第 9 回群馬 Clinical Oncology Research 勉強会

一般講演

1．ヒト骨肉腫細胞の転移能と相関した生物学的性質と遺伝子発現の変化

中野 哲宏，清水 公裕，浜田 邦弘
大和田 進，森下 靖雄
（群馬大院•医•臓器病態外科学）

谷

賢実，横田 淳

（国立がんセンター研究所生物学部）
骨肉腫の治療において肺転移は生命予後を左右する因子であり，骨肉䡓脑転移の病態解明と新たな治療法の開発が待たれる，それらの目的において，ヒト骨肉腫細胞株から肺高転移株と低転移株を単離し，生物学的特性や遺伝子発現の相違を比較することによって，ヒト骨肉腫 の肺転移能を規定する因子を同定することほ極めて有用 である，そこで我々は，ヒト骨肉腫細胞株 HuO9から，in vivo selection 法及び希釈プレート法により，複数の高転移㧣（M112，M132，H3），低転移株（L6，L12，L13）を単離 した。高転移株3株は，ヌードマウスの尾静脈内に注入 （ 2×10^{6} cells $/ 0.2 \mathrm{ml}$ ）すると， 80 日以内に全例が 200 個以上の肺転移巣を形成したのに対して，低転移株 3 株は 200 日以上マウスが生存し，肺転移巣の数も平均 10 個以下であった。転移能と関連した生物学的性質の比較では， in vitro と in vivo での増殖能に差はなかったが，接着能，運動能，浸㵎能に高転移株と低転移株の間で有意な差が見られた。また，cDNA マイクロアレイ法による 637 種類の癌関連遺伝子の発現の比較では，7種類（AXL， TGFA，COL7A1，WNT5A，IL－16，MKK6，BRAG）の遺伝子の発現が異なっていた，これらの結果から，高転移株と低転移株の転移能の差は，腫瘍原性及び增殖能の差 によるのではなく，接着能，運動能及び浸瀾能などの性質の違いによることが示唆された，さらに発現量に差が認められた 7 種類の遺伝子のうち， 5 種類（AXL，TGFA， COL7A1，WNT5A，MKK6）は接着能，運動能及び浸潤能に関連することが報告されている遺伝子であることか ら，これらの分子が骨肉腫細胞の接着能，運動能及び浸泗能の制御を介して，転移能に影響を与えている可能性

日 時：2003年11月6日（木）
場 所：群馬大学刀城会館
当番世話人：高岸 憲二（群馬大院•医•機能運動外科学）

が考えられる。

2．実験的パスツール処理を行った膝関節の組織像

渡辺 秀臣，篠崎 哲也，小林 勉高岸 憲二（群馬大院•医•機能運動外科学）
パスツール法は骨誘導能を保ちながら悪性細胞を死滅 させる，骨悪性腫瘍が関節近傍に発生することから，関節構造組織に対するパスツール処理の影響を織学的に検討した。【方 法】日本家兎32匹を2郡に分け，膝関節を摘出して 65 度 30 分で処理したパスツール群と温熱処理を行わないで戻したコントロール群の関節の変化を 4 週毎に調べた。【結果および考察】術後 4 週間で，骨 の破壊が著明に確認され，その後徐々に骨の remodeling がみられた。この回復過程は，パスツール群とコント ロール群で差を認めなかった。軟骨は，4週めから徐々に変性が見られたが，パスツール群の方が早期に変性が現 れる傾向を示した。半月板と靭帯には，4週後に確認され た細胞の消失が 16 週には回復し，細胞の出現を観察し た。これらの軟部組織の反応は，パスツール群とコント ロール群に共通に見られた。【結 論】 骨，靭帯，そし て半月板は，関節の摘出により一度死滅状態に陥るが， 2ヶ月より再生の変化が見られるようになった。しかし ながら，関節軟骨は一度摘出されると変性した。これら の変化は，パスツール処理によっては，有意な影響を受 けないが，軟骨の変性は早期に出現する傾向が見られた。

\section*{3．放射線感受性の異なるPNET細胞株の樹立と放射線誘発アポトーシス
 石川 | 仁，秋元 哲夫，松田真里子 |
| :--- |
| 桜井 |
| 英幸，中山 優子，北本 佳住 |
| 原島 |
| 浩一，斉藤 淳一，長谷川正俊 |
| 中野 |
| 隆史（群馬大院•医•腫瘍放射線学） |
| 三橋 紀夫 | （学}

（東京女子医科大学放射線医学教室）
【目 的】当科で樹立した野生型p53遺伝子を有し， EWS キメラ遺伝子の存在が確認された放射線感受性

PNET 細胞株のキメラ遺伝子を確認し，放射線感受性を検討するとともに，連続して照射することで得られた放射線抵抗性株の差異を特に放射線誘発アポトーシスを中心に検討した。【方 法】 キメラ遺伝子の確認はRT －PCR 法およびサザン・ブロッティング法により同定し た。放射線感受性をコロニー形成能による細胞生残率曲線によって比較するとともに，照射後の細胞周期の変化 をフローサイトメトリーを用いて検討した。放射線誘発 アポトーシスは照射後の細胞からDNAを抽出し，ラ ダー形成の有無で確認した。また，抵抗性株での p53遺伝子変異の有無を PCR－SSCP 法で検索した。【結 果】樹立した細胞株には EWS（exon－7）－FLI（exon10）のキ メラ遺伝子が存在し，PNET 細胞株であることが確認さ れた。細胞生残率曲線では高感受性株の Do は 1.14 ，抵抗性株では1．37と，明らかな放射線感受性の差異が認めら れた。また，高感受性株にのみ2Gy照射24時間後にラ ダー形成が認められた。対数増殖期にある細胞株の G2／ M 期の割合は高感受性株の 9.3% に対して抵抗性株で 15．3\％であった．2Gy 照射後の G2－block は高感受性株 で顕著であり，G2－block からの解除も抵抗性株に比較し て遅延していた。また，PCR－SSCP 法により抵抗性株に p53遺伝子 の exon－5 ならびに exon－6に変異が認めら れた，【結 語】 放射線照射によりp53遺伝子の変異が誘導されたことが，放射線高感受性 PNET 細胞株が放射線抵抗性を獲得した一因と考えられた。研究会ではマイ クロアレイの結果も併せて報告する。

4．IFN－γ によるテロメラーゼ特異的 CTL 傷害性の調節機構

田嶋 公平，田中司玄文，桑野 博行
（群馬大院•医•病態総合外科学）
【目 的】テロメラーゼのcatalytic subunitである hTERT を標的とするCTL は白血病細胞を傷害する。今回我々は，HLA－A24拘束性のエピトープ hTERT $461-469$ に特異的な CTL の肺癌に対する傷害性と IFN $^{-} \gamma$ の影響について検討した。【方 法】 hTERT 461－469をパル $^{\text {を }}$ スした自己樹状細胞および CD40 活性化 B 細胞で数回刺激後，限界希釈法にて CTL cloneを作成した。IFN－γ処理は $100 \mathrm{U} / \mathrm{ml}$ ， 48 時間行った。傷害活性を 51 Cr 遊離試験で測定した。TAP1，2およびhTERTの発現を半定量RT－PCRにて，PA28 およびLMP7を Western Blot にて検討した。【結 果】hTERT 461－469 $^{\text {特異的CTL }}$ clone は HLA－A24陽性細胞株 6 株のうち 4 株に傷害性 を認めた。IFN－γ 処理により，抗原提示関連遺伝子 （HLA－A24，TAP，LMP7，PA28）の発現はすべて上昇し たが CTLに対する感受性に相違がみられた。傷害性が低下した細胞ではhTERT の発現が減少していたが，傷害性の上昇した細胞では不変であった。【考 察】 hTERTを標的とした免疫療法はエピトープを提示して いる肺癌に対しては有効である可能性が示された。一部 の肺癌細胞において IFN－γ 処理は hTERT遺伝子の転写を抑制するためCTL に対する感受性の低下が認めら れた。

特別講演

司会：高岸 憲二（群馬大院•医•機能運動外科学）

骨軟部腫瘍におけるBone Morphogenetic Protein （BMP）の発現と意義

吉川 秀樹
（大阪大学大学院器官制御外科学教授）

