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Abstract 

 During treatment with sunitinib, dosage adjustment according to the monitored 

blood concentration of sunitinib and SU12662 is considered useful. On the other hand, 

the appearance of hand-foot skin reaction (HFSR) cannot be explained by blood sunitinib 

concentration alone. Although light exposure greatly affects skin disorders associated 

with medication use, the photodegradation of sunitinib has not been studied in detail. Here, 

we investigated the photodegradation products of sunitinib using LC-MS and examined 

cytotoxic activities using an MTT assay. N-desethyl sunitinib and sunitinib N-oxide were 

identified as photodegradation products, and their concentrations increased under 

irradiation in a time-dependent manner. Although the IC50 value of N-desethyl sunitinib 

in the HEK 293 cell line (11.6 µmol/L) was similar to that of sunitinib (8.6 µmol/L), the 

IC50 value of sunitinib N-oxide (121.9 µmol/L) was over 10 times higher than that of 

sunitinib. In addition, N-desethyl sunitinib and sunitinib N-oxide were found in blood 

obtained from a patient taking sunitinib (24.7 and 2.3 ng/mL, respectively). Because the 

appearance of adverse drug reactions associated with sunitinib can be reduced by using 

α-tocopherol nicotinate, which has a strong antioxidant effect, we believe that sunitinib 

N-oxide might strongly promote the development of HFSR. 
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Introduction 

 Sunitinib, a multi-targeted tyrosine kinase inhibitor, is used as a first-line drug 

treatment for metastatic renal cell carcinoma (RCC) and is considered to be one of the 

key drugs for treating RCC [1-3]. The antitumor activity of sunitinib depends on its 

concentration in the blood and, in a meta-analysis of clinical trials of patients taking 

sunitinib for metastatic RCC and gastrointestinal stromal tumor, patients with a high 

cumulative area under the concentration-time curve (AUCcum) of total sunitinib—

reflecting the total amount of sunitinib and SU12662, an active metabolite of sunitinib—

had a significantly longer time to tumor progression and overall survival [4]. In addition, 

some adverse drug reactions (ADRs) such as anorexia and fatigue were reported to be 

correlated with total sunitinib concentration, and the mean total sunitinib concentration is 

also reported to be higher in patients with bleeding events than in those without them [5]. 

Thus, during treatment with sunitinib, dosage adjustment according to the monitored 

concentration of sunitinib and SU12662 in blood is considered useful [6-9]. 

 Noda and colleagues [5] have also reported that some dose-limiting toxicities of 

sunitinib, such as hand-foot skin reaction (HFSR), hypertension, and blood toxicity, 

developed irrespective of the total sunitinib concentration. In addition, the frequency of 

HFSR is significantly higher in Japanese people, although there is no significant 
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difference in the blood concentration of sunitinib between Japanese and Western 

populations [3, 10]. Thus, the appearance of HFSR cannot be explained solely by a high 

blood concentration of sunitinib. 

 Although HFSR due to sunitinib has been considered to be caused mainly by 

damage to the capillary endothelium due to physical pressure and VEGF inhibition, the 

precise mechanisms remain unclear [11]. The causes of skin disorders linked to the use 

of various drugs have been studied, and several factors and mechanisms have been 

elucidated. As an example, light-dependent photosensitivity is reported to be caused by 

the interaction of an active substance generated by light exposure with constituent 

components in the body [12]. In addition, skin disorders linked to a new quinolone 

antibacterial agent are caused by photoreactive substances generated by exposure of a 

drug or its metabolites in the skin to light [13]. As mentioned above, light exposure has 

been considered to strongly promote the appearance of skin disorders associated with 

medications [14]. 

 Sunitinib and SU12662 have been reported to be converted from the Z form to 

the E form by photoinduced isomerization upon exposure to light in water [15]. On the 

other hand, because the sum of the E and Z forms after irradiation of sunitinib did not 

coincide with the original drug amount in that study, it is conceivable that other 
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photodegradation products are generated. However, photodegradation products other than 

the E/Z conversion have not been well studied. 

 Accordingly, in this study, we investigated the photodegradation products of 

sunitinib in detail and studied the possibility that ADRs, including HFSR, are caused by 

the photodegradation products of sunitinib. 
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Methods 

Materials 

 Sunitinib and sorafenib were purchased from LC Laboratories (Woburn, MA). 

Sunitinib N-oxide and N-desethyl sunitinib were purchased from Toronto Research 

Chemicals (Toronto, Canada). Cell Proliferation Kit I (MTT) was purchased from Roche 

Diagnostics GmbH (Mannheim, Germany). The human embryonic kidney cell line HEK 

293 was purchased from the Japanese Collection of Research Bioresources (JCRB) Cell 

Bank (Osaka, Japan). ISOLUTE SLE+ column and UV lamp (SYN185UV1) were 

purchased from Biotage Japan Ltd. (Tokyo, Japan) and Merck KGaA (Darmstadt, 

Germany), respectively. Culture reagents were purchased from Wako Pure Chemical 

Industries (Osaka, Japan). All other reagents were obtained from commercial sources, 

and those used for analysis were graded for high-performance liquid chromatography, 

liquid chromatography-mass spectrometry (LC-MS), or analytical use. 

 

Sample preparation 

 Sunitinib, sunitinib N-oxide, N-desethyl sunitinib, and sorafenib were dissolved 

in methanol and diluted to 1.0 mg/mL with methanol as stock solutions. Samples were 

stored in light-proof bottles at −20°C. 
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Analysis of the photodegradation products of sunitinib 

 Sunitinib stock solution was diluted to 500 ng/mL with 50% methanol and 

exposed to room or UV (185 nm) light at room temperature. Samples were collected 0, 

24, 48, and 72 h after the start of the irradiation and photodegradation products were 

detected and quantified using time-of-flight (TOF) MS. The structures of these products 

were determined using quadrupole MS/MS (qMS/MS). 

 

MTT assay 

 The HEK 293 cell line was cultured in a humidified 5% CO2 incubator at 37°C. 

The cells were seeded at 4 × 105 cells/well in a 24-well plate and cultured for 24 h in 

Dulbecco's Modified Eagle's medium (DMEM) containing FBS at 37°C, followed by 

incubation at 37°C for an additional 24 h in 900 µL/well of serum-free DMEM. Thereafter, 

100 μL of sunitinib, sunitinib N-oxide, and N-desethyl sunitinib at 0.1, 0.25, 1.0, 2.5, 10, 

25, 100, 250, 1000, and 2500 μmol/L in 0.1% DMSO or 100 μL of 0.1% DMSO as control 

were added for 72 h. Then, 100 μL of MTT solution was added to each well and the cells 

were incubated at 37°C for 4 h. After the addition of 1 mL of DMSO, the samples were 

allowed to stand at room temperature for 1 h and absorbance at 570 nm was measured. 
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Cell viability was calculated by determining the ratio of the absorbance to that of the 

control group. 

 

Clinical analysis 

 Blood samples (8 mL) were taken from a patient who received 37.5 mg/day 

sunitinib with a 2-week on/1-week off schedule 24 h after the last dose of sunitinib. The 

blood was centrifuged at 3,000 rpm for 5 min to separate the plasma. A mixture of 50 μL 

of plasma, 10 μL of 50% methanol or standard solution in 50% methanol, 10 μL of 100 

ng/mL sorafenib in methanol (as internal standard), and 130 μL of Milli-Q® water 

(Millipore, Temecula, CA) was applied into an ISOLUTE SLE+ column (400 μL 

capacity). The sample was eluted with 2 mL of ethyl acetate, and the eluate was 

evaporated to dryness under reduced pressure. The residue was dissolved in 50 μL of 50% 

methanol, and 10 μL was used for LC-qMS/MS analysis. This study was approved by the 

Gunma University Ethical Review Board for Medical Research Involving Human 

Subjects; the patient gave written informed consent prior to participating in the study. 

 

Mass spectrometric analysis 

Exploration of photodegradation products was performed using time-of-flight 
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mass spectrometry (TOF MS) on an LCT Premier™ XE (Waters, Milford, MA), with 

flow injection mode and in LC-TOF MS mode for quantification of the detected 

photodegradation products. MS analysis was performed using an electrospray ionization 

(ESI) source in positive ionization mode (W mode). Survey scans were acquired in the 

range of 100 to 1000 m/z. Instrument settings were as follows: capillary voltage, 3200 V; 

sample cone voltage, 30 V; desolvation temperature, 350°C; source temperature, 130°C; 

cone gas flow, 60 L/h; desolvation gas flow, 700 L/h; and aperture 1 voltage, 0 V. For 

quantification of the detected photodegradation products, LC was performed with an 

ACQUITY UPLC® system (Waters). An ACQUITY UPLC® BEH C18 column (2.1 mm 

× 50 mm, 1.7 μm) (Waters) was used as the LC column. The LC conditions were as 

follows: column temperature, 40°C; mobile phase, 0.1% formic acid in Milli-Q® water 

(A) and 0.1% formic acid in acetonitrile (B); flow rate, 0.3 mL/min; gradient program, 

5% to 35% B in 6 min, 35% to 95% B in 1 min, 95% B for 2 min, and 95% to 5% B in 1 

min. 

Tandem quadrupole MS was used to determine the structure of the 

photodegradation products in flow injection mode and analyze the concentration of 

sunitinib and its degradation products in the plasma in LC-MS/MS mode. XevoTQ 

(Waters) with ESI turbo spray in the positive ionization mode was used with the following 
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ionization parameters: capillary voltage, 3000 V; desolvation temperature, 500°C; source 

temperature, 150°C; desolvation gas flow, 1000 L/h; and cone gas flow, 50 L/h. The 

following transitions were monitored: 399/283 for sunitinib, 371/283 for N-desethyl 

sunitinib, 415/326 for sunitinib N-oxide, and 465/252 for sorafenib. Sample cone voltage 

and collision energy were 50 V and 22 V for sunitinib, 32 V and 24 V for N-desethyl 

sunitinib, and 24 V and 22 V for sunitinib N-oxide, respectively. For blood sample 

analysis, LC was performed with an ACQUITY UPLC® system (Waters). An ACQUITY 

UPLC® BEH C18 column (2.1 mm × 50 mm, 1.7 μm) (Waters) was used as the LC 

column. The LC conditions were as follows: column temperature, 40°C; mobile phase, 

0.1% formic acid in Milli-Q® water (A) and 0.1% formic acid in acetonitrile (B); flow 

rate, 0.5 mL/min; and gradient program, 5% to 35% B in 6 min, 35% to 95% B in 1 min, 

95% B for 2 min, and 95% to 5% B in 1 min. 
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Results 

Analysis of photodegradation products 

 In TOF MS analysis of sunitinib exposed to UV light for 72 h, two clear signals 

were found at m/z 415.213 and 371.189 (Fig. 1). In qMS/MS analysis, signals at m/z 326, 

283, and 255 were found as fragment ions of m/z 415.2. Because the pattern of these 

fragment ions coincided with that obtained from m/z 399.2 of sunitinib, a 

photodegradation product found as the m/z 415.2 ion was identified as a sunitinib oxide, 

which was generated by oxidation of the nitrogen atom side of sunitinib, to which two 

ethyl groups bind (Fig. 2). Similarly, clear signals at m/z 326, 283, and 255 were found 

as fragment ions of m/z 371.2, and a photodegradation product found as the m/z 371.2 

ion was identified as a deethylate of sunitinib that was generated by deethylation of the 

tertiary amine of sunitinib (Fig. 2). In addition, in LC-qMS/MS analysis, the retention 

times of the peaks of the photodegradation products m/z 415/326 and 371/283 were 

consistent with the retention times of sunitinib N-oxide (m/z 415/326) and N-desethyl 

sunitinib (m/z 371/283), respectively. Furthermore, the MS spectra of the fragment ions 

of m/z 415.2 and 371.2 in UV-irradiated samples were consistent with the fragment ion 

MS spectra of m/z 415.2 of sunitinib N-oxide and of m/z 371.2 of N-desethyl sunitinib 

(data not shown). 
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 The concentration of sunitinib decreased in a time-dependent manner up to 48 h 

in the UV-irradiated sample and rapidly decreased after 72 h (Fig. 3A). By contrast, 

sunitinib was only slightly decreased after irradiation with indoor light. Sunitinib N-oxide 

comprised 64.0% and 77.0% of the photodegradation products in the samples exposed to 

UV light for 48 and 72 h, respectively (Fig. 3B). 

 

Analysis of the cytotoxicity of the photodegradation products of sunitinib 

 The cytotoxicity of sunitinib and its photodegradation products N-desethyl 

sunitinib and sunitinib N-oxide was assessed by MTT assay. In contrast to N-desethyl 

sunitinib (IC50 value, 11.6 µmol/L), the IC50 value of sunitinib N-oxide was over 10 times 

higher than that of sunitinib in the HEK 293 cell line (121.9 and 8.6 µmol/L for sunitinib 

N-oxide and sunitinib, respectively) (Fig. 4). 

 

Blood concentrations of the photodegradation products of sunitinib 

 The concentrations of sunitinib, N-desethyl sunitinib, and sunitinib N-oxide in 

blood obtained from a patient taking sunitinib at trough were 79.9, 24.7, and 2.3 ng/mL, 

respectively (Fig. 5). 
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Discussion 

 The risk of developing HFSR, one of the dose-limiting toxicities of sunitinib, 

has not been correlated with the blood concentration of sunitinib, and so elucidation of 

the factors leading to the onset of HFSR is required. We focused on the skin reactions 

accompanying light irradiation, considered an important clinical problem for many 

medicines, and investigated the photodegradation products of sunitinib. We found for the 

first time that sunitinib N-oxide is generated by UV irradiation of sunitinib and that it is 

also present in the blood of a patient taking sunitinib. Although sunitinib N-oxide was 

found in plasma and urine as a micro-decomposition product in an in vivo rat study, its 

contribution to drug efficacy and adverse and pharmacological effects has not been 

studied [16]. 

 Recently, α-tocopherol nicotinate was reported to reduce the appearance of 

ADRs related to sunitinib [17]. The authors found that ADR was reduced due to the 

hydrogen peroxide trapping efficacy of α-tocopherol nicotinate. However, because α-

tocopherol nicotinate has a strong antioxidant effect, we believed that the ADRs of 

sunitinib could be suppressed via an antioxidant-mediated decrease in sunitinib N-oxide 

generation. Because we have not assessed the impact of sunitinib N-oxide on the 

appearance of HFSR, we need to fully explore the influence of sunitinib N-oxide in the 
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human body and the relationship between sunitinib N-oxide level and HFSR onset in 

future research. 

 In an MTT assay, the cytotoxic activity of sunitinib N-oxide was found to be 

lower than that of sunitinib and N-desethyl sunitinib. These data suggested that the effect 

of sunitinib N-oxide on humans may be different from that of sunitinib and N-desethyl 

sunitinib. However, we could not rule out the possibility that the differences in 

intracellular uptake of each substance may have affected the MTT assay results, and we 

also did not evaluate the pharmacological effects of sunitinib N-oxide in detail. At least 

for this point, the effect on sunitinib N-oxide on ADRs remains to be clarified and requires 

further in-depth study. 

 In the analysis of sunitinib and sunitinib-related compounds using LC, the 

retention time of sunitinib N-oxide was very similar to that of sunitinib. Because they 

both have the same basic structure, it may be difficult to distinguish these compounds by 

UV detection and accurate long-term separation analysis is needed to separately quantify 

these compounds using a UV detector [18]. Because the activity of sunitinib and sunitinib 

N-oxide was indicated to be different in our study, we believe that LC-MS/MS but not 

LC-UV/Vis is suitable for the separate routine clinical analysis of sunitinib and sunitinib-

related compounds. 
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 In conclusion, we found that sunitinib N-oxide was generated by UV irradiation 

of sunitinib and could be detected in the blood of a patient taking sunitinib. Although the 

pharmacological effects of sunitinib were not clarified, we believe that sunitinib N-oxide 

might strongly affect the appearance of ADRs because it has been reported that the ADRs 

induced by sunitinib can be ameliorated by antioxidant treatment. We aim to study the 

distribution and pharmacological effects of sunitinib N-oxide and assess its influence on 

the development of ADRs of sunitinib. 
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Figure legends 

Fig. 1 TOF MS spectrum of sunitinib solution before and after UV irradiation. A: 

before irradiation. B: after 72-h irradiation. 

 

Fig. 2 Fragment ion MS spectrum of photodegradation products. 

 

Fig 3. Amount of photodegradation products and duration of light exposure. A: Change 

in the amount of sunitinib and the total photodegradation products detected. Closed, 

sunitinib (E); open, sunitinib (Z); hatched, degradation products. B: Change in the amount 

of each of the photodegradation products detected. Closed, N-desethyl sunitinib (E); open, 

N-desethyl sunitinib (Z); hatched, sunitinib N-oxide (E); dotted, sunitinib N-oxide (Z). 

 

Fig. 4 Cytotoxic activity of sunitinib, N-desethyl sunitinib, and sunitinib N-oxide. 

Closed circle, sunitinib; closed square, N-desethyl sunitinib; open circle, sunitinib N-

oxide. 

 

Fig. 5 Chromatogram of a clinical sample. A: m/z 399/283 (sunitinib); B: m/z 371/283 

(N-desethyl sunitinib); C: m/z 415/326 (sunitinib N-oxide); D: m/z 465/252 (sorafenib as 
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internal standard). 
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Fig. 1  
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Fig. 2  
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Fig. 3 
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Fig. 4 
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Fig. 5  

 


