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Background: There are some reports about the antitumor effects of statins in these days. Statins
decrease the level of cholesterol in the blood by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A
reductase. Inhibition of this enzyme decreases intracellular cholesterol synthesis. Thus, the expression of
low-density lipoprotein receptor (LDLr) is increased to import more cholesterol from the bloodstream. In
this study, we assessed the effects of statins on the proliferation of prostate cancer cells, and studied the
relationship between the expression of LDLr and the effects of statins.
Methods: Simvastatin was used in the experiments. We studied the effect of simvastatin on PC-3 and
LNCaP cell proliferation using the MTS assay, and evaluated the expression of LDLr after administration of
simvastatin by quantitative polymerase chain reaction and Western blotting. Intracellular cholesterol
levels in the prostate cancer cells were measured after administration of simvastatin. Furthermore, small
interfering RNA (siRNA) was used to knockdown the gene expression of LDLr.
Results: In PC-3 cells, simvastatin inhibited cell proliferation. In LNCaP cells, only a high concentration of
simvastatin (100mM) inhibited cell proliferation. In LNCaP cells, the protein level of LDLr was increased by
simvastatin. In PC-3 cells, the protein levels of LDLr were unregulated. In PC-3 cells, but not in LNCaP
cells, intracellular cholesterol levels were significantly decreased by simvastatin. After knocking down
LDLr expression by siRNA, intracellular cholesterol levels were decreased, and cell proliferation was
inhibited by simvastatin in LNCaP cells.
Conclusion: Simvastatin inhibited prostate cancer cell growth by decreasing cellular cholesterol and
could be more effective in androgen-independent prostate cancer, where there is loss of regulation of
LDLr expression. LDLr was shown to play an important role in the statin-induced inhibition of prostate
cancer cell proliferation. These results suggest that future studies evaluating the cholesterol-lowering
effects of statin may lead to new approaches to the prevention and treatment of prostate cancer.
Copyright © 2016 Asian Pacific Prostate Society, Published by Elsevier. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hyperlipidemia attracts much attention today. One of the key
therapies for hyperlipidemia involves use of statins. Statins
decrease the level of cholesterol in the blood by inhibiting 3-
hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in
the mevalonate pathway.1 Recently, some reports have demon-
strated the antitumor effects of statins. Regarding prostate cancer
some clinical studies, however, have presented controversial
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results.2,3 In vitro, statins have biological effects that inhibit pros-
tate carcinogenesis (e.g., cell cycle arrest, apoptosis induction, and
inhibition of lipid raft signaling).4,5 However, the actual mecha-
nisms underlying their antitumor effects remain unclear.

Low-density lipoprotein receptor (LDLr) plays an important role
in the serum cholesterol-lowering effects of statins. Statins upre-
gulate the expression of LDLr and increase clearance of LDL from
the bloodstream. In normal cells, the expression of LDLr is depen-
dent on intracellular cholesterol levels.6 However, it has also been
reported that some cancer cells, including prostate cancer PC-
3 cells, lack feedback regulation of LDLr, which provides an extra
energy source to promote their uncontrolled growth.7

In this study, we evaluated the relationship between LDLr
expression and the inhibition of androgen-dependent and
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Fig. 1. Effects of simvastatin on prostate cancer cell proliferations. (A, B) Cells were
incubated with simvastatin-containing media. The inhibitor effects of simvastatin on
cell proliferation were evaluated at 48 hours with MTS assay. Data are expressed as
mean ± SD (n ¼ 4). a)P < 0.01 versus simvastatin 0mM.
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androgen-independent prostate cancer cell proliferation after
treatment with statins. LDLr has been shown to play an important
role in the statin-induced inhibition of prostate cancer cell prolif-
eration. These results suggest that statins could be more effective
against androgen-independent prostate cancer, inwhich regulation
of LDLr expression is lost.

2. Materials and methods

2.1. Cells and chemicals

The human prostate cancer cell lines PC-3 and LNCaP were
purchased from Dainippon Pharmaceutical (Tokyo, Japan) and
cultured in Roswell Park Memorial Institute-1640 (Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 10% fetal bovine serum
(FBS; Moregate, Bulimba, Australia). Antibodies (rabbit anti-LDLr
polyclonal antibody and rabbit antihuman b-actin monoclonal
antibody) were purchased from Cell Signaling (Beverly, MA, USA)
and Epitomics (Burlingame, CA, USA), respectively. Simvastatinwas
purchased from Sigma-Aldrich.

2.2. Cell proliferation assay of human prostate cancer cells

Cells were seeded in a 96-well microtiter plate in 100 mL of
medium, with 10% FBS, for 48 hours. Then, the medium was aspi-
rated and the cells were incubated with a medium containing
various concentrations of simvastatin. After incubation at 37�C in
5% CO2 for 48 hours, the number of living cells was measured, using
the MTS assay (CellTiter 96 AQueous One Solution cell proliferation
assay; Promega, Madison, WI, USA). The optical density of the cell
lysate was expressed as fold change.

2.3. Quantification of messenger RNA levels

Messenger RNA (mRNA) levels were quantified using the CFX96
Real-Time System (Bio-Rad, Hercules, CA, USA). Total RNA extrac-
tion and complementary DNA (cDNA) synthesis were then per-
formed8; polymerase chain reaction (PCR) amplification was done
using 2 mL of cDNA, LDLr primer (No. Hs01092525_m1, Applied
Biosystems, Waltham, MA, USA). Next, PCR was performed for one
cycle of 10 minutes at 95�C followed by 40 cycles of 15 seconds at
95�C and 60 seconds at 60�C. For the internal control, b-actin (No.
4326315E, Applied Biosystems) transcript levels were used. Quan-
titation of mRNA fold changes was made using the comparative CT
(2�DDCt) cycle (DCt) method.9

2.4. Western blotting assays

Cell lysates were prepared in radioimmunoprecipitation assay
buffer (Pierce, Rockford, IL, USA), containing protease inhibitors
(complete, without EDTA; Roche Diagnostics, Penzberg, Germany).
Equal amounts of protein (30‒40 mg/lane) were electrophoresed on
4‒12% sodium dodecyl sulfateepolyacrylamide gel and transferred
onto nitrocellulose membranes. Each membrane was incubated
with the aforementioned primary antibodies. Blots were developed
with a 1:1,000 dilution of the horseradish peroxidase-conjugated
secondary antibody (Cell Signaling). Proteins were visualized us-
ing the Immobilon Western HRP Reagent (Millipore, Billerica, MA,
USA). A representative experiment of three independent experi-
ments is shown in each figure.

2.5. Measurement of total cholesterol levels in vitro

Cells were cultured in a 6-well plate and incubated overnight in
medium containing 10% FBS. Cells were then incubated in a culture
medium containing various concentrations of simvastatin. After
72 hours, the medium was aspirated, and cells were washed with
PBS. Cholesterol was extracted with hexane:isopropanol (3:2, v/v),
and the solution was transferred to glass tubes for drying by
evaporation. Once the tube was dried, 200 mL of 50mM Tris con-
taining 0.1% Triton X-100 and 10mM sodium cholate was added to
the tube, and cholesterol concentrations were measured enzy-
matically (Wako, Osaka, Japan). In addition, a solution of 0.1% so-
dium dodecyl sulfate plus 0.1N NaOH was applied to the wells and
the protein concentration was measured using a DC protein assay
(Bio-Rad). The total cholesterol level was calculated by dividing the
result by the total protein concentration.

2.6. Small interfering RNA

Cells were transfected with ON-TARGETplus Nontargeting Pool
(No. D-001810-10-05, Dharmacon, Waltham, MA, USA) and ON-
TARGETplus LDLr small interfering RNA (siRNA; No. L-011073-00-
0005, Dharmacon) using DharmaFect (Dharmacon). After trans-
fection, the cells were incubated for 48 hours at 37�C in a 5% CO2
atmosphere.

2.7. Statistical analysis

All data are expressed as means ± standard deviation unless
otherwise indicated. Differences between values were evaluated by
one-way analysis of variance with Tukey post hoc test. In all ana-
lyses, P < 0.05 was considered to indicate statistical significance.

3. Results

3.1. Effect of simvastatin on prostate cancer cell proliferation

First, we examined the effects of simvastatin on prostate cancer
cell proliferation using MTS assay. The viable cell numbers of PC-
3 cells decreased significantly after incubationwith simvastatin in a
dose-dependent manner (Fig. 1A). By contrast, simvastatin did not
inhibit the proliferation of LNCaP cells except at the high concen-
tration (100mM; Fig. 1B).

3.2. Levels of LDLr in prostate cancer cells after treatment with
simvastatin

We then evaluated the effect of simvastatin on LDLr levels in
prostate cancer cells. As shown in Fig. 2A, simvastatin significantly
decreased LDLr mRNA expression in PC-3 cells. However, LDLr
mRNA levels significantly increased after simvastatin treatment in
LNCaP cells. In the same manner as mRNA, LDLr protein levels also



Fig. 2. Low-density lipoprotein receptor (LDLr) expression levels in prostate cancer
cells after treatment with simvastatin. (A, B) Cells were incubated with simvastatin-
containing media. RNA samples were extracted and assayed by quantitative real-
time polymerase chain reaction. Data are expressed as means ± SD (n ¼ 5).
a)P < 0.01 versus 0mM. (C, D) Cells were incubated in simvastatin simvastatin-
containing media for 48 hours and analyzed for LDLr protein levels by Western blot-
ting. Beta-actin protein levels were used as the internal control. Sim, simvastatin.
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increased in LNCaP cells, whereas in PC-3 cells, LDLr protein levels
remained unchanged after simvastatin treatment (Fig. 2C).
3.3. Intracellular cholesterol levels in prostate cancer cells after
simvastatin treatment

Cholesterol levels are known to affect prostate cancer cell pro-
liferation.10 In PC-3 cells, simvastatin decreased intracellular
cholesterol levels in a dose-dependent manner (Fig. 3A). However,
LNCaP cells appeared to be resistant to any change in intracellular
cholesterol levels with simvastatin (Fig. 3B).
Fig. 3. Total cholesterol mass after 72-hour treatment with various concentrations of
simvastatin. (A, B) Data are expressed as means ± SD (n ¼ 3). a)P < 0.01, versus 0mM.
3.4. Effects of LDLr knockdown on LNCaP cells treated with
simvastatin

To further determine whether LDLr plays an important role in
the statin-induced inhibition of prostate cancer cell proliferation,
LDLr expression was reduced by transfection with a siRNA against
LDLr. The amount of LDLr protein was reduced markedly by the
siRNA (Fig. 4A). The reduced level of LDLr in LNCaP cells following
siRNA transfection was associated with decreased intracellular
cholesterol levels after treatment with simvastatin (Fig. 4B). Sim-
vastatin also inhibited LNCaP cell proliferation after transfection of
the siRNA (Fig. 4C), consistent with the known role of intracellular
cholesterol in cell proliferation.

4. Discussion

In this study, we showed that the mechanism of the effect of
simvastatin on prostate cancer cells depends on the expression of
LDLr. It has been reported that statins inhibit the development of
prostate cancer cells, but the mechanism has not been clear. To the
best of our knowledge, this is the first report showing that the LDLr
plays an important role in the statin-induced inhibition of prostate
cancer cell proliferation.

Statins are taken by many hyperlipidemic patients worldwide.
In addition, statins have been investigated for carcinoma preven-
tion or as cures for cancer. There are many clinical reports on the
relationship between statins and prostate cancer outcomes.
Recently, large population-based retrospective cohort studies
showed that the use of statins after diagnosis was associated with a
decreased risk of prostate cancer mortality11; furthermore, statin
use was associated with a reduced risk for prostate cancer.2 Con-
cerning the outcomes after radical therapy, statin use was associ-
ated with reductions in the risk of biochemical recurrence after
both radical prostatectomy12 and radiation therapy.13 However, it is
reported that the use of statins did not reduce the risk of prostate
cancer overall, but was associated with a reduced risk of advanced
(especially metastatic or fatal) prostate cancer.14 We showed that
simvastatin had more antitumor effects on androgen-independent
than on androgen-dependent prostate cancer cells. These findings
indicate that statins may reduce the development of more
aggressive prostate cancers.

The expression of LDLr is regulated by intracellular cholesterol
levels in normal cells. Lipoprotein treatment decreased LDLr
expression to prevent too much cholesterol from entering normal
cells.6 However, LDLr expression is increased by statins, which
inhibit HMG-CoA reductase and decrease intracellular cholesterol
levels. As a result, statins reduce blood cholesterol levels by
increasing LDL uptake.15 In this study, LDLr expression in LNCaP
cells was increased by simvastatin, as in normal cells, but not in PC-
3 cells. Regarding prostate cancer, PC-3 and DU145 cells are re-
ported to lack feedback regulation of sterol regulatory element-
binding protein-2 (SREBP2), which controls LDLr expression in
accordance with intracellular cholesterol levels; the lack of SREBP2
feedback is at least in part explained by the lack of LDLr feedback in
the cells.7 It was also reported that androgens regulate lipogenesis
through activation of the SREBP pathway in prostate cancer,16 and
dysregulation of SREBPs by androgens occurred during progression
to androgen independence in LNCaP cells.17 Chen and Hughes-
Fulford7 and Sekine et al18 have shown that LDL and remnant li-
poproteins downregulated LDLr expression in LNCaP cells, but not
in PC-3 cells. In this study, androgen-dependent LNCaP cells were
able to regulate LDLr expression in response to simvastatin,
whereas androgen-independent PC-3 cells could not. Thus, we
suggest that androgen dependency has an important role in the
regulation of LDLr expression in prostate cancer cells.



Fig. 4. Effect of low-density lipoprotein receptor (LDLr) knockdown on LNCaP cells treated with simvastatin. (A) Transfection of LNCaP cells with LDLr small interfering RNA (siRNA)
or negative siRNA was performed as described in the “Materials and Methods” section. After transfection, the cells were incubated for 48 hours before harvesting for Western
blotting. Negative siRNA-transfected cells were used as controls. (B) After transfection, the cells were incubated with simvastatin-containing media. The total cholesterol mass was
evaluated after 72 hours of treatment with various concentrations of simvastatin. Values are expressed as the means ± SD (n ¼ 3). a)P < 0.01, vs. 0mM. (C) After transfection, the cells
were incubated with simvastatin-containing media. The number of viable cells was evaluated using MTS assay after 48 hours of treatment with various concentrations of sim-
vastatin. Values are expressed as means ± SD (n ¼ 3). a)P < 0.05 versus 0mM. b)P < 0.01 versus 0mM.
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Cholesterol is vital for cell membrane integrity, cellular meta-
bolism, and cell signaling in cellular proliferation. Clinically, it has
been shown that high cholesterol levels are associated with an
increased risk of aggressive prostate cancer.19,20 In addition,
cholesterol promotes prostate cancer cell line growth in vitro and in
xenograft models by inducing Akt activation21 and de novo ste-
roidogenesis.22 We showed that simvastatin inhibited cell prolif-
eration and decreased cellular cholesterol levels in PC-3 cells,
which could not increase LDLr expression sufficiently to cover the
deficiency in cellular cholesterol after treatment with simvastatin.
In addition, the reduced level of LDLr in LNCaP cells following siRNA
transfection was associated with decreased cellular cholesterol
levels and basal cell proliferation. Murtola et al23 reported that
simvastatin inhibited LNCaP cell proliferation in culture medium
without cholesterol, and the effect was prevented by LDL. These
findings indicate that a decrease in cholesterol levels is one of the
mechanisms underlying statin-induced inhibition of prostate can-
cer cells.

Our study had several limitations. First, the clinical plasma
concentrations of statins are in the range of 10‒100nM24 but the
concentration in prostate tissue is unknown. Thus, there is a pos-
sibility that our experimental concentration of simvastatin was
unrealistically high. Furthermore, we evaluated the effect of statins
only in vitro. Despite these limitations, the results are interesting
because there has been no previous report of any relationship be-
tween the antitumor effects of statins and LDLr expression in
prostate cancer.

In summary, statins inhibited prostate cancer cell growth by
decreasing cellular cholesterol, and they could be more effective
against androgen-independent prostate cancer, in which there is
loss of regulation of LDLr expression. Besides, androgen-
deprivation therapy for prostate cancer is well-known to
significantly increase the levels of total cholesterol and tri-
glycerides.25 These results suggest that statins have the clinical
potentials of not only improving hyperlipidemia, but also
inhibiting the progression of castration refractory prostate can-
cer. Future studies on the cholesterol-lowering effects of statins
may lead to new approaches for the prevention and treatment of
prostate cancer.
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