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Abstract
Let R and S be rings with identity, and Mod-R and S-Mod the category of unital
right R- and left S-modules, respectively. Also let A and B be full subcategories
of Mod-R and S-Mod such that A®R and B2S and both are closed under finite
direct sums, submodules and epimomorphic images. We will find conditions in
order that there exists a duality between Giraud subcategories of A and B. As
an application of this we will obtain a general result of [8] about Morita duality

between Grothendieck categories.

Introduction

Morita equivalence and Morita duality have been generalized by many authors. Kato's
idea [12] is important as a generalization of Morita equivalence, because his idea seems
to be useful to get a generalization of Morita duality. Kato’s result has two important
things. The one thing is to give concrete localization and colocalization functors. The another
thing, which is a direct result of the preceding fact, is to give a category equivalence as
a generalization of Morita equivalence. If we dualize his idea then we get a duality
(contravariant equivalence) between localizations of abelian categories. The author tried
to get a nontrivial example in [22].

Morita duality is a duality between full subcategories of module categories. It is natural
to define a Morita duality between abelian categories as a duality between full subcategories
of them. Colby-Fuller [4] and Anh-Wiegandt [2] defined Morita dualities from this point.
Quite recently Gomez and Guil [8] defined a QF-3" ring and obtained a Morita duality
between Grothendieck categories in the sense of Anh-Wiegandt. Almost at the same time
the author defined QF-3" object of an abelian category. But this definition already appeared
in [21] as the different name. Later we will show that a ring R is left QF-3" iff R is a
QF-3" object in R-mod, the full subcategory of R-Mod consisting of all submodules of
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finitely generated left R-modules. We will have the Morita duality in the sense of Anh-
Wiegandt obtained by Gomez and Guil as a special case of our result.

In [29] Tachikawa and the author formally established a category equivalence between
Giraud subcategories and co-Giraud subcategories of abelian categories (these are category
equivalent to quotient categories factored by strongly hereditary torsion classes and strongly
cohereditary torsion free classes, respectively). In [21] the author defined a CQF-3 object
in an abelian category and applied this notion to a cocomplete abelian category. QF-3”
object is a dual version of this notion. Cocompleteness was necessary to define a left
adjoint of a hom-functor. In the original Morita duality defined by a bimodule Uz, the
category of U-reflexive modules does not contain infinite direct sums. Thus one of the main
difficulties to generalize Motita duality is to get functors between two categories.

A full subcategory of an abelian category is called strongly exact if it is closed under
subobjects, quotient objects and finite coproducts. Then a strongly exact subcategory of an
abelian category is clearly abelian. Let A and B be strongly exact subcategories of Mod-
R and S-Mod, respectively, such that 43R and B3S. In section 1 we will find a necessary
and sufficient condition in order to exist a duality between given Giraud subcategories of
A and B. It will be obtained that such a duality is given by a bimodule sUs. In this case
it is important that S is not necessarily an endomorphism ring of Us. Also the notion of
QF-3" is important. Let A be an abelian category and A€ .A. Then we call A QF-3" if
for any monomorphism f: X —X, Hom(f, A)=0 implies Hom.(X , A)=0. We will see
that if a bimodule sUr defines a duality as the above then Uz and sU have to be QF-3”
in A and B, respectively.

Section 2 is the main part of this paper. We call a duality of the type given in section
1 a localized Morita duality (the exact definition is given in that section). If there exists
a localized Morita duality then the duality itself is a Morita duality in the sense of Anh-
Wiegandt between Grothendieck categories. But a localized Morita duality contains much
more : it contains localizations of strongly exact subcategories of module categories and
a duality between localized categories (Giraud subcategories) of those categories. We will
find a necessary and sufficient condition on a bimodule sUr in order that it defines a
localized Morita duality. Theorems 2.3 and 2.8 are the main results of this paper. We
define a QF-3" module as a generalization of a one sided QF-3" ring. Actually a QF-3"
module is equivalent to a QF-3" object in some strongly exact subcategory of Mod-R.
Anyway this notion plays an important role especially in Theorem 2.8.

If R is a QF-3 ring with minimal faithful modules eR and Rf. Then as was proved in



A generalization of Morita duality by localizations 9

(28] ereRsrr defines a Morita duality. In section 3 will consider a generalization of this

fact as an application of our result.

1. Localized Morita duality

We assume that the readers are familiar with torsion theories and localizations in abelian
categories. For the terminologies in this paper please refer to [21], [26] and [29]. A
strongly exact subcategory of an abelian category is a full subcategory closed under
subobjects, quotient objects and finite coproducts. The following result seems to be well

known.

Lemma 1.1. Let A be a strongly exact subcategory of Mod-R and (7, F) a torsion
theory in A. Suppose AS R and R has its localization ¢ : E— R’. Then

(i) R’ is given a ring structure such that ® is a ring homomorphism.

(i) If X€A is torsion free divisible then X can be seen as an K -module.

@@ If X and Y are torsion free divisible then there is a canonical isomorphism

Homp (X, ¥Y) ~ Homgx (X, V).

We already defined a QF-3" object of an abelian category. The next lemma is crucial in
this paper. The author believes that the idea is good. When the author contributed this
paper to some journal the referee ordered to omit the proof since there were no new result.
The referee’'s opinion is absolute. So the author had to cut the proof. It was true that
the author had bad feeling to the referee. And he wrote in the paper “We omit the proof
of the following result bye the referee’s suggestion.” ... The paper was rejected. The proof
1s written in the paper entitled Morita duality for Grothendieck categories and its

appliction, to appear in J. Algebra.

Lemma 1.2. Let A be a strongly exact subcategory of Mod-KE and UEA. Let ¢t(X)=
N { Kerf| f€ Homr(X, U) } for XEA. Then the following assertions are equivalent.

(i) Uis QF-3" in A.

(i) t is a left exact radical.

(@) For any monomorphism f: X =X in A, if ¢: X = U is nonzero, then there exists
SES: =Fndx(U) and A : X—U such that h+ f=s*g#0.

fv) If U <d Y is an essential extension of Uy and YEA then £(¥)=0.

(v) For any X€ A, t(X)=n { Kerf| f€ Home (X, E(U:)) }, where E(Us) denotes the
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injective envelope of Uks.

The hereditary torsion theory associated to the left exact radical in the preceding lemma

is said to be cogenerated by Uj.

Tueorem 1.3. Let A and B be strongly exact subcategories of Mod-F and S-Mod such
that AR and B 38 respectively. Let L and L’ be Giraud subcategories of A and B,
respectively. Then there exists a duality between L and L' if and only if there exists a
bimodule sUr which satisfies the following conditions.

(i) For any X€A and YEB, Homz(X, )EB and Homs(Y, U)EA.

(i) For any X€ A and YEB, the canonical homomorphisms

»x : X—Homs(Home (X, U), U) and
7y : Y2>Homz(Homs(Y, U), U)

give localizations for X and Y with respect to the torsion theories corresponding to L
and L', respectively.

Moreover if these two conditions are satisfied then U, and U/ are QF-3" in A and B,
and the hereditary torsion theories cogenerated by U in A and sU in B coincide with the
ones corresponding to L and L °, respectively. Moreover U, and sU are divisible with
respect to each torsion theory. Finally in this case Homz(—, U) and Homs(—, U) Induce

a duality between L and L.

Proof. Suppose there are contravariant functors F: L—£L  and G: L —L which define
a duality between £ and £L'. Let i: L—A and j: L —B be the inclusion functors and
a: A—L and b: B— L’ the reflectors. Then for any X€ 4 and YEB there are natural

isomorphisms

Homs(Y, jFa(X)) ~ Home- (b(Y), Fa(X))
~ Hom¢(GFa(X), Gb(Y))
~ Home(a(X), Gb(Y))
~ Homg(X, iGb(Y)).

In particular Homs(S, jFa(R)) ~ Homg(R, iFb(S)) holds. Both sides are S-R-bimodules.
When we substitute X=R and Y=S we need to to show that the above isomorphisms are
S- and R-homomorphisms. We only show that the first isomorphism is an S-homomorphism

since other S- and R-homomorphisms can be proved similarly. For any f:sS—sjFa(R),
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we have a commutative diagram

P
Homs(jFa(R), jFa(R)) —— Hom¢' (bjFa(R), Fa(R))
lHom(f, jFa(R)) lHom(b(f), Fa(R))
¢
Homs(S, jFa(R)) ——  Homg' (b(S), Fa(R)),

where ¢ and ¢ are natural isomorphisms. Thus ¢ (f)=b(f) * g holds, where g=® (1 zum).
For any s€S let A.:sSsS be as t A,=ts for tES. Then since sf= 1, ¢(sf)=b(sflg=
b(AL)=b(2)b(lg=s(¢(f)). Therefore ¢ is an Shomomorphism. Now let us put sUr=
iGb(S). Then we show that this U satisfies the conditions of the theorem. For any X€
A,

HOTTLR(X, U) = Homa(X, LGb(S))
~ Homs(S, jFa(X))
~ jFa(X).

Thus Homz(—, U) ~ jFa. Similarly Homs(—, U) ~ iGb holds. Moreover

Homs(Homn(X, U), U) ~ le]Fa(x)
~ (GFa(X)
~ ia(X)

since bj ~ 1 .- (see [26, p.213]). So there exists a natural homomorphism
{ x : X~>Homs(Homz(X, U), U)

such that {x is a localization for each X€.A. However, we can not say that { x coincides
with 7x. We have to show that 7»x also gives a localization of X. Since sU ~ sHoms(R,
U), we may assume §p: R—Ends{U). Since  : 1 4—>Homs(Homsz(—, U), U) is a natural

transformation, we have a commutative diagram

R =" End(U)

l‘f’, JHom(Hom(‘{b,, m,

X 2 Homs(Homa(X, U), U),

where @, is defined by x€X as ¢.(r)=xr for r€R. Hence {x(x)= 5nx(x){r(1) holds.
This implies that f£ x(x)=f(x) { x(1) holds for all f€ Homs(X, U). Now since {x is an

R-homomorphism,
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FCx(xr) =fCx(0)r=F(x) Lr(1p)r
=f(x") CR(I):f(x)rCR(].),

that is, f(x) Ca(l)r=f(xr) L r(1)=f(x)r& (1) holds for all x€X and rER. Thus in
particular (if we take X=R) { z(1)r=rr(1) holds. On the other hand, {,: U~
Homs(Ends(U), U) is an isomorphism. Thus for any u€U, there exists u' €U such that
Lot )=mnu(w), hence u=(1y) no(u)=(1y) L v(e' )=1" (1), which implies that (1) is
an epimorphism. Next we show that { (1) is a monomorphism. Suppose u{ =(1)=0. If u
#0 then let ¢, : Ends(U)—~U be as 9.(r )=ur'. Then ¥, is an R-homomorphism, and
P, (Lr(R))=ul r(R)=uls(1)R=0. Hence ¢, induces a nonzero homomorphism @, : Ends
(U),/ L o(R)>U. But Ends(U)~ £ x(R) is torsion since £ is a localization of Rk, and

Ur is torsion free. This is a contradiction. Therefore { (1) is a unit in Ends(U) and
commuteswith each element of R. Now it is clear that %x is a localization from the foll

owing commutative diagram

X __ﬂx_) Homs(Homn(X, U), U)

llx :lHom(Hom(X, U), La(1))

X 2 Homy(Homa(X, U), U).

Conversely suppose there exists a bimodule sUr which satisfies the conditions (i) and (ii).
To simplify notations we denote X* instead of Homa(X, U) or Hom{X, U). First we show
that for X€ A, nx=0 iff X*=0. If X*=0 then clearly »x=0. Conversely suppose 7 x=0.
Then since 7x is the localization of X, nx=0 is equivalent to X**=0. By the property
of adjunctions, 1x=(X"W NG (”—’v)-X*). Thus X*=0. Next we show that for any X
€A, 7' x« 1s an isomorphism. Since 7 x is the localization of X, (#x)* is a monomorphism.
Hence (nx)* is an isomorphism since ( nx)* is an epimorphism. This implies that 7 x« is
also an isomorphism. Similarly 7y« is an isomorphism for any YE B. From these facts
it is clear that Homg(—, U) and Homs(—, U) induce a duality between £ and L’.

Next we show that U, and sU are QF-3" in A and B, respectively. Let 0—X’ LX be
exact in A with f*=0. Then since the localization functor ( )** is left exact, f**=0
implies X" **=0. Thus (X' )*=0 as we already have seen. Finally we show that Uz and sU
are divisible. We note that ns Is an isomorphism since 15*=(S*E;S“* tny S*) and
(7ns)* is an isomorphism. On the other hand Si~U.. This implies that U is divisible.
Similarly sU is divisible. This completes the proof.

We call a duality of Theorem 1.3 a localized Morita duality. More precisely we say that
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a bimodule sUr defines a localized Morita duality if the following conditions are satisfied.
(i) There exist strongly exact subcategories A of Mod-R and B of S-Mod such that A
SR and B>S.

(i) Ur€A and sUEB and they are QF-3" in A and B, respectively.

(i) For any X€A and YEB, X*€B and Y*€ A.

(v For any X€A and YE B, the canonical homomorphisms
Ny X=X and Ny Yo Y**

are localizations with respect to the torsion theories cogenerated by Ur in A and sU in
B, respectively.

In this case we say that ;Us defines a localized Morita duality between A and B. By
the preceding theorem if the above conditions are satisfied, Uz and ;U are divisible with

respect to the torsion theories cogenerated by Uz in A and U in B, respectively.

2. Localized Morita duality by a bimodule

In section 1 we proved the necessary and sufficient condition in order to exist a localized
Morita duality between A and B. In order to exist such a duality it is necessary that
Uk and sU are QF-3" in A and B and the canonical homomorphisms R—Ends(U) and S
—Ends(U) are the localizations of R and S with respect to the hereditary torsion theories
cogenerated by Ur in A and sU in B, respectively. Moreover Ur and sU are divisible with
respect to each torsion theory. In fact these conditions are sufficient in order to exist a
localized Morita duality. We prove this fact in Theorem 2.8. First we prove the following

important fact.

Turorem 2.1. Let A and B be strongly exact subcategories of Mod-R and S-Mod such that
A>R and B>3S Let sUz be a bimodule which satisfies the following conditions.
(i) For any X€A and YEB, X* : =Homa(X, U)EB and Y* : =Homs(Y, U)EA.
(i) Us and sU are QF-3" in A and B and both are divisible with respect to the torsion
theories cogenerated by U in A and sU in B, rspectively.
(i) The canonical homomorphisms R—End;(U) and S—Endx(U) are the localizations of
R and S with respect to the torsion theories stated in (ii), respectively.

Let A" and B’ be full subcategories of A and B such that

A" ={XeA| nx is the localization of X }  and
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B’ ={YeB | n’y is the localization of Y },
where 7x: X—X** and 7 y: Y= Y** are canonical homomorphisms and localizations are
the ones with respect to the torsion theories stated In (ii).

Then A’ and B’ are strongly exact subcategories of Mod-R and S-Mod, respectively.

To prove the theorem we need several lemmas. When we say something about a torsion

theory we mean the one cogenerated by Ur in A or the one cogenerated by sU in B.

Lemma 2.2. Let the situation be the same as the theorem. Then for any X€A, s(X*) is

torsion free divisible.

Proof. This is immediate from the adjoint relation Homs(Y, Homs(X, U)) ~ Homa(X,
Homs( Y, U))

Lemma 2.3. (cf. [23, Lemma 6.4]) Let f: X' —X be a monomorphism in A. Then
Homs( Coker Hom(f, U), E(sL))=0. Thus in particular it holds that (Coker Hom(f, U))*
=0.

Proof. We may assume that f is an inclusion map i. It is enough to show that if ¢
(X" )*—E(U) satisfies (g | X" )@ =0 for all g€ (X)* then ® =0. Suppose ¢ #0 then
there exists h& (X' )* such that (h)® #0. Since sU <0 E(sU), there exists sES such that
0#s((h)® )= (sh)®¥ €sU. Thus at first we may assume 0% (h)® €:U. Let

be the push out of i and h. Let ¢ be the torsion radical of A associated to the torsion
theory cogenerated by Uz in A. Then UNt(Q)=0 since Uz is torsion free. Thus U—Q
—@Q,t(Q) is a monomorphism. Now since N {Ker gl g € (@, t(Q))*} =0, there
exists @/ t(@)—U such that s (¥ )#0, where we put s° =(U-Q—-Q t(@)—U) (all
homomorphisms appeared above). We note that s €S : =Ends(U). Let k=(X—Q—-Q/
t(Q)—U) (again all homomorphisms appeared above). By Lemma 1.1 ¢ is an S'-
homomorphism. Hence 0#s (h®)=(s'h)®. But s h=k| X' . Hence (s )P =(k | X" )P =

0 holds. This contradiction proves the lemma.

Lemma 2.4. Let the situation be the same as the theorem. Let 0—-X —>X—=>X —7—0 be
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exact in A with 7T torsion. Then by applying ( )* we obtain the exact sequence (—X *—
X > X'*—>7"—0in B with 7" torsion.

Proof. The first sequence can be decomposed into two exact sequences
0~ X —»X—>I-0 and 0—[—X" —T—0.

Then since Ur is torsion free divisible, we get X"*~ I*. By Lemma 3.3, 0—»>—>X*—>X'*
—T"—0 is exact with 7" torsion. Then by combining with X" *~ I*, we get the desired

exact sequence.

CoroLLary 2.5 (cf. [4]). Let the situation be the same as the theorem. Then the Udouble
dual functors ( )** : A—A and ( )** : B—B are left exact.

Now we are ready to prove our main theorem. It is enough to show that if 0—»X —X
—X"—0 is exact in A and 7nx is a localization then 7y and 7x are also localizations.

Consider the commutative diagram

0 0 0
K K K
0 X X X’ 0
0 X X X' T 0
L L L
0 0 0

where columns and two middle rows are exact and 7" is torsion. In order to show that
nx 1s a localization we only need to show that L' is torsion. By snake lemma ([23,
Corollary 11.9]), there exists a homomorphism K" —L' such that the sequence K" —L' —L
1s exact. Then since the torsion class is closed under factors, submodules and group
extensions in A, we see that L' is torsion. Next we show that 7 is a localization. By

applying ( )* to the commutative diagram
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X X 0

X** X7 T 0
I
0

we obtain the commutative diagram

Xt e—— Xt — 0

T

X***E X"**x ¢ O

L"t

with exact rows and columns. Hence L"*=0. This proves that »x is a localization. This

completes the proof.

If a module is an epimorphic image of a finite direct sum of copies of Mz then it 1is

called finitely Mg-generated.

DermviTion. Uz is a QF-3" module if it cogenerates every finitely ( UPD R)r-generated
submodule of E(Uz).

For any module My, cog(Mz) denotes the full subcategory of Mod-R consisting of all
submodules of finitely Mg-generated modules (or equivalently all factor modules of

submodules of finite direct sums of copies of Mxz).
Lemma 2.6. Uz is a QF-3" module if and only if Uis a QF-3" object in cog({ UPR)z).

Proof. Suppose Ur is a QF-3" module. Let U< X be an essential extension with X¢&
cog((UDPR)r). We may assume X< E(Ur). Then there exists a finitely (UPR)r-generated
module Yr such that X< Y. There also exists a homomorphism f: Y—FE(Ur) such that

f1 X is the inclusion. Then since f(Y) is finitely (UDR)r-generated, it is cogenerated by
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Ux. Hence X is also cogenerated by Ur. Thus by Lemma 1.2 (), U is a QF-3" object in
cog{(UDR)z).

Conversely suppose that U is a QF-3" object in cog{(U®R)r). Let Mxr be a finitely
(UDPR)gr-generated submodule of E(Ug). Then U (U+M) since U E(Ur), and (U+M)a
is finitely (UDR)x-generated. Hence by Lemma 1.2 (v), it is cogenerated by Us.

Now suppose Uz is a QF-3" module. Then since RzEcog((UPR)r), Ur defines a Gabriel
topology G and G corresponds to a hereditary torsion theory in Mod-R. Clearly this
torsion theory is cogenerated by E(Ug). Let T be the torsion class of this torsion theory.
Let £ (Ur) be the full subcategory of Mod-R such that X€ £ (Ug) iff there exists an
exact sequence 0—X —X—X"—0 with X €cog((UPR):) and X" €T . Then it is easy to
see that £ (Ur) is a strongly exact subcategory which contains cog({UPR)z) and T. To
say that My is G-injective is the same as to say that My is divisible with respect tothe

corresponding torsion theory to G.

Lemma 2.7. Let the notations be the same as the above. Suppose Ur 1s a QF-3" module

and G -injective. Then U is a QF-3” object in € (Uk).

Proof. Let U<1X be an essential extension with X€ £ (Ug). Let 0—-X —-X—X"—0 be
exact with X' €cog({UPR)x) and X" € E. Let t be the same as Lemma 1.2. We may
assume X <X and X'=X/X'. Since X' +U€cog((UPR)x) and X/ (X' +U)ET, we
may assumelJ< X’ by replacing X' +U by X' . Hence X <1 X. Suppose t(X)#0. Then t(X)
NX" #0. SinceX  is cogenerated by Uz by Lemma 1.2 (v), there exists a homomorphism
f: X —U such that f(¢(X)NX )+0. Then since Ur is g-injective, there exists a homomor
phism g: X—U such that g| X =f. This implies g(¢(X))#0. This contradicts to the defi
nition of t(X).Hence t(X)=0. Thus by Lemma 1.2 (), U is QF-3" in & (Ur).

TheoreM 2.8. A bimodule sU. defines a localized Morita duality if and only if the following
conditions are satisfied.

(i) U and sU are QF-3" modules.

(1) Uz and sU are divisible with respect to the hereditary torsion theories cogenerated by
E(Uz) and A(sU), respectively.

(@) The canonical homomorphisms F— Endi{(U) and S—End.(U) are the localizations with

respect to the torsion theories defined in (ii).

Proof. Only if part has already been proved in Theorem 1.3. So suppose sUr satisfies

the conditions. Let the notations be the same as Lemma 2.7. We show that sUr defines a
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localized Morita duality between & (Ur) and € ((U). First we show that X*=Homs(X, )
€ & (U) if X€Ecog((UBR)z). By assumption there exists Yz such that X< Y and Y is
finitely (U®PR )r-generated. By Lemma 2.3, we have an exact sequence Y*—X*—T—(0 with
TeT’, where T' is the torsion class of the hereditary torsion theory cogenerated by
E(sU). Then since sY* is finitely s(UDS)-cogenerated, /m(Y*—X*) € cog(s(UDS)). Hence
X*€ & (sU). Next let X€&(Uz) and let 0—X —»X—X"—0 be exact with X' €cog((UPR)z)
and X"€7T. Then 0—X*—>X "* is exact and X "*€ € (;U) as we just have seen. Hence X*
€ € (sU). Since the canonical homomorphisms 7, : U~U** and 7a: R~Ends(U) are the
localizations, 7x is also a localization for any X€cog({(U®R)z) by Theorem 2.1. Now let
0—X —X—>X"—0 be exact with X' €cog((UDR)z) and X" €T . Then since the double U-

dual functors ( )** are left exact, we have a commutative diagram

00— X —_— X X 0
nx Nx

0—— X —— X —— 0

Coker nx——— Coker nx

with exact rows and columns. Thus Cokern x» —Cokernx, is an epimorphism. This implies

that 7 x 1s the localization. This completes the proof.

3. Applications

First we prove that the duality obtained in Theorem 2.8 is a Morita duality in the sense
of Anh-Weigandt. A Morita dulity in the sense of Anh-Weigandt between Grothendieck
categories A and B is a duality between full subcategories LE A and £ S B such that
both are strongly exact subcategories and contain generating sets (generate A and B,
respectively). Let sUr be a bimodule which satisfies the conditions of Theorem 2.8. Let
L and L’ be the Giraud subcategories of € (Ur) and & (sU), respectively, such that the
U-dual functors define a duality between £ and £'. We show that this duality is a Morita
duality in the sense of Anh-Weigandt. Let T = { MEMod-R | Homa(M, E(Uz))=0} and
T = { NES-Mod | Homs(N, E(sU))=0) . We identify the quotient categories Mod-R,/T
and S-Mod T’ with Giraud subcategories of Mod-R and S-Mod, respectively. Thus £
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and L’ are full subcategories of Mod-R,/T and S-Mod,”T', respectively. We show that

L and L' are strongly exact subcategories of them. Suppose X€ L and X' <X in Mod-
R/T. Then we show that X' € L. There exists an exact sequence 0—=7T—X  —X in Mod-
Rwith TeT. Put I= Im(X —X) in Mod-R. Then I€ £ (Uy). Since 0-T—X ' —X is exact,
P~ X'*, hence X' **~ I'*. But n,:I>I** is a localization. Thus nx : X' =X ** is also

a localization by the commutative diagram

4 X’ * %

_—
JEE— 1**

O~ — X

On the other hand X’ is torsion free divisible. Hence X' ~X **~I**c L. Next let X—
X" —0 be exact in Mod-R,/7T. Then X—X" is an epimorphism in Mod-R. Hence X" €
€ (Ur). Now X" €L since X is torsion free divisible by assumption. It is clear that £
is closed under finite coproducts (= direct sums). Thus L is a strongly exact subcategory
of Mod-R/T. It is obvious that Ends(U)E L is a generator of Mod-R, T . Similarly
L’ also has the same property. Therefore the duality between £ and £  is a Morita
duality between Mod-R/T and S-Mod, /T’ in the sense of Anh-Wiegandt.

Exampre 3.1. Let Z:;=Z2Z, where Z is the ring of rational integers, and R=Z.". Then FR;
defines a localized Morita duality of mod-R: =cog(Rr). Again in this case the duality
is a self-duality.

Proof. R is self-injective since R is a complete boolean ring (see [1, exercise 18.29]).
Hence by Theorem 3.1, it is clear that pRs satisfies the conditions of Theorem 2.1 for A=

mod-R=B

Proprosition 3.2. let U be a finitely generated projective module with S=ZEnds( ) and
tr(Usz)=1 the trace ideal of Ux. Let »V be injective and suppose Ann,/: ={veE V| fv=0
} =0. Then the following hold.

(i) Ends{ (1r V)~ End( V) canonically.

(i) sU®rV is injective.

Proof. Let ,F = { R X€R-Mod | IX=0} and ;D= { xR XER-Mod | Annxl=0) then (F, D)

is a hereditary torsion theory in R-Mod. By [12, Theorem 5.3], the canonical homomorphism
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X—Homs(U, UR:X) gives the localization with respect to (., \D) for each X€ R-Mod.
Hence rV~ Homs(U, UXxV) holds. Thus

Eﬂds(U®RV) = HO"ls(U@RV, U®RV)
~ HO"’LR(V, Homs(U. U@RV))

~ Homa(V, V)=Ends(V).
This proves (i). (i) is similarly proved as [28, Proposition 4.87.

CoroLLaRY 3.3. Let s and »V be finitely generated projective injective with S = End.(1),
7 = End;(V) and the trace ideals »l» and rJr, respectively. Moreover suppose Ann,/ =
0 andAnny/ = 0. Then sU/&r Vy defines a localized Morita duality between cog(s{/) and
cog( V).

Proof. Since Vi~ Homs(U, U®rV)r and sUXrV is injective, Homs(X, URxV)Ecog(Vy)
for all X€cog(sU). Similarly HomY, UR:V)Ecog(sU) for all Y<cog( Vr). Sincels is
finitely generated, sU is a generator. Hence S€cog(sUU). Moreover since zV is finitely gener-

ated, there is an exact sequence RR"—,V—0. Hence we have an exact sequence sU"

—sU®r V-0, which implies sU®rVEcog(sU). Similarly T<€cog(Vy) and URxV,Ecog( V;)
hold. Therefore sU® g7V defines a localized Morita duality between cog{sU) and
cog(Vr).

A module Uz with S = Endz(U) is called a dominant module if Ug is faithful finitely
generated projective and every simple left S-module can be embedded in sU. It is known
that a minimal faithful right R-module of a right QF-3 ring is a dominant module ([24,
Corollary 1.2]).

Lemma 3.4. Let U be a dominant module with S = End,(U) and the trace ideal [ Let &

Vbe faithful, injective, flat and Ann./ = 0. Then ;UX:V is an injective cogenerator.

Proof. It is enough to show that every simple left S-module can be embedded in UXx V.
Let M be any maximal left ideal of S. Since Ur 1s dominant there exists u& U such that
£ s(u), the left annihilator of u, is equal to M. We show that there exists v€V such that
{ s(u®v)=M. Since Uy is finitely generated projective, there exists a free right R-module
F with a basis {x;, ..., x.} and a right R-module U’ such that F=U®U’ . Suppose
u@V=0 in UR-V. Then since FRV ~ (URXV) @ (U ®zV), u=xiri+ - +xr, implies
(xirm++xr) ® V=0 in F®V. On the other hand F®RV:£>§ V by (Y xa)R®ue

i=1
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(a:v)i1<i<n, Thus (D xr) ® V=0 implies nV=0 for all i. Then r,=0 since rV is faithful.
Thus u=0, a contradiction. Hence there exists vE€V such that u®v+#0 in U®,V. Since
£ (w) is maximal and £s(u)< £s(u@v)#S, £s(u)= £s(u®v) holds. This provés that S
/M ~ S(u®v) ¢ URaV.

—

CoroLLary 3.5. Let Ur and »V be dominant modules with S = Ende(U) and 7 = Endy
(V). Moreover suppose Ur and rV are injective. Then sUX)rV; defines a Motita duality.
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