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ABSTRACT: We investigated the effects of resolvin E (RvE) 1, RvE2, and RvE3 on IL-4– and IL-33–stimulated bone
marrow–derived dendritic cells (BMDCs) from house dust mite (HDM)-sensitized mice. We also investigated the
role of RvE3 in a murine model of HDM-induced airway inflammation. In vitro, BMDCs from HDM-sensitized
micewere stimulatedwith IL-4 and IL-33 and then treatedwithRvE1,RvE2,RvE3, or vehicle. RvE1,RvE2, andRvE3
suppressed IL-23 release fromBMDCs. In vivo,RvE3 administrated toHDM-sensitized and challengedmice in the
resolutionphase promotedadecline in total numbers of inflammatory cells and eosinophils, reduced levels of IL-23
and IL-17 in lavage fluid, and suppressed IL-23 and IL-17A mRNA expression in lung and peribronchial lymph
nodes. RvE3 also reduced resistance in the lungs of HDM-sensitizedmice. ANanoBiTb-arrestin recruitment assay
using human embryonic kidney 293 cells revealed that pretreatment with RvE3 suppressed the leukotriene B4
(LTB4)–induced b-arrestin 2 binding to LTB4 receptor 1 (BLT1R), indicating that RvE3 antagonistically in-
teracts with BLT1R. Collectively, these findings indicate that RvE3 facilitates the resolution of allergic airway
inflammation, partly by regulating BLT1R activity and selective cytokine release by dendritic cells. Our
results accordingly identify RvE3 as a potential therapeutic target for the management of asthma.—Sato, M.,
Aoki-Saito, H., Fukuda, H., Ikeda, H., Koga, Y., Yatomi,M., Tsurumaki, H., Maeno, T., Saito, T., Nakakura, T.,
Mori, T., Yanagawa, M., Abe, M., Sako, Y., Dobashi, K., Ishizuka, T., Yamada, M., Shuto, S., Hisada, T.
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Asthma is a chronic airway inflammatory disease char-
acterized by airway hyperresponsiveness and infiltration
of leukocytes, including eosinophils and T lymphocytes,
with increased levels of prophlogistic cytokines and lipid

mediators (1). Although the majority of patients with
asthma have symptoms that respond to standard thera-
pies, such as inhaled corticosteroids, some 5–10% of
asthmatic patients have symptoms that are refractory to
current therapy.

The v-3 fatty acids, namely, eicosapentaenoic acid
(EPA) and docosahexaenoic acid, are abundant in fish oil,
and epidemiologic studies have shown that dietary sup-
plementation with fish oil or v-3 fatty acids has beneficial
effects on asthma (2–5). Resolvins are products ofv-3 fatty
acids with potent anti-inflammatory properties (6–9).
EPA-derived resolvin E (RvE)1 has previously been ob-
served to showanti-inflammatory andproresolving effects
on eosinophilic airway inflammation in a murine asthma
model (10–13). Haworth et al. reported that RvE1 attenu-
ates allergic airway inflammation through regulating IL-23
and IL-17A production. RvE1 has also been shown to
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inhibit IL-23 production in vivo and suppresses IL-23 release
from LPS-stimulated bone marrow–derived dendritic cells
(BMDCs) (12). RvE3 [(5Z,8Z,11Z,13E,15E,17R,18R)-17,18-
dihydroxyicosa-5,8,11,13,15-pentaenoic acid], a novel mem-
ber of the E series of resolvins, was recently identified in
EPA-derived metabolites from eosinophils and has been
found to exhibit potent anti-inflammatory action by inhibit-
ing polymorphonuclear leukocyte infiltration in a zymosan-
induced peritonitismodel (14). However, the role of RvE3 in
allergic inflammation is currently unknown.

In this study, we investigated the effect of RvE1, RvE2,
and RvE3 on BMDCs and the effects of RvE3 on a murine
model of asthma in order to gain an insight on the role of
RvE3 inallergic airway inflammation.Wealso conducteda
NanoBiT b-arrestin recruitment assay using human em-
bryonic kidney (HEK)293 cells to determinewhether RvE3
interacts with leukotriene B4 (LTB4) receptor 1 (BLT1R).

MATERIALS AND METHODS

Animals

Female BALB/c mice (5–8 wk old) were obtained from Charles
River Laboratories (Wilmington, MA, USA) and housed under
specific pathogen-free conditions in the animal facility of the
Gunma University Standing Committee on Animals. Animal
experiments were approved by the Institutional Animal Care
and Use Committee of Gunma University Graduate School of
Medicine (17-007).

A murine model of airway inflammation

House dust mite (HDM; Dermatophagoides pteronyssinus) extract
was obtained from Greer Laboratories (Lenoir, NC; containing
0.0809 mg of Der p 1 and 1.7 mg of total protein). RvE1, RvE2, and
RvE3 were obtained from the Faculty of Pharmaceutical Science,
HokkaidoUniversity (Hokkaido, Japan). Isofluorane-anesthetized
mice were intranasally administered 65 mg of HDM extract (total
protein) in 50ml of PBS or 50ml of PBS alone (control) on d 0, 1,
2, 14, 15, 16, and 17. RvE1 (2mg) in 100ml of PBS, RvE3 (2mg) in
100 ml of PBS, or vehicle (100 ml of PBS) was intraperitoneally
injected on d 17 and 18. The protocol used for sensitization
and challenge was partly based on the method described by
Gold et al. (15). The doses of RvE1 and RvE3 and the protocol
used for injecting resolvins were selected based on a previous
study,Aoki et al. (11), conducted onRvE1.Onprotocol d 19, 48
h after the finalHDMchallenge, airwayswere lavaged 3 times
with PBS (0.1 ml), and the lung tissues were harvested for
histopathological and mRNA expression analyses. Peribron-
chial lymph node (PBLN) and spleen tissues were also har-
vested for the analysis of mRNA expression. Differential cell
counts (200 cells/slide) were determined in cytospin prepa-
rations obtained by centrifuging at 500 rpm for 5 min and
staining with May-Grünwald-Giemsa stain.

Histopathological studies

Lung samples were fixed in 10% neutral buffered formalin,
dehydrated through a graded ethanol series, and embedded
in paraffin. The deparaffinized sections (4 mm thick) were
stained with hematoxylin and eosin (H&E), and periodic
acid–Schiff (PAS) for identifyingmucus-secreting cells (goblet
cells) in the airways.We enumerated the stainedgoblet cells in

the large-caliber preterminal bronchi of at least 3 lung sections
obtained from each animal. The length of the basal lamina of
the corresponding bronchus was measured using ImageJ
(National Institutes of Health, Bethesda, MD, USA). Goblet
cell scores were calculated as previously described in Grünig
et al. (16). Briefly, 40–80 consecutive airways from mice were
categorized according to the abundance of PAS-positive
goblet cells and assigned numerical scores (0: ,5% goblet
cells; 1: 5–25%; 2: 25–50%; 3: 50–75%; 4: .75%) in a blind
manner based on methods previously described in Aoki et al.
(11). The sum of the airway scores for each lung was divided
by the number of airways examined to yield a histologic
goblet cell score.

Measurement of cytokines

IL-4, IL-5, IL-13, IL-17, and IL-23 were measured using DuoSet
ELISA Development Kits (R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions.

Culture of BMDCs

Female BALB/c mice were intranasally administered 65 mg of
HDM extract (total protein) in 50 ml of PBS on d 0, 1, and 2.
On d 14, bone marrow cells obtained from the femurs and tibias
of mice were placed in Roswell Park Memorial Institute (RPMI)
1640 medium containing 10% fetal bovine serum and recombi-
nantmouseGM-CSF (10ng/ml;R&DSystems)and recombinant
mouse IL-4 (10 ng/ml; R&D Systems). The culture mediumwas
replacedwith the samemediumcontaining these cytokines at 2-d
intervals. On d 7, the cells were pulsed with IL-4 (10 ng/ml) and
IL-33 (20 ng/ml) and treated with RvE1 (10 nM), RvE2 (10 nM),
RvE3 (10 nM), or vehicle (PBS). After 24 h, the culture superna-
tants were analyzed for IL-23 using ELISA.

Measurement of mRNA

Total RNA was isolated from the lungs, PBLNs, and spleen of
mice using RNAiso Plus (Takara, Kyoto, Japan;MilliporeSigma,
Burlington, MA, USA), according to the manufacturer’s in-
structions.After treatmentwithDNaseI (Promega,Madison,WI,
USA) to remove traces of contaminantgenomicDNA,2mgof the
purified RNA was reverse-transcribed according to the manu-
facturer’s recommendations (Thermo Fisher Scientific, Wal-
tham, MA, USA). The expression of mRNA was measured by
real-time quantitative TaqMan PCR using an Mx3000P Quanti-
tative PCR system (Agilent Technologies, SantaClara, CA,USA)
aspreviouslydescribed inMogi et al. (17),Weused the following
probes purchased from Thermo Fisher Scientific: murine IL-4
(Mm00445259_m1), IL-5 (Mm00439646_m1), IL-13 (Mm00434204_
m1), IL-17A (Mm00439618_m1), IL-23 (Mm00518984_m1), and
glyceraldehyde-3-phosphate dehydrogenase (Mm99999915_g1).

Airway hyperreactivity to methacholine

Airway hyperreactivity (AHR) is one of the major hallmarks of
asthma. In thepresentstudy,wemeasured lungresistance48hafter
the final HDM challenge. Anesthetized mice were mechanically
ventilatedusingaBuxcoBioSystemXAResistanceandCompliance
Analyzer [Data Sciences International (DSI), St. Paul, MN, USA],
and aerosolized methacholine (0, 1.25, 2.5, 5, and 10 mg/ml) was
delivered in-line through the inhalation port for 2 min. Lung re-
sistance was measured as a percentage of the baseline value with
PBS nebulization using the mean of 10 readings taken for each
concentration of methacholine.
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DNA synthesis

The coding sequence of rat b-arrestin 2 harbored within a
b-arrestin 2–pEGFP-N1 plasmid [a gift from Robert Lefkowitz
(Department of Medicine, Duke University Medical Center)
(plasmid 35411; Addgene, Watertown, MA, USA)] (18) was
insertedwithaGS linkerdownstreamof theSmBiTcodingregion
in a pBiT2.1-N vector (Promega). In order to generate anHEK293
cell line that stably expresses the SmBiT-fused b-arrestin 2, we
subsequently introduced a peptide sequence from porcine
teschovirus-1 2A (P2A) (19) downstream of epidermal growth
factor receptor (EGFR) in an EGFR–green fluorescent protein
(GFP)–pEGFP-C1 plasmid (20). Thereafter, the EGFR coding re-
gionwas replaced with the SmBiT–b-arrestin 2 coding sequence
(SmBiT–b-arrestin 2–P2A-GFP–pEGFP-C1). The human BLT1R
coding sequence in a Presto-Tango GPCR Kit [a gift from Bryan
Roth (Department of Pharmacology, University of North Caro-
lina, Durham, NC, USA) (1000000068; Addgene)] (21) was
insertedwith a GS linker upstream of the LgBiT coding region in
a pBiT1.1-C vector (Promega) (BLT1R-LgBiT-pBiT).

NanoBiT b-arrestin recruitment assay

A NanoBiT b-arrestin recruitment assay was performed
according to a method previously described in ref. 22 with
slight modifications. HEK293S cells [a gift from Yoshinori
Shichida (Research Organization of Science and Technology,
Ritsumeikan University, Kusatsu Shiga, Japan)] were trans-
fected with SmBiT–b-arrestin 2–P2A-GFP–pEGFP-C1 and
grown in the presence of 400 mg/ml G418 for 2 wk. Colonies
expressing GFP (SmBiT–b-arrestin 2 HEK293S cells) were
picked up under a fluorescence microscope. These SmBiT–b-
arrestin 2 HEK293S cells were transfected with BLT1R-LgBiT-
pBiT (4 mg/plate) using Lipofectamine 3000 (Thermo Fisher
Scientific) in a white collagen I–coated 96-well plate (Thermo
Fisher Scientific) as described in ref. 23. After an overnight
incubation at 37°C in 5% CO2, the medium in each well was
exchanged for 80 ml of 0.01% bovine serum albumin–HBSS
containing resolvins or vehicle (ethanol) 1 h prior to measure-
ment. The time course of the change in luminescence intensity
was detected at room temperature in a microplate reader
(FlexStation 3; Molecular Devices, Sunnyvale, CA, USA) using
the following protocol: mode, luminescence, flex mode;
wavelength, all; integration time, 500ms; total run time 12min;
interval, 8 s; compound transfer 1, 20 ml 53NanoGlo Live Cell
Substrate (Promega) at 20 s; compound transfer 2, 25 ml 53
concentration ligands or vehicle diluted in 0.01% bovine serum
albuin–HBSS at 200 s. This protocol enabled us to measure all
lanes with the same equilibration time (3 min) after substrate
addition. The data were normalized at the maximum intensity
of wells stimulated with 1 mM LTB4 (Cayman Chemical, Ann
Arbor, MI, USA) for the dose-response measurement of LTB4
and resolvins, or the mean intensity of vehicle-pretreated
wells 240 s after 1 nM LTB4 stimulation for the competitive
assay. The data were fitted using Eq. 1 or 2, where the half
maximal inhibitory concentration (IC50) is: the 50% inhibitory
concentration:

f ðxÞ ¼ bottomþ top2 bottom
1þ EC50

x

(1)

f ðxÞ ¼ top1þ bottom12 top1
1þ IC50

x

þ bottom2þ top22 bottom2
1þ EC50

x

(2)

The curve fittings and the illustrations in the figures were
obtained using Igor Pro 8.03 (WaveMetrics, Lake Oswego, OR,
USA).

Statistical analysis

Results are presented as means6 SEM. An ANOVA or Welch’s t
testwas used to assess the statistical significance of differences.A
value of P, 0.05 was considered significant.

RESULTS

RvE3 regulates IL-23 release from BMDCs

Given that RvE1 attenuates asthmatic inflammation by
regulating IL-23and IL-17A(12),we investigated the effect
of RvE1, RvE2, and RvE3 on BMDCs. BMDCs prepared
from HDM-sensitized mice were stimulated with IL-33
and IL-4 and treated with RvE1, RvE2, RvE3, or vehicle.
We found that RvE1-, RvE2-, and RvE3-treated BMDCs
showed significantly lower levels of IL-23 than the
vehicle-treated BMDCs (P , 0.05) and that RvE3-treated
BMDCs displayed lower IL-23 secretion than either RvE1-
or RvE2-treated BMDCs (Fig. 1).

RvE3 attenuates HDM-induced airway
inflammation and airway
hyperresponsiveness

Airway inflammation is one of the characteristic features
of asthma,andwe further investigated theeffect ofRvE3 in
an HDM-induced asthma model in mice. The mice were
sensitized and challenged intranasally with HDM, and
RvE3 or vehicle was injected intraperitoneally during the
resolution phase. A schematic representation of the ex-
perimental protocol is shown in Fig. 2A.
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Figure 1. RvE3 regulates IL-23 release from IL-4– and IL-
33–stimulated BMDCs obtained from HDM-sensitized BALB/c
mice. IL-23 levels were significantly higher in IL-4– and IL-
33–stimulated BMDCs compared with control (nonstimulated)
BMDCs. RvE1, RvE2, and RvE3 treatments significantly
reduced IL-23 levels. Values are expressed as means 6 SEM.
#P , 0.05, significantly different from the control BMDCs;
*P , 0.05, significantly different from the IL-4– and IL-
33–stimulated and vehicle-treated BMDCs. †P , 0.05, signifi-
cantly different from the RvE1-treated BMDCs; ‡P , 0.05,
significantly different from the RvE2-treated BMDCs.
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On protocol d 19, 48 h after the final HDM challenge,
lung resistance was measured to evaluate AHR. Mice
treated with RvE3 showed a reduction in maximum lung
resistance (Fig. 2B). On protocol d 19, bronchoalveolar
lavage (BAL) was performed. Compared with the
vehicle-treated mice, RvE3-treated mice displayed a sig-
nificant decrease in the number of total leukocytes and
eosinophils in BAL fluid (Fig. 2C). These results indicate
that RvE3 promoted resolution of both inflammation and
AHR.

The extent of leukocyte infiltration within anatomic
location was determined in H&E- and PAS-stained sec-
tions of lung tissue collected from mice on d 19 (Fig. 3).
Sensitization and challenge with HDM induced wide-
spread peribronchiolar and perivascular inflammation,
whichwas primarily eosinophilic (Fig. 3B) comparedwith
nonsensitized (control) mice (Fig. 3A). RvE3-treated mice
had substantially fewer leukocytes in the peribronchial
regions than vehicle-treated mice (Fig. 3C). Compared to
control mice (Fig. 3D), PAS-stained goblet cells are
increased in HDM-challenged and vehicle-treated mice
(Fig. 3E). RvE3 treatment also decreased airway epithelial
mucus production (Fig. 3F). We also observed that the
goblet cell score, which was based on the number of
PAS-stained goblet cells, was significantly lower in
RvE3-treated mice than in vehicle-treated mice (Fig. 3G).

We also investigated the effect of RvE1 in the mouse
model of HDM-induced asthma using the same protocol
as used for RvE3 treatment. We found that the total cell
counts in BAL fluid of mice treated with RvE1 (2 mg, i.p.)
on d 19 were similarly reduced, which is consistent with
observations previously reported in ref. 11. Furthermore,
the total number of cells did not differ significantly from
that in RvE3-treated mice (Supplemental Fig. S1), which
suggests that, in terms of alleviating allergic airway in-
flammation in vivo, RvE3 might have a potency compa-
rable to that of RvE1.

RvE3 regulates cytokines

To elucidate the proresolving mechanisms of RvE3, we
measured the levels of cytokine mRNA expression in the
lungs, PBLNs, and spleen of control and vehicle- or
RvE3-treated mice on protocol d 19. We accordingly ob-
served that RvE3 treatment significantly reduced IL-5, IL-
4, and IL-13mRNAlevels in lung tissueond19 (Fig. 4A–C)
and significantly suppressed IL-23 and IL-17A mRNA
expression (Fig. 4D, E). Administration of RvE3 also
resulted in significantly lower concentrations of IL-5, IL-4,
IL-13, IL-23, and IL-17 in BAL fluid (Fig. 5). These
results indicate that RvE3 contributes to the regulation of
cytokines that play pivotal roles in allergic airway
inflammation.

We also observed that RvE3 significantly suppressed
IL-23 and IL-17AmRNAexpression in PBLNs (Fig. 6). The
expression levels of IL-23 and IL-17A in the spleens of
RvE3-treated and vehicle-treatedmicewere relatively low
and showed no significant differences between treatments
(unpublished results).

RvE3 suppresses the LTB4-induced activity
of BLT1R in HEK293 cells

Previous studies have demonstrated that RvE1 and RvE2
are ligands for BLT1R (24, 25), and therefore we next
compared the effects of RvE1, RvE2, and RvE3 on BLT1R
in HEK293 cells using a NanoBiT arrestin recruitment as-
say (22).We accordingly observed that whereas LTB4 and
RvE1 stimulation increased the binding of b-arrestin 2 to
BLT1R in a dose-dependent manner (EC50: 18 6 4.5 nM
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Figure 2. RvE3 promotes resolution of airway inflammation
and airway hyperresponsiveness. A) Protocol for determining
the effect of RvE3 on the resolution phase of HDM-induced
airway inflammation. i.n., intranasal. B) RvE3-treated mice
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administration significantly reduced the number of total cells
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and 2.26 0.86 mM, respectively), RvE2 and RvE3 showed
no agonist activity (Fig. 7). We also examined the antag-
onistic effect of RvE1, RvE2, and RvE3 on BLT1R by
monitoring the suppression of 1 nM LTB4–induced
b-arrestin 2 binding and found that pretreatment with
more than 32 nM of RvE1, RvE2, or RvE3 significantly
suppressed the activation of BLT1R by 1 nMLTB4 (Fig. 8).
Pretreatment with higher concentrations of RvE1 in-
creased the basal level of b-arrestin 2 binding to BLT1R
(Fig. 8A, B) and thereby resulted in the bell-shaped
dose-response depicted in Fig. 8D (IC50: 58 6 16 nM,
EC50: 3.2 6 2.5 nM). Although a similar bell-shaped
dose-response (IC50: 296 12 nM, EC50: 3.56 1.8mM)was
obtained following pretreatment with RvE2, the basal
level of b-arrestin 2 binding remained unaltered (Fig. 8A,
E). In contrast, the antagonistic effect of RvE3 showed
a monophasic dose-response curve (IC50: 25 6 8.7 nM)
(Fig. 8F).

DISCUSSION

In this study, we investigated the effects of RvE1, RvE2,
and RvE3 on IL-4– and IL-33–stimulated BMDCs derived
from HDM-sensitized mice and the effect of RvE3 on an
experimental mouse model of asthma. We found that
RvE3 has an anti-inflammatory effect on allergic airway
inflammation. Following HDM sensitization and chal-
lenge, RvE3 administration in the resolution phase led to a
significant reduction in airway eosinophil recruitment and
mucus cell hyperplasia in the lung. In addition to a re-
duction in inflammation, we observed that AHRwas also
reduced in the murine asthma model.

Resolvins are lipid mediators generated from v-3
fatty acids and have been recognized as potent pro-
resolving lipid mediators. RvE1 and RvE2 are formed
from 18-hydroxy-5Z,8Z,11Z,14Z,16E-EPA, and unlike
RvE1 and RvE2, which are synthesized in neutrophils via
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the 5-lipoxygenase pathway, RvE3 is biosynthesized pri-
marily by eosinophils via the 12- and 15-lipoxygenase
pathway (14). 12- and 15-lipoxygenase are expressed in
macrophages, eosinophils, dendritic cells, mast cells, and
airway epithelial cells and are up-regulated in various
cell types in response to induction by T helper (Th)2
cytokines, including IL-4 and IL-13 (26).

RvE3 has previously been reported to be a potent in-
hibitor of polymorphonuclear leukocyte chemotaxis in
vitro (14); to the best of our knowledge, however,
the present study is the first to demonstrate that RvE3
has an anti-inflammatory effect with respect to allergic
inflammation.

IL-23 is a member of the IL-12 family of cytokines and
has been shown to be important in various diseases, in-
cluding autoimmune diseases and cancers (27–30). In
asthma, dendritic cells and macrophages have been re-
ported to be themain sources of IL-23 (31), which displays
proinflammatory features via the proliferation and main-
tenanceofTh17cells.Th17cells release IL-17A,whichplays
a pivotal role in responses to allergens and regulation of
airway inflammation (32–34). IL-17A is expressed in the
airways of patients with asthma, and the levels of ex-
pression are correlated with the severity of asthma (35),

whereas neutralization of IL-17A has been shown to at-
tenuate airway inflammation in an asthmamodel (12, 36).

Haworth et al. (12) showed thatRvE1attenuates allergic
airway inflammation via the regulation of IL-23 and
IL-17A production, and in the present study, we found
that not only RvE1 but also RvE2 and RvE3 suppressed
IL-23 secretion from BMDCs in vitro, with IL-23 levels
being lowest in theRvE3-treatedBMDCs.However, given
that, in vivo, we detected no significant difference between
RvE3-treated and vehicle-treated mice, the clinical impli-
cations of these observation are at present unknown.
Nevertheless, we did observe that the reduction in total
cell counts in BAL fluid attributable to RvE3 was compa-
rable to that induced by RvE1. RvE3 treatment also led to
decreases in the expression of IL-23 and IL-17AmRNAs in
lung and PBLNs and to lower concentrations of IL-23 and
IL-17 in BAL fluid in vivo, thereby indicating that RvE3
attenuates allergic airway inflammation via the regulation
of IL-23 secretion from DCs.

IL-23 plays a pivotal role in eosinophilic airway in-
flammation, and IL-23 and Th17 cells are known to be
involved in both neutrophil recruitment in the airways
and enhancement of Th2 cell–mediated eosinophilic air-
way inflammation (36). Recently, Nakajima et al. have
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reported that IL-23 neutralization attenuates not only
antigen-induced neutrophil recruitment but also antigen-
induced eosinophil recruitment to the airways and Th2
cytokine production in the airways (37). It has also been
demonstrated that enforced expression of IL-23 in the
lungs enhances not only antigen-induced IL-17A pro-
duction but also Th2 cytokine production and eosinophil
recruitment in the airways (36).

In the present study, we found that RvE3 markedly
decreased mRNA levels of IL-23 and IL-17A in lung and
PBLNsand released the levels of IL-23and IL-17, aswell as
Th2 cytokines, in BAL fluid, which is consistent with the
findings of previous studies (36–38). Our findings thus
indicate that IL-23, IL-17A, andTh2 cytokines are involved
in the regulatory pathways whereby RvE3 attenuates the
allergic airway inflammation.
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We also investigated whether RvE3 interacts with
BLT1R, which is a GPCR that is widely expressed in im-
mune cells. The activation of BLT1R by LTB4 triggers
the chemotaxis of neutrophils and lymphocytes and is
also related to various inflammatory diseases, including
asthma (39). Here, we showed that the specific interaction
between BLT1R and b-arrestin 2 triggered by 1 nM LTB4
was significantly suppressed by RvE1, RvE2, and RvE3
and that the IC50 values obtained for RvE1 (58 nM) and
RvE2 (29 nM) in the present study are consistent with
the Kd values (45 and 25 nM, respectively) that have pre-
viously been reported in refs. 24 and 25. In contrast,

however, the EC50 values of RvE1 (3.2mM) and RvE2 (3.5
mM) were found to be 2 orders of magnitude higher than
the previously reported Kd values. We suspect that the
bell-shaped responseofRvE1andRvE2 couldbe related to
the high and low affinity states of BLT1R. In this regard,
previous studies have demonstrated that the bimodal re-
sponse of BLT1R to LTB4 is regulated by multiple phos-
phorylations of serine and threonine residues in BLT1R
(40, 41). Similar to LTB4, stimulation with higher concen-
trations of RvE1 and RvE2would increase the low affinity
state that is related to the phosphorylation-dependent
b-arrestin recruitment. In contrast, RvE3 significantly
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suppressed the LTB4-induced binding of b-arrestin to
BLT1R, even following pretreatment with 10 mM RvE3.
RvE3 thus acts as a neutral antagonist of LTB4, without
any positive effects on BLT1R with respect to b-arrestin
recruitment. Further studies will, however, be required to
elucidate the detailed mechanisms underlying the action
of RvE3.

In summary, our results provide insights on the pro-
tective roleofRvE3 in theresolutionphaseofallergicairway
inflammation. RvE3 selectively regulates the production of
cytokines, including IL-23, IL-17A, and Th2, thereby in-
dicating the possibility that RvE3 attenuates allergic airway
inflammation via multiple pathways. RvE3 could thus
represent a novel therapeutic agent for the treatment of
asthma.
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