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Chapter 1

Introduction

1.1 State Observer

A state of a plant in control system should be able to determine and measure in order to design the appropriate
system along with the controlled input and the expected output. All factors in the controlled plant could be
theoretically measured; however, some variables of the plant were not able to measure due to either missing
the values from controlled input or incorrect output such as from sensors. This is the reason that the state of
the plant is often invalid. In order to design a control system for the plant which considering such not all state
variables can be measured, the estimation called a state observer has been employed to validate the unavailable
state variable of the controlled plant. The state observer theory is initially established by Luenberger [1, 2, 3].
Subsequently, more design methods to obtain the state variables have been derived as the parametrization of
all state observers [4] and of all linear functional observers [5] are derived. Those works require accessing to the
control input for estimation [1, 2, 3, 4, 5]

As mentioned previously, some case such as estimation of an IC engine torque or velocity and angle of planar
gantry crane, both the state variable and the control input of the system are unavailable [6, 7]. Thus, the state
observer for a plant not to access to the control input is required to estimate the state variable only using only
the measured output. such a state observer is called the unknown input observer. Only the measured output
could be obtained from the system and used to estimate the state of such plant. Using the state observer for
a plant which not to access to the control input to estimate the state variable, such a state observer is called
the unknown input observer. The unknown input observer firstly is pursued by Kudva, Viswanadham and
Ramakrishna [8]. Since then, several papers about designing unknown input observers have been published
[9, 10, 11]. According to these papers, the unknown input observer for the plant (A,B,C, 0) can be designed
if and only if the following two conditions hold to be true in cases that: (c1) rank CB = rank B and (c2)
the plant (A,B,C, 0) has no invariant zero in the closed right half plane. The first condition (c1) implies that
the number of outputs should be greater than or equal to that of inputs. The second condition (c2) means
that the controlled plant is of non-minimum phase. Since the conditions (c1) and (c2) are rather restrictive, a
number of authors have considered designing unknown input observers by relaxing the the conditions (c1) and
(c2). Some works have considered the problem of designing unknown input observers without requiring the first
condition [12, 13, 14, 15] considered the problem of designing unknown input observers without requiring the
first condition (c1). Unfortunately, the design methods in [12, 13, 14, 15] Unfortunately, those design methods
as mentioned cannot be applied if the second condition (c2) fails. (c2) fails. In contrast, Hikita [16] and K.
Fuwa, T. Narikiyo, et al [16, 17] has tackled approximately lifting both of the first and second conditions (c1)-
(c2) via the minimal polynomial bases approach and eigenstructure assignment approach, respectively. Those
approaches are highly algebraic and it is difficult to intuitively tune the input-output characteristics of the
resulting control systems A. Termehchy and A. Afshar [24] proposes to augment the controlled plant with a
low-pass filter so that the augmented controlled plant satisfies the conditions (c1)-(c2). Their design method
requires to increase the number of sensors for measuring the overall output of the augmented plant, and hence
from a cost-aware point of view it is not readily employed when the original plant is given. The theory of
unknown input observer is also applied to the systems with non-linearities or time-varying parameters. [24]
requires to increase the number of sensors for measuring the overall output of the augmented plant, and hence
from a cost-aware point of view it is not readily employed when the original plant is given. The unknown input
observer is also applied to the systems with non-linearities or time-varying parameters [25, 26].

1.2 Disturbance Observer.

The state observer can also be used to estimate the disturbances in the system. Such an observer is called a
disturbance observer. Disturbance observers are used in the motion-control field to predict disturbances and
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4 CHAPTER 1. INTRODUCTION

make a closed loop system to be robustly stable [28, 29, 30, 31, 32, 33, 34, 35, 36]. Generally, the disturbance
observer both includes the disturbance signal generator and observer. Usually the disturbance is assumed to
estimate as a step disturbance, because the disturbance observer has a simple structure and is easy to used in
many applications[28, 29, 30, 31, 32, 33, 34, 35, 36].

Disturbance observer-based control has been seen as the most promising approach to attenuate disturbances
[37]. To linear systems , Li et al. proposed the frequency domain disturbance observer, time domain disturbance
observer and extended state observer in different domain for linear systems. For the nonlinear systems, Li et
al. and Chen et al [37, 38]. proposed nonlinear disturbance observer for constant disturbances and nonlinear
disturbance observer for general exogenous disturbances based on different disturbances. Nevertheless, there is
not available for parameterization of all disturbance observers for any disturbance. For solving this problem,
Yamada et al. proposed a parameterization of linear disturbance observer for specific constant disturbances
by applying the inputs and outputs of system as variables[39]. However, not all parameterizations of linear
disturbance observer has been obtained, it is still a disturbance observer for specific disturbances. In addition,
the variables of disturbance observer in [39] Due to the diversity of systems, there are still lots of work to be
solved about the parameterization of other various systems.

1.3 The purpose and contents of this study

In this thesis, we propose a design method of unknown input observer for non-minimum phase plants and a
parameterization of all linear disturbance observers using the states and inputs of the system as variables for
constant disturbances.

In chapter 2, we propose alternative design methods of unknown input observers for non-minimum phase
plants that are handily applicable when the intended bandwidth of the control system is specified. The proposed
design methods do not require neither of the conditions (c1)-(c2) nor plant augmentation [24]. In this proposed
method in chapter 2, if we design a state observer discarding the high-frequency-range signal components of
the control input, then the resulting state observer works as an unknown input observer. Furthermore, as a
complement to the proposed design methods, we describe that the resulting unknown input observers can be
employed for constructing output feedback control systems if it is combined with the H∞ state feedback control
[22].

In chapter 3, we propose the parameterization of linear disturbance observers for constant disturbances.
By using the states and inputs of the system as variables, the parameterization for constant disturbances was
obtained.

In Chapter 4 Summaries the result of the present study by the conclusion.

Notations

R the set of real numbers.
L(x(t)) the laplace transformation of x(t).
R(s) the set of real rational functions with s.
RH∞ the set of stable proper real coefficient rational functions.[

A B
C D

]
represents the state space description C(Is−A)−1B + C



Chapter 2

A design method of unknown input
observers

2.1 introduction

A state observers are employed to estimate the unavailable state variable of the controlled plant. The state
observer theory is initially established by Luenberger [1, 2, 3]. Subsequently, the parametrization of all state
observers [4] and of all linear functional observers [5] are derived. The design methods in [1, 2, 3, 4, 5] require
the access to the control input for estimating the state variable. In contrast, in this chapter, we address design
methods of unknown input observers, which are state observers independent of the control input.

In some cases such as estimation of an IC engine torque [6] and velocity and angle of planar gantry crane
[7], both the state variable and the control input are unavailable, and state observers is required to estimate the
state variable only using only the measured output. Such a state observer is called the unknown input observer.
That is, the unknown input observer has been used to estimate the state variable of the plant in the presence of
unknown input. In addition, the unknown input observer is applied to the systems with nonlinearities or time-
varying parameters [25, 26]. Initially, the unknown input observer is examined by Kudva, Viswanadham and
Ramakrishna [8]. Since then, several papers have been published to design unknown input observers [9, 10, 11].
According to these papers, the unknown input observer for the plant (A,B,C, 0) can be designed if and only if
the following two conditions hold true: (c1) rank CB = rank B and (c2) the plant (A,B,C, 0) has no invariant
zero in the closed right half plane. The first condition (c1) implies that the number of outputs should be greater
than or equal to that of inputs. The second condition (c2) means that the controlled plant is of non-minimum
phase. Since the conditions (c1) and (c2) are rather restrictive, a number of authors have considered designing
unknown input observers by relaxing the the conditions (c1) and (c2). The papers [12, 13, 14, 15] considered
the problem of designing unknown input observers without requiring the first condition (c1). Unfortunately,
the design methods in [12, 13, 14, 15] cannot be applied if the second condition (c2) fails. In contrast, the
papers [16, 17] tackled approximately lifting both of the first and second conditions (c1)-(c2) via the minimal
polynomial bases approach and eigenstructure assignment approach, respectively. Those approaches are highly
algebraic and it is difficult to intuitively tune the input-output characteristics of the resulting control systems.
The paper [24] proposes to augment the controlled plant with a low-pass filter so that the augmented controlled
plant satisfies the conditions (c1)-(c2). The design method in [24] requires to increase the number of sensors
for measuring the overall output of the augmented plant, and hence from a cost-aware point of view it is not
readily employed when the original plant is given.

In this chapter, we propose alternative design methods of unknown input observers for non-minimum phase
plants, such that are handily applicable when the intended bandwidth of the control system is specified. The
proposed design methods do not require neither of the conditions (c1)-(c2) nor plant augmentation [24]. The
idea behind that is as follows: If the controlled plant is intended to function in the lower-frequency range, the
control input mainly contains low-frequency-range signal components, that is, the control input decays in the
higher frequency range. Noting that, if we design a state observer discarding the high-frequency-range signal
components of the control input, then the resulting state observer works as an unknown input observer. In
order to embody this idea, we utilize the parametrization of all state observers [4, 5] and stable left filtered
inverses [20, 21] as underlying techniques. It is shown that the stable left filtered inverses [20, 21] enable to
determine the Youla parameter in the state observer parametrization so that the resulting observer works as
an unknown input observer. Furthermore, as a complement to the proposed design methods, we describe that
the resulting unknown input observers can be employed for constructing output feedback control systems if it
is combined with the H∞ state feedback control [22].

This chapter is organized as follows: In Section 2.2, the problem considered in this chapter is formulated.
In Section 2.3, we derive the unknown input observer design methods. In Section 2.4, we construct an output
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6 CHAPTER 2. A DESIGN METHOD OF UNKNOWN INPUT OBSERVERS

feedback control by employing the proposed unknown input observer. In Section 2.5, the features of the
resulting control systems are illustrated through numerical examples. In Section 2.6, the present contributions
are summarized.

2.2 Problem formulation

Consider the plant written by

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

, (2.1)

where x(t) ∈ R
n is the state variable, u(t) ∈ R

p is the control input, y(t) ∈ R
m is the measured output,

A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n. The transfer function from the control input u(s) to the measured output

y(s) in (2.1) is denoted by

y(s) = G(s)u(s), (2.2)

where

G(s) = C (sI −A)
−1

B ∈ Rm×p(s), (2.3)

where R(s) denotes the set of real-rational transfer functions. It is assumed that (A,B) is stabilizable, (C,A)
is detectable, and G(s) is of full row normal rank:

rank G(s) = p, (2.4)

and has no invariant zero on the imaginary axis, Furthermore, this chapter focuses on the situation that the
frequency component range of the control input u(jω) is limited to 0 ≤ ω ≤ ωmax, where ωmax specifies the
maximum frequency component of the control input u(jω). We note that G(s) is allowed to have some invariant
zeros in the open right half plane, that is, G(s) is allowed to be of non-minimum phase.

When the state variable x(t) in (2.1) is not available, as is the case in many practical control problems, we
employ state observers, which estimate the state variable x(t) in (2.1) utilizing the available information on y(t)
and u(t). The general form of state estimates based on the available information on y(t) and u(t) is given as
follows (Fig. I):

ξ(s) = F1(s)y(s) + F2(s)u(s), (2.5)

where ξ(t) ∈ R
n is the estimate of the state variable x(t). The transfer functions F1(s) ∈ Rn×m(s) and

ξ

G

F 2 F 1
U

u yv

à

Fig. I: Configuration of control system.

F2(s) ∈ Rn×p(s) in (2.5) are required to satisfy the condition

lim
t→∞ (x(t)− ξ(t)) = 0. (2.6)

In some cases, not only the state variable x(t) but also the control input u(t) is unavailable and the state
observer (2.5) depend only on the measured output y(t). Such a state observer is called an unknown input (state)
observer. The purpose of this chapter is to propose alternative design methods of unknown input observers for
the non-minimum phase plant (2.1).
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2.3 Design methods of unknown input observers

In this section, we describe the unknown input observer design methods. According to [4, 5], the parametrization
of all state observer in (2.5) for the plant G(s) in (2.1) is written by

F1(s) = (sI −A+BU)
−1

BX(s) +Q(s)D̃(s) (2.7)

and

F2(s) = (sI −A+BU)−1 BY (s)−Q(s)Ñ(s), (2.8)

where U ∈ R
p×n makes A−BU have no eigenvalue in the closed right half plane. Furthermore, Ñ(s) ∈ RHm×p∞

and D̃(s) ∈ RHm×m
∞ are coprime factors of G(s) on RH∞ (i.e. the set of stable real-rational functions) satisfying

G(s) = D̃−1(s)Ñ(s) = N(s)D−1(s), (2.9)

where X(s) ∈ RHp×m∞ and Y (s) ∈ RHp×p∞ are functions satisfying[
Y (s) X(s)

−Ñ(s) D̃(s)

] [
D(s) −X̃(s)

N(s) Ỹ (s)

]
=

[
I 0
0 I

]

=

[
D(s) −X̃(s)

N(s) Ỹ (s)

] [
Y (s) X(s)

−Ñ(s) D̃(s)

]
(2.10)

and Q(s) is an arbitrary function in RHn×m∞ .
From (2.8), it is observed that if there exists Q(s) ∈ RHn×m

∞ satisfying

(sI −A+BU)−1BY (s)−Q(s)Ñ(s) = 0, (2.11)

we can obtain an unknown input observer. However, in order to find Q(s) ∈ RHn×m
∞ satisfying (2.11), G(s)

must be of minimum-phase.
In order to design unknown input observers for non-minimum phase plants, we adopt the following idea. If

we design Q(s) ∈ RHn×m
∞ such that

Q(jω)Ñ(jω) � (jωI −A+BU)−1BY (jω) (0 ≤ ∀ω ≤ ωmax), (2.12)

then

F2(jω) � 0 (0 ≤ ∀ω ≤ ωmax) (2.13)

holds true. Together with (2.13), the assumption that the frequency component range of the control input u(t)
is limited to 0 ≤ ω ≤ ωmax implies

ū(t) = L−1 {F2(s)u(s)} � 0, (2.14)

where L−1{·} denotes the inverse Laplace transformation. Therefore, when Q(s) is settled to satisfy (2.12), the
state estimate ξ(s) in (2.5) reduces to

ξ(s) = F1(s)y(s) (2.15)

with F1(s) defined by (2.7) working as an unknown input observer.
Hence in the rest of this section, we consider designing Q(s) ∈ RHn×m

∞ which satisfies (2.12). Specifically,
we propose to settle Q(s) so that the following condition is satisfied:

Q(s)Ñ(s) = (sI −A+BU)−1BY (s)GK(s)Ql(s), (2.16)

where GK(s) ∈ RHp×p∞ is an inner part of the transfer function Ñ(s) with GK(0) = I. Furthermore, Ql(s) is

given as the diagonal matrix with
1

(1 + sT1)
α1

on its i-th diagonal entry:

Ql(s) = diag
{

1
(1 + sT1)

α1 · · · 1
(1 + sTp)

αp

}
, (2.17)

where αi (i = 1, . . . , p) are positive integers chosen to make Q(s) proper and Ti (i = 1, . . . , p) are positive real
numbers chosen to satisfy the condition

I −GK(jω)diag
{

1
(1 + jωT1)

α1 · · · 1
(1 + jωTp)

αp

}
� 0 (0 ≤ ∀ω ≤ ωmax). (2.18)
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The following identity confirms that Q(s) settled by (2.16) satisfies (2.12):

(jωI −A+BU)−1BY (jω)−Q(jω)Ñ(jω)

= (jωI −A+BU)−1BY (jω)[
I −GK(jω)diag

{
1

(1 + jωT1)
α1 · · · 1

(1 + jωTp)
αp

}]
. (2.19)

Next, we provide state-space design methods of Q(s) ∈ RHn×m∞ satisfying (2.16). Before proceeding, let the
state space realization of Ñ(s) in (2.10) be given by

Ñ(s) =

[
Ã B̃

C̃ 0

]
, (2.20)

where generally speaking,

[
A B
C D

]
represents the transfer function C(sI−A)−1B+D. Then we assume that

it holds that
rank Φ = p, (2.21)

where the matrix Φ is constructed from the parameters of the state-space realization of Ñ(s) as follows:

Φ =

⎡
⎢⎢⎢⎣

B̃T
1

(
ÃT

)α1−1

C̃T

...

B̃T
p

(
ÃT

)αp−1

C̃T

⎤
⎥⎥⎥⎦ , (2.22)

B̃ =
[
B̃1 · · · B̃p

] (
B̃i ∈ R

n (i = 1, . . . , p)
)

(2.23)

and

αi = min

(
j|B̃T

i

(
ÃT

)j−1

C̃T �= 0; j = 1, . . . , n

)
(i = 1, . . . , p). (2.24)

We note that the assumption (2.21) means that G(s) can be decoupled using static feedback control, and hence
does not impose severe restriction. Under the assumption (2.21), we below propose (Method 1) and (Method
2) to determine Q(s) ∈ RHn×m

∞ satisfying (2.16).

(Method 1) This method is based on the result in [20] and determines Q(s) ∈ RHn×m
∞ as follows:

Q(s) = (sI −A+BU)−1BY (s)Ĝ(s), (2.25)

where

Ĝ(s) =

⎡
⎣ Ã+KD̄−1

l XΦ̂TC̃ KD̄−1
l XΦ̂T

Γ−1
(
E− 1

2

)T

D̄−1
l XΦ̂TC̃ Γ−1

(
E− 1

2

)T

D̄−1
l XΦ̂T

⎤
⎦ , (2.26)

ΦΦ̂ = Ip, (2.27)

X = diag
{

β1α1 · · · βpαp

}
, (2.28)

βij = αiCj (Ti)
−j

(i = 1, . . . , p : j = 1, . . . , αi), (2.29)

and D̄l ∈ R
p×p is an arbitrary constant nonsingular matrix satisfying

E = D̄−1
l

(
D̄−1

l

)T
. (2.30)

Furthermore, the auxiliary feedback gain K and scaling matrix Γ are defined by

K = −ΨX−1D̄l − P
(
D̄−1

l XΦ̂TC̃
)T (

E−1
)T

, (2.31)

Γ = −
(
E− 1

2

)T

D̄−1
l XΦ̂TC̃

(
Ã+KD̄−1

l XΦ̂TC̃
)−1 (

ΨX−1 +KD̄−1
l

)
+
(
E− 1

2

)T

D̄−1
l , (2.32)

Ψ =
[
Ãα1B̃1 + · · ·+ β1α1B̃1 . . . ÃαpB̃p + · · ·+ βpαpB̃p

]
, (2.33)
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where P = PT ≥ 0 is the unique solution of the Riccati equation

P
(
ÃT − C̃TΦ̂ΨT

)
+
(
ÃT − C̃TΦ̂ΨT

)T

P

− P
(
D̄−1

l XΦ̂TC̃
)T

E−1
(
D̄−1

l XΦ̂TC̃
)
P = 0 (2.34)

to make Ã+KD̄−1
l XΦ̂TC̃ have no eigenvalue in the closed right half plane.

(Method 2) This method is based on the result in [21] and determines Q(s) ∈ RHn×m
∞ as follows:

Q(s) = (sI −A+BU)−1BY (s)GK(s)G0(s), (2.35)

where

G0(s) =

[
Ã−ΨΦ̂TC̃ −ΨΦ̂T

XΦ̂TC̃ XΦ̂T

]
=

⎡
⎢⎣

G01(s)
...

G0p(s)

⎤
⎥⎦ (

G0i(s) ∈ R1×m(s)(i = 1, . . . , p)
)
, (2.36)

Φ̂, X , βij and Ψ are given by (2.27), (2.28), (2.29) and (2.33), respectively. In addition, GK(s) is designed as
follows: Let the minimal realization of G0i(s) (i = 1, . . . , p) be

G0i(s) =

[
A0i B0i

C0i D0i

]
(i = 1, . . . , p). (2.37)

Then, from this realization, GK(s) is obtained by

GK(s) = diag

{
1

1 + C01 (sI −A01)
−1

K1

· · · 1
1 + C0p (sI − A0p)

−1
Kp

}

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A01 −K1C01 0 K1 0
. . .

. . .

0 A0p −KpC0p 0 Kp

−C01 0 1 0
. . .

. . .

0 −C0p 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.38)

where
Ki = PiC

T
0i(i = 1, . . . , p) (2.39)

and Pi ≥ 0(i = 1, . . . , p) is the unique stabilizing solution of the Riccati equation

PiA
T
0i +A0iPi − PiC

T
0iC0iPi = 0 (i = 1, . . . , p). (2.40)

The key point common in (Method 1) and (Method 2) is that the Youla parameter Q(s) includes a stable
left filtered inverse of Ñ(s). In (Method 1), Ĝ(s) is the stable left filtered inverse, and yields the inner function
GK(s) for (2.16), which is not necessarily diagonal. In (Method 2), GK(s)G0(s) is the stable left filtered inverse,
and yields the inner function GK(s) for (2.16), which has the diagonal structure.

2.4 Output feedback controller design

In accordance with the proposed unknown input observer design methods, this section describes how to construct
the output feedback control system in Fig. I.

Consider the output feedback control

u(t) = −Uξ(t) + v(t) (2.41)

for the controlled plant G(s), where ξ(t) is the state estimate of the state variable x(t) and v(t) ∈ R
p is an

external input exerted on the control system. A method of designing the state feedback gain U and state
estimate ξ(t) for the output feedback control (2.41) is summarized as follows:

1. Specify the frequency component range 0 ≤ ω ≤ ωmax from the supposed bandwidth of the external input
v(t).

2. Using the design method of H∞ state feedback controllers in [22], fix U in (2.41) so that the maximal
singular value of the transfer function from v(jω) to u(jω) is made negligible outside the frequency
component range 0 ≤ ω ≤ ωmax.

3. Using (Method 1) or (Method 2) in Section 2.3, design the unknown input observer (2.5) which produces
the state estimate ξ(t) used for (2.41).
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2.5 Numerical example

In this section, we design the output feedback control in Section 2.4 for two sample cases, and examine the
features of the proposed unknown input observer design methods.

2.5.1 Numerical example 1

Consider employing (Method 1) in Section 2.3 to design the output feedback control (2.41) for the controlled
plant G(s) written by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎢⎢⎣

−10 0 0 0
0 −20 0 0
0 0 −30 0
0 0 0 −30

⎤
⎥⎥⎦x(t) +

⎡
⎢⎢⎣

1 0
0 1
1 0
0 1

⎤
⎥⎥⎦u(t)

y(t) =

[
2 0 4 0
0 4 0 5

]
x(t)

. (2.42)

The above controlled plant is of non-minimum phase, since it has invariant zeros at (10, 0) and (20, 0).
It is supposed that the external input v(t) in (2.41) and initial state x(0) are given by

v(t) =

[
v1(t)
v2(t)

]
=

[
sin (0.1t)
2 sin (0.1t)

]
(2.43)

and

x(0) =
[
1 2 3 4

]T
, (2.44)

respectively. Referring to the angular frequency of the external input v(t), we specify the frequency component
range by ωmax = 0.1.

Using the method in [18], Ñ(s) satisfying (2.9) is obtained as

Ñ(s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−10 0 0 0 1 0
0 −20 0 0 0 1
0 0 −30 0 1 0
0 0 0 −30 0 1
2 0 4 0 0 0
0 4 0 5 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.45)

The matrix Φ in (2.22), constructed from the state-space representation (2.45), satisfies the condition

rank Φ = 2, (2.46)

as Φ in (2.22) is given by

Φ =

[
6 0
0 9

]
, (2.47)

with α1 = 1 and α2 = 1. By (2.46), Φ̂ satisfying (2.27) is obtained as

Φ̂ =

[
0.1667 0

0 0.111

]
. (2.48)

We choose the time constants in (2.17) as T1 = 0.001, T2 = 0.002 so that the condition (2.18) is satisfied in the
frequency component range 0 ≤ ω ≤ ωmax = 0.1. Setting D̄l = I, together with (2.28), (2.29), (2.30), (2.31),
(2.33) and (2.34), we have {

β11 = 1000
β21 = 500

, (2.49)

X =

[
1000 0
0 500

]
, (2.50)

E = I, (2.51)
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Fig. II: Time response of state estimation error x(t)− ξ(t).

Ψ =

⎡
⎢⎢⎣

990 0
0 480
970 0
0 470

⎤
⎥⎥⎦ , (2.52)

P =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (2.53)

and

K =

⎡
⎢⎢⎣

−0.990 0
0 −0.960

−0.970 0
0 −0.940

⎤
⎥⎥⎦ . (2.54)

Substituting the above parameters into (2.25), Q(s) is obtained. Consequently, the unknown input observer
(2.5) reduces to (2.15) in the intended bandwidth of the control system.

The state estimation error

e(t) = x(t) − ξ(t) =

⎡
⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

ξ1(t)
ξ2(t)
ξ3(t)
ξ4(t)

⎤
⎥⎥⎦ (2.55)

evolves over time as depicted in Fig. II, where the solid, dotted, alternate long/short dash, broken lines
correspond with x1(t)− ξ1(t), x2(t)− ξ2(t), x3(t)− ξ3(t) and x4(t)− ξ4(t), respectively. It is observed that the
state variable x(t) is effectively estimated by the unknown input observer designed using (Method 1).

2.5.2 Numerical example 2

Consider employing (Method 1) in Section 2.3 to design the output feedback control (2.41) for the controlled
plant G(s) written by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −2

⎤
⎥⎥⎦ x(t) +

⎡
⎢⎢⎣

1 0
0 1
1 0
0 1

⎤
⎥⎥⎦ u(t)

y(t) =

[
2 −11 −2 12
1 −16 −1 17

]
x(t)

. (2.56)
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The above controlled plant is of non-minimum phase, since it has an invariant zero at (20, 0).
Using the method in [18], Ñ(s) satisfying (2.9) is obtained as

Ñ(s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 1 0
0 −1 0 0 0 1
0 0 −2 0 1 0
0 0 0 −2 0 1
2 −11 −2 12 0 0
1 −16 −1 17 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.57)

The matrix Φ in (2.22), constructed from the state-space representation (2.57), satisfies the condition

rank Φ = 2, (2.58)

as Φ in (2.22) is given by

Φ =

[
2 1
1 1

]
, (2.59)

with

α1 = 2 (2.60)

and

α2 = 1. (2.61)

By (2.58), Φ̂ satisfying (2.27) is given by

Φ̂ =

[
1 −1
−1 2

]
. (2.62)

Setting

T1 = 0.001, (2.63)

T2 = 0.002, (2.64)

D̄l = I, (2.65)

together with (2.28), (2.29), (2.30), (2.31), (2.33) and (2.34), we have⎧⎨
⎩

β11 = 2000
β12 = 1000000
β21 = 500

, (2.66)

X =

[
1000000 0

0 500

]
, (2.67)

E = I, (2.68)

Ψ =

⎡
⎢⎢⎣

998001 0
0 499

996004 0
0 498

⎤
⎥⎥⎦ , (2.69)

P =

⎡
⎢⎢⎣

0.0869 −0.0174 0.0827 −0.0166
−0.0174 0.0035 −0.0166 0.0033
0.0827 −0.0166 0.0788 −0.0158
−0.0166 0.0033 −0.0158 0.0032

⎤
⎥⎥⎦ (2.70)
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Fig. III: Time response of state estimation error x(t)− ξ(t).

and

K =

⎡
⎢⎢⎣

0.8298 −0.3657
−0.3657 −0.9248
0.7452 −0.3484
−0.3484 −0.9263

⎤
⎥⎥⎦ . (2.71)

Substituting the above parameters into (2.25), Q(s) is obtained. Consequently, the unknown input observer
(2.5) reduces to (2.15) in the intended bandwidth of the control system.

When the external input v(t) and initial state x(0) are supplied as the same with (2.43) and (2.44), respec-
tively, the state estimation error x(t) − ξ(t) evolves over time as depicted in Fig. III, where the solid, dotted,
alternate long/short dash, broken lines correspond with x1(t)−ξ1(t), x2(t)−ξ2(t), x3(t)−ξ3(t) and x4(t)−ξ4(t),
respectively.

Fig. III shows that the state variable x(t) is not fully estimated by the unknown input observer designed
using (Method 1). The reason why (Method 1) failed is that GK(s) in (2.16) is not a diagonal inner function.
Next, to circumvent this problem, we will design the unknown input observer according to (Method 2).

Let Ñ(s), Φ, αi (i = 1, 2), Φ̂, Ti (i = 1, 2), D̄l, βij (i = 1, 2 : j = 1, . . . , αi), X , E and Ψ be the same with
(2.57), (2.59), (2.60), (2.61), (2.62), (2.63), (2.64), (2.65), (2.66), (2.67), (2.68) and (2.69), respectively. Using
these parameters, G0(s) is determined by (2.36). By obtaining the minimal realization of G0i(s) (i = 1, 2) and
calculating Pi (i = 1, 2), we have

K1 =
[ −1.9010 0.3803 −1.8109 0.3623

]T
(2.72)

and

K2 =
[
9.5011 −1.9010 9.0511 −1.8109

]T
. (2.73)

Using above parameters, GK(s) in (2.74) is obtained as

GK(s) =

⎡
⎢⎢⎣

−20.0000 0 2.6775 0
0 −20.0000 0 −2.6255

14.9393 0 −1 0
0 −15.2355 0 −1

⎤
⎥⎥⎦ =

[ −s+ 20
s+ 20 0

0 −s+ 20
s+ 20

]
. (2.74)

It is verified that GK(s) in (2.74) is a diagonal inner function. In Fig. IV, we depict the state estimation error
resulting from the unknown input observer designed using (Method 2), and confirm that the state variable x(t)
is effectively estimated.

2.6 Conclusion

In this chapter, we proposed alternative design methods of unknown input observers for the non-minimum phase
plant (2.1) by focusing on the intended bandwidth of the control system. The proposed design methods start
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Fig. IV: Time response of state estimation error x(t)− ξ(t).

from the parametrization of all state observers (2.5), (2.7), (2.8), and determine the free-parameter Q(s) by
utilizing the techniques of the stable left filtered inverses [20, 21]. The stable left filtered inverses in [20] and [21]
led to the two methods (Method 1) and (Method 2), respectively. In Sections 2.4 and 2.5, it is also described
that the proposed unknown input observer can be employed for constructing output feedback control systems.
Two sample cases were considered in order to illustrate the features of (Method 1) and (Method 2). It was
observed that (Method 2) enabled to estimate the state variable effectively even in the case (Method 1) failed.
In the recent authors’ work [27], the underlying technique of the stable left filtered inverses [20, 21] is extended
to a class of nonlinear systems. Hence a future subject of research is to enhance the proposed design methods
of unknown input observers to the extent of handling the nonlinear systems directly.



Chapter 3

A design method of disturbance
observers for constant disturbances

3.1 Introduction.

In this chapter, we examine the parameterization of all linear disturbance observers using the states and inputs
of the system as variables for constant disturbances. Disturbance observers are used in the motion-control field
to cancel disturbances or make a closed-loop system robustly stable [28][29][30][31][32][33][34] [35][36]. Gener-
ally, the disturbance observer includes the disturbance signal generator and observer. The disturbance, which is
usually assumed to be step disturbance, is estimated using the observers. Because the disturbance observer has a
simple structure and is easy to understand, it has been used in many applications[28][29][30][31][32][33][34][35][36].

Disturbance observer-based control has been seen as the most promising approach to attenuate disturbances[37].
To linear systems , Li et al. proposed the frequency domain disturbance observer, time domain disturbance
observer and extended state observer in different domain. To the nonlinear systems, they proposed nonlinear
disturbance observer for constant disturbances and nonlinear disturbance observer for general exogenous distur-
bances based on different disturbances in[37][38]. But there is no parameterization of all disturbance observers
for any disturbance, if the parameterization of all disturbance observers for any disturbance could be obtained,
we could express previous studies of disturbance observers in a uniform manner. For solving this problem, Ya-
mada et al. proposed a parameterization of linear disturbance observer for constant disturbances[39]. However,
not all parameterizations of linear disturbance observer has been obtained, it is still a disturbance observer for
specific disturbances. In addition, the variables of disturbance observer in[39] are the inputs and outputs of
system. That is, the parameterizations of linear disturbance observer that uses inputs and states as the variables
has not been obtained. Because of the diversity of systems, there are still lots of work to be solved about the
parameterization of other various systems.

In this chapter, we propose the parameterization of linear disturbance observers for constant disturbances.
By using the states and inputs of the system as variables, the parameterization for constant disturbances was
obtained. and the validity of the disturbance observer was proofed by simulation. This chapter is organized as
follows: In Section 3.2, the problem considered in this chapter is formulated. then, the structure and necessary
characteristics of the linear disturbance observer is defined. In Section 3.3, the parameterization of the linear
disturbance observer for constant disturbances is clarified. Then the values of functions are calculated in details.
In Section 3.4, a numerical example is presented to show the effectiveness of the proposed parameterization. In
Section 3.5, the contributions of this chapter are summerized.

3.2 Problem formulation.

Consider the linear system described by:{
ẋ(t) = Ax(t) +Bu(t) +d(t)
y(t) = Cx(t)

(3.1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rp is the control input, y(t) ∈ Rm is the output, d(t) ∈ Rn is the
disturbance, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n. It is assumed that d(t) is unavailable but constant one, that is

d(t) = d(= const.) (3.2)

and u(t) and x(t) are available.
When the disturbance d(t) is not available, a disturbance estimator called the disturbance observer is fre-

quently used. The disturbance observer estimates the disturbance d(t) in (3.1) using available signal. From the

15
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assumption that the available signal are u(t) and x(t) in this chapter. Thus, the general form of the disturbance
observer d̃(s) for (3.1) is written as:

d̃(s) = F1(s)X(s) + F2(s)U(s) (3.3)

where F1(s) ∈ Rn×n(s), F2(s) ∈ Rn×p(s), d̃(s) = L( ˜d(t)), ˜d(t) ∈ Rn(t), X(s) = L(x(t)) and U(s) = L(u(t)).
We call the system d̃(s) in (3.3) a disturbance observer for constant disturbances, if:

lim
t→∞

(
d(t)− d̃(t)

)
= 0 (3.4)

is satisfied for any x(0), u(t) and d(t).
The problem considered in this chapter is to obtain the the parameterization of all linear disturbance

observers d̃(s) in (3.3) for constant disturbances in (3.2).

3.3 Parameterization of all linear disturbance observers for constant
disturbances

The parameterization of all linear disturbance observers d̃(s) in (3.3) for constant disturbances is summarized
in the following theorem.

Theorem 3.3.1 The system d̃(s) in (3.3) is a disturbance observer for constant disturbances if and only if
F1(s) and F2(s) are written by:

F1(s) = (I −Q(s)) (sI −A) (3.5)

and
F2(s) = − (I −Q(s))B, (3.6)

respectively, where Q(s) ∈ RH∞ is any function that makes (I −Q(s))(sI −A) proper and Q(0) = 0.

(Proof)
First, the necessity is shown. That is, we show that if the system d̃(s) in (3.3) satisfies (3.4), then F1(s) and
F2(s) in (3.3) are written by (3.5) and (3.6), respectively.

From the assumption in (3.4), d(s)− d̃(s) is written by the form as

d(s)− d̃(s) = Q(s)d(s), (3.7)

where Q(s) ∈ RH∞.
From the final value theorem of Laplasse transformation, (3.7) and (3.2), we have

lim
t→∞(d(t)− d̃(t)) = lim

s→0
s
(
d(s)− d̃(s)

)
= lim

s→0
sQ(s)d(s)

= lim
s→0

sQ(s)
d

s
= Q(0)d. (3.8)

From this equation and (3.4), Q(s) need to satisfy

Q(0) = 0. (3.9)

Equation (3.7) can be rewritten as:
d̃(s) = (I −Q(s)) d(s). (3.10)

From (3.1), d(s) is written by
d(s) = (sI −A)X(s)−BU(s). (3.11)

Substituting (3.11) for (3.10), we have:

d̃(s)

= (I −Q(s)) ((sI −A)X(s)−BU(s))

= (I −Q(s)) (sI −A)X(s)− (I −Q(s))BU(s). (3.12)

In order to satisfy (3.4), F1(s) and F2(s) need to be proper. Therefore it is necessary that (I −Q(s)) (sI −A)
and (I −Q(s))B are proper. Since (I −Q(s))B is obviously proper, Q(s) ∈ RH∞ is any function that makes
(I −Q(s)) (sI −A) proper and Q(0) = 0. We have thus proved the necessity.
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Next, the sufficiency is shown. That is, we show that if F1(s) and F2(s) are described by (3.5) and (3.6),
and Q(s) ∈ RH∞ is any function that makes (I −Q(s)) (sI − A) proper and Q(0) = 0, d̃(s) in (3.3) satisfies
(3.4).

Substituting (3.5) and (3.6) for (3.3), d̃(s) is written by:

d̃(s) = (I −Q(s)) (sI −A)X(s)− (I −Q(s))BU(s). (3.13)

d(s)− d̃(s) satisfies:

d(s)− d̃(s)

= d(s)− (I −Q(s)) (sI −A)X(s) + (I −Q(s))BU(s)

= d(s)− (I −Q(s)) ((sI −A)X(s)−BU(s))

= d(s)− (I −Q(s)) d(s)

= Q(s)d(s). (3.14)

From the final value theorem of Laplasse transformation and Q(0) = 0, we have:

lim
t→∞(d− d̃(t)) = lim

s→0
s
(
d(s)− d̃(s)

)
= lim

s→0
sQ(s)d(s)

= lim
s→0

sQ(s)
d

s
= Q(0)d

= 0 (3.15)

In this way,sufficiency has been proved.
We have thus proved this theorem.

3.4 Numerical example.

In this section, a numerical example is shown to illustrate the effectiveness of the proposed method.
Consider the problem of obtaining the parameterization of all linear disturbance observers for constant

disturbances for the unstable plant written by:⎧⎨
⎩ ẋ(t) =

[ −1 2
1 0

]
x(t) +

[
1
0

]
u(t) +d(t)

y(t) =
[
1 −3

]
x(t)

(3.16)

For the plant in (3.16), from Theorem 3.3.1, the parameterization of all disturbance observer is written by
(3.3), where F1(s) and F2(s) are written by (3.5) and (3.6), where Q(s) ∈ RH∞ is any function that makes
(I −Q(s))(sI −A) proper and Q(0) = 0.

We settle Q(s) in (3.5) and (3.6) as

Q(s) =
1

(s+ 3)s+ 2

[
s2 −2s
s s2 + 3s

]
. (3.17)

Q(s) in (3.17) is obviously belong to RH∞ and satisfy Q(0) = 0. In addition, (I −Q(s)) (sI − A) can be
expressed as:

(I −Q(s)) (sI −A)

=
1

s2 + 3s+ 2

[
3s2 + 3s+ 2 2s2 − 6s− 4
−s2 − s− 2 4s

]
(3.18)

This equation means that Q(s) in (3.17) makes (I −Q(s)) (sI −A) proper.
Using Q(s) in (3.17), F1(s) in (3.5) and F2(s) in (3.6) are given by

F1(s) =
1

(s+ 3)s+ 2

[
3s2 + 3s+ 2 2s2 − 6s− 4
−s2 − s− 2 4s

]
(3.19)

and

F2(s) =
−1

(s+ 3)s+ 2

[
3s+ 2
−s

]
, (3.20)
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respectively
When the control input u(t) is given by:

u(t) = 1

and the disturbance d(t) are given as:

d(t) =

[
d1(t)
d2(t)

]
=

[
1
2

]
, (3.21)

d(t) are shown in Fig. I. Here the solid line shows the disturbance of d1(t) and the dotted line shows that of
d2(t).
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Fig. I: The constant disturbances

and the response of

d̃(t) = L−1{d̃(s)}

=

[
d̃1(t)

d̃2(t)

]
(3.22)

is shown in Fig. II. Here the solid line shows the response of d̃1(t) and the dotted line shows that of d̃2(t).
Figure II shows that the disturbance observer in (3.3) can estimate the constant disturbance.
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Fig. II: Response of the estimated disturbances

The response of the error e(t) written by

e(t) =

[
d1(t)− d̃1(t)

d2(t)− d̃2(t)

]
=

[
e1(t)
e2(t)

]
(3.23)
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is shown in Fig. III. Here the solid line shows the response of e1(t) and the dotted line shows that of e2(t).
Figure III shows that the disturbance observer can estimate the disturbance d(t) effectively.
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Fig. III: Response of the errors e(t) = d(t)− d̃(t)

In this way, we find that using the parameterization of all disturbance observer for constant disturbances in
Theoremthe:ob, we can design a linear disturbance observer easily.

3.5 Conclusions.

In this chapter, We have proposed the parameterization of all linear disturbance observers for constant distur-
bances. A numerical example confirmed the validity of the analysis. From the numerical example we can see
that although it takes five seconds to estimate the constant disturbances thoroughly, the disturbance observer
can still estimate the constant disturbances accurately in final.

The problem to design disturbance observers for time-varying disturbance will be considered in another
article.





Chapter 4

Conclusion

In this thesis, we propose a design method of unknown input observer for non-minimum phase plants and a
parameterization of all linear disturbance observers using the states and input of the system as variables for
constant disturbances were proposed.

In chapter 2, we proposed a design method of unknown input observer for non-minimum phase plants.
Furthermore, as a complement to the proposed design methods, we described that the resulting unknown input
observers can be employed for constructing output feedback control systems if it is combined with the H∞
state feedback control [22]. In addition, A numerical example was presented to show that a design method of
unknown input observer for non-minimum phase plants.

In chapter 3, we proposed the parameterization of linear disturbance observers for constant disturbances.
By using the states and inputs of the system as variables, the parameterization for constant disturbances was
obtained. A numerical example was presented to show the effectiveness of the proposed parameterization.

In future work, the proposed design methods of unknown input observers to the extent of handling the non-
linear systems and the problem to design disturbance observers for time-varying disturbance will be considered.
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