ∈ Rd

}
,

where N is the set of natural numbers, and Nn = {i ∈N | i 6 n}, such
that S is the input domain for the kernel defined as follows.

Definition 5.2. Let kq : S× S→ R such that

kq(X,Y) =
1

``′

∑̀
i=1

`′∑
j=1

〈
xi,yj

〉q,

where X,Y ∈ S and q ∈ N. We shall refer to kq as the qth order mean
polynomial kernel.

It can be shown that this kernel is a special case of the multi-instance
kernels [21] when instances involve linear kernels or polynomial
kernels with constant c = 0. With regards to its characterization, we
can easily confirm that for the case q = 2, the covariance matrix is
directly used as a feature vector. For instance, consider two matrices,
X = [x1, x2, · · · , x`] and Y = [y1,y2, · · · ,y`′ ], for the set of vectors
X and Y, respectively. Then their respective uncentered covariance
matrices are given by

Σx =
1

`

∑̀
i=1

xix
T
i and Σy =

1

`′

`′∑
j=1

yjy
T
j .

By defining a feature mapφ(X) = vec(Σx), we have

〈φ(X),φ(Y)〉 = 〈vec(Σx), vec(Σy)〉 = tr
(
ΣxΣy

)
=
1

``′

∑̀
i=1

`′∑
j=1

tr
(
xix

T
i yjyj

T)
=
1

``′

∑̀
i=1

`′∑
j=1

tr
(
yj

Txix
T
i yj

)
=
1

``′

∑̀
i=1

`′∑
j=1

〈
xi,yj

〉2. (5.1)
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Hence, the Euclidean inner product of vectorized covariance matrices
is precisely the second order mean polynomial. Furthermore, all
information contained within the uncentered matrices are preserved
and can be exploited.

If we rewrite the definition of the kernel as

k̄q(X,Y) =
1

``′

∑̀
i=1

`′∑
j=1

〈
xi − x̄,yj − ȳ

〉q, (5.2)

where x̄ and ȳ are the mean vectors of X and Y , respectively, then the
kernel is the inner product among centered covariance matrices when
q = 2.

More generally, we can say that the qth order mean polynomial
kernel contains all qth order moments as feature vectors. Indeed, if
we let Pq = {p ∈ (N ∪ {0})d|pT1 = q} and xh,i be the hth entry in xi,
enumerating all qth order moments allows us to define

φp(X) =
1

`

√
q!

p1!p2! · · ·pd!

∑̀
i=1

d∏
h=1

x
ph
h,i.

By using the feature map given by φ(X) = [φp(X)]p∈Pq , we can
derive the following equality

kq(X,Y) = 〈φ(X),φ(Y)〉, (5.3)

as given in Subsection 5.7.1. Existence of a feature vector ensures the
positive semidefiniteness of the mean polynomial kernel. Similarly for
the centered version of the mean polynomial kernel, the features can
be explicitly expressed as a set of all the qth order central moments
(See Subsection 5.7.3).

5.4 M E A N P O LY N O M I A L K E R N E L A N D P R O J E C T I O N K E R N E L

R E L AT I O N S H I P

We now establish a relationship between the proposed mean
polynomial kernel and the existing Projection kernel. In principle,
Grassmann kernels are considered as kernel functions for principal
subspaces. Eigendecomposition of two symmetric matricesΣx andΣy
is essential for the computation of the Projection kernel value between
two vector sequences X and Y. Moreover, it can be shown that the
bases of the principal subspaces are exactly the m major eigenvectors.
To obtain the value of the Projection kernel between two subspaces
X and Y, the m eigenvectors are initially stored in the matrices Ux
and Uy. Let us define Σ′x = UxU

T
x and Σ′y = UyU

T
y, the uncentered

covariance matrices where themmajor eigenvalues are replaced with
ones and the rest of the eigenvalues are disregarded. Then the two
kernels are related by the equality

kPROJ(Ux,Uy) =
〈
vec(Σ′x), vec(Σ′y)

〉
. (5.4)
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Details of the derivation are given in Subsection 5.7.2.
An assessment of both equations (5.1) and (5.4) suggests that while

the second order mean polynomial kernel preserves every bit of
information in the uncentered covariance matrices, the Projection
kernel possesses the possibility to disregard and lose information of
each dimension of the principal subspaces, and all the information
on their orthogonal complements. A similar case can be said for
the centered version of the mean polynomial kernel (5.2) versus
the Projection kernel, by using the centered covariance matrices.
Although the first dilemma of the Projection kernel has been
addressed by Hamm and Lee [27] by extending the kernel, resulting
to the scaling of information of each dimension in linear subspaces
and their preservation, data on the orthogonal complement are still
overlooked. As with all dimension reduction techniques, there is
always a risk of losing information when employing the Grassmann
kernel. Though the hope is to retain the dimensions that are most
discriminant, dimension number selection must be done with care
and has become a critical stage in the implementation process.
Furthermore, implementation via eigenvalue decomposition adds to
the computational cost of kPROJ, and also kBC, giving the mean
polynomial kernel an efficiency advantage, especially when presented
with very high dimensional data.

5.5 E X P E R I M E N T S A N D R E S U LT S

We evaluate the performance of the mean polynomial kernel in
binary classification tasks using data with underlying subspace
structures. Techniques using the Grassmann kernels and Grassmann
Distance Mutual Subspace method (GD-MSM) were also performed
for comparison.

5.5.1 EEG Signal Task Classification

We compared the performances of the proposed kernel and the
Grassmann kernels for EEG task identification in a binary setting
using the BCI competition III-IVa dataset [9]. The data contains
recorded measurements of five subjects (aa, al, av, aw, and ay) during
motor imagery tasks (right hand and right foot movement) using
118 channels of electrodes. The EEG signals were recorded for 3.5
seconds with 1000 Hz sampling rate for each trial. However, we
used the available downsampled version (at 100 Hz) of the data, and
utilized the 0.5 to 3.5-second interval from the visual cues for each trial,
resulting to a time range of 3.0 sec per trial. For data preprocessing,
frequency band selection was done, and data was filtered between
frequencies of 10 to 35 Hz. For each subject, 140 trials were conducted
for each task, for a total of 280 trials per subject.
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Two methods were employed: one using kernels with SVM and the
other one using GD-MSM. For the first method, three types of kernel
functions were utilized: the Grassmann kernels, Projection (PROJ)
and Binet-Cauchy (BC) kernels, and the mean polynomial kernel
(MP). For the GD-MSM, eight metrics were used for comparison:
average distance, Binet-Cauchy metric, Geodesic distance, maximum
correlation, minimum correlation, Frobenius norm based Procrustes
distance, 2-norm based Procrustes distance, and Projection metric,
as defined in [76]. For the SVM setting, 6-fold cross-validation was
employed to evaluate the performance of the kernels such that one
session per subject is used as test data while the remaining five
sessions are used for training. On the other hand, class-wise (GDMSM-
CD) and subject-wise (GDMSM-SD) dictionaries were implemented
for the GD-MSM, as described in Section 5.2.

As for the parameters of the kernel methods, the value of q for
the MP kernel was varied from 1 to 5, while the dimension of the
subspace, m, was varied from 1 to 10. The regularization parameter
C for SVM was varied over the set {100, 101, 102, 103, 104, 105}. To
optimize the tuning of the said parameters, we implemented a 3-
fold cross-validation grid search of the pairs (q,C) and (m,C) on the
training data, for each cross-validation set. Values of the pairs were
chosen such that the highest accuracy value is obtained. Variation
and selection of the value of m for GDMSM was also done in a
similar manner. The area under the ROC curve (AUC), accuracy, and
F-measure values were considered for evaluating the performance of
each method.

Figure 5.4 illustrates the average accuracy, AUC, and F-measure
values of each method for all 5 cross-validation sets. From the graph,
it is evident that the MP kernel outperforms the other methods on
all three benchmarks (with accuracy, AUC and F-measure values
of 84.0%, 0.896, and 0.876, respectively). This is followed by the
PROJ method, with values 82.2%, 0.881, and 0.863, respectively. The
values presented here for the two GDMSM’s are the highest obtained
among all eight metrics used, which, interestingly, is the maximum
correlation. We can therefore conclude that the method employing the
MP kernel plus SVM is better than the GD-MSM regardless of the
selected metric.

The cumulative ratio distributions of the eigenvalues of the EEG
signal sequences as the dimension parameter m of the Grassmann
methods is varied from m = 1 to 10 are presented as box plots in
Figure 5.5. Apparently, the values for the EEG data are very low. At
minimum, the median is 0.127 (m = 1), and maximum is 0.544 (m =

10). The cumulative ratios also vary significantly as the dimension
changes. Outliers can be observed above the fourth quartile, but not as
much as in the face video data. Moreover, the difference between the
maximum (outlier) and the minimum in each respective box plot is at
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least 0.157 and at most 0.263, which are significantly lower than those
in the previous dataset. This may explain why the Projection kernel
and most of the other Grassmann-based methods perform better in
terms of AUC and F-measure values on this data set.

MP PROJ BC GDMSM−CD GDMSM−SD
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Figure 5.4: Average performance of all methods. The bar plot represents the
average accuracy, average AUC, and average F-measure values
computed.
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Figure 5.5: Cumulative ratio distribution of the eigenvalues of the EEG
signal sequences as dimensionm is varied.
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5.5.2 Efficiency Comparison

Table 5.1: Time complexity comparison of the kernels.

Training Stage Testing Stage

(For kernel (For prediction

matrix computation) of a single sequence)

MP O(n2tra`
2d log2 q) O(nsv`

2d log2 q)

PROJ

For covariance matrix computation

O(d2`ntra) O(d2`)

Eigendecomposition

O(k3ntra) O(k3)

Kernel value computation

O(dm2n2tra) O(d2mnsv)

BC

For covariance matrix computation

O(d2`ntra) O(d2`)

Eigendecomposition

O(k3ntra) O(k3)

Kernel value computation

O(m3n2tra) O(d2mnsv)

We investigated the time complexity of the MP kernel, and
compared it with the Grassmann kernels. Suppose we are given ntra

number of training samples, and nsv number of support vectors. For
simplicity, we will assume that every (feature) vector sequence has
length `, and that each vector has length d. Moreover, we denote the
dimension of the principal subspace as m for the Grassmann kernels,
and let k = min(`,d). In Table 5.1, we give the computation time
for each step in the calculation of the kernels. From this table, we
conclude that the MP kernel is not only better in terms of performance,
but it is also more efficient in terms of computational cost compared
to the Grassmann kernels. This was confirmed empirically, as the
average CPU time recorded for the MP kernel, for any value of q, is
around 58 sec for the EEG data. On the other hand, computation of
both Grassmann kernel matrices is about 1.20× 103 for any m, while
the BC takes 1.22 × 103 and 1.23 × 103 when m = 5 and m = 10,
respectively. It is also worth mentioning that should the number of
features d increase, the computational time for the Grassmann kernels
will drastically increase, whereas the increase with the MP kernel is
only linear.
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5.5.3 Discussion

We conclude this section by considering an extension of the mean
polynomial kernel. There are many possible extensions, one of which
is by replacing the sample mean

〈
xi,yj

〉q with the expected value
with respect to a probabilistic distribution: k′q(X,Y) = E

(
〈x,y〉q

)
.

From this, the mean polynomial kernel can be derived as a special
case when

px(x) =
1

`

∑̀
i=1

δ
(
x− xi

)
and py(y) =

1

`′

`′∑
i=1

δ
(
y−yi

)
,

where δ(·) is the Dirac delta function.
Another choice of a probabilistic distribution can be Gaussian

mixture. Suppose we are given two Gaussian mixtures

px(x) =
∑̀
i=1

πx,iN
(
x;µx,i,Σx,i

)
and

py(y) =

`′∑
i=1

πy,iN
(
y;µy,i,Σy,i

)
,

where ` and `′ are the number of Gaussian components for the
two probabilistic distributions px and py, respectively, πz,i is the
mixing coefficient satisfying

∑n
i=1 πz,i = 1, and µz,i and Σz,i are the

mean vector and covariance matrix of the ith Gaussian component,
respectively. The second order mean polynomial kernel can be readily
computed as

k2(px,py) =
∑̀
i=1

`′∑
j=1

πx,iπx,j

((
µT
x,iµy,j

)2
+ tr

(
Σx,iΣy,i

)
+

µT
x,iΣy,jµx,i + µ

T
y,jΣx,iµy,j

)
.

This example includes the original definition of the mean polynomial
kernel in Definition 5.2, which can be shown by letting

πx,i = 1/`, µx,i = xi, Σx,i = σ
2
x,iI,

πy,j = 1/`
′, µy,j = yj, Σy,j = σ

2
y,jI,

for all i ∈ N` and j ∈ N`′ , and taking the limit as σ2 → 0. When one
wishes to weight each frame in image sequences, the weights can be
set to πx,i or πy,j. Positive σ2x,i or positive σ2y,j can be used to represent
uncertainties in observations,

Similar to the original mean polynomial kernel, we can explicitly
represent features of the extended mean polynomial kernel, as given
in Subsection 5.7.3.
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5.6 S U M M A R Y

In this work, we have examined the mean polynomial kernel
as a kernel for binary classification of data modeled as vector
sets or sequences. Analogy and connection to related methods,
Grassmann Projection kernel in particular, have also been drawn.
The effectiveness of the MP kernel was empirically supported
using data of motor imagery EEG recordings. Furthermore, we
present a comparison of computational costs between methods, and
some interesting extensions of the MP kernel by considering the
probabilistic distribution of the data. In brief, the mean polynomial
kernel excels known methods from literature, both in performance
and efficiency.

5.7 P R O O F S A N D D I S C U S S I O N

5.7.1 Derivation of Equation (5.3)

Proposition 5.1. A mapping function of mean polynomial kernel is

φ(X) =

[
1

`

√
q!

p1!p2! · · ·pd!

∑̀
i=1

d∏
h=1

x
ph
h,i

]
,

where p ∈ (N∪ {0})q such that pT1 = q.

Proof. Let xh,i and yh,i be the (h, i)th entries in X and Y , respectively.
Let d be the number of rows in X and Y ,

kq(X,Y) =
1

``′

∑
i,j

〈
xi,yj

〉q
=
1

``′

∑
i,j

(
d∑
h=1

xh,iyh,j

)q
.

Using the multinomial theorem, we get

kq(X,Y) =
1

``′

∑
i,j

∑
p

q!
p1! · · ·pd!

d∏
h=1

x
ph
h,iy

ph
h,j

=
∑
p

(
1

`

√
q!

p1!p2! · · ·pd!

∑̀
i=1

d∏
h=1

x
ph
h,i

)

×

(
1

`′

√
q!

p1!p2! · · ·pd!

`′∑
j=1

d∏
h=1

y
ph
h,j

)
=

〈
φ(X),φ(Y)

〉
,

where p ∈ (N∪ {0})q such that pT1 = q.

5.7.2 Derivation of Equation (5.4)

Suppose the transformed covariance matrices are given by

Σ′x = UxΛxU
T
x = UxU

T
x and Σ′y = UyΛyU

T
y = UyU

T
y,
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obtained via eigendecomposition of the covariance matrices Σx
and Σy, and setting the major eigenvalues to one and the minor
eigenvalues to zero. Then we can write

kPROJ
(
Ux,Uy

)
=
∥∥UT

xUy
∥∥2
F
= tr

(
UT
xUyU

T
yUx

)
= tr

(
UxU

T
xUyU

T
y

)
= tr

(
Σ′xΣ

′
y

)
=
〈
vec
(
Σ′x
)
, vec

(
Σ′y
)〉

.

This concludes the derivation of equation (5.4).

5.7.3 Explicit Representation of Features

In Section 5.3, we have shown that the features of the mean
polynomial kernel can be represented explicitly. Features of the
centered mean polynomial kernel are represented by the qth central
moments:

φ̄p(X) =
1

`

√
q!

p1!p2! · · ·pd!

∑̀
i=1

d∏
h=1

(
xh,i − x̄h

)ph .

The features that produce the extended mean polynomial kernel are
given by

φp
(
px
)
=

√
q!

p1!p2! · · ·pd!
E

(
d∏
h=1

x
ph
h,i

)
for all p ∈ (N ∪ {0})d such that pT1 = q, and the features for the
extended centerized mean polynomial kernel are given by

φ̄p
(
px
)
=

√
q!

p1!p2! · · ·pd!
E

(
d∏
h=1

(
xh − E

(
xh
))ph).



6
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

In brief, this thesis deals with machine learning applications
for bioinformatics and brain-computer interface. In particular,
we challenged conventional methods in predicting drug-protein
interactions, enzyme active sites, and EEG signal tasks, which are
deemed very useful in drug design and discovery, cognitive sciences
and neuroinformatics.

In Chapter 3, we proposed the kernel weighted CCA which was
executed via the eigendecomposition method. We showed that the
performance of SVMs in the task of protein-ligand could further be
improved when KWCCA is employed. We also compared effects on
the performance when different features were used for the weights
(e.g., features from the interaction profiles, chemical profiles, or both).
Even in the field of computational biology, CCA for more than
two data sources has been widely used [58, 78, 90] and their usual
objectives involve maximizing the sum of correlations for every pair
of data sources. One possible extension of this work is to explore the
case where multiple data sets are simultaneously analyzed using CCA.
It could also be interesting to investigate the effectiveness of applying
the proposed method to other biological problems aside from protein-
ligand interaction prediction.

In Chapter 4, we proposed an algorithm for learning the weights
of atoms of the enzymes used for computing the deviation in
searching for common active sites between a template and an
enzyme query. Aside from modeling the algorithm in a more natural
fashion compared to existing techniques, we also introduced the use
of Bregman divergences in the regularization functions. Since, the
proposed algorithms in this work were designed to minimize the
sum of the regularization function and the loss function, this allows
us to consider several extensions, such as multi-task learning [38],
transfer learning [39], and structural learning [34], developed well in
the field of machine learning. Hence, this study could be a great step to
facilitate further developments of algorithms for the active site search
task.

Finally, in Chapter 5, we investigated a special case of the
multi-instance kernel and its applicability to physiological data
such as EEG signals. Furthermore, we also analyzed its relation to
Grassmann Projection kernel, and compared their performances in
task classification. An interesting future direction of this work, as well
as the proposed algorithms in Chapters 3 and 4, would be to extend
its practice to multi-classification tasks.
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