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Abstract

Thermal process is usually viewed as a nonlinear, large lag and large inertia system.

In general, it takes lots of time, patience and expense to achieve accurate and stable

control of the thermal systems. Furthermore, for a multi-input multi-output, there exists

strong mutual interference between different heating channels, the generated tempera-

ture differences will seriously affect the temperature control effect and the quality of

the workpiece. All these factors make good accurate temperature control difficult, and

traditional control methods are difficult to keep up with the increasing requirements of

control performance. The optimized temperature control algorithm is required for effec-

tive temperature adjustment to overcome the nonlinearity, strong coupling, disturbances,

etc. With the development of artificial intelligence technology in the industry, which has

the ability to process amounts of data and complex patterns in them, the temperature

control during industrial processes can also be moved from traditional control methods

based on precise mathematical models or complex optimization algorithms to simpler

real-time artificial intelligence-based control, to satisfy more stable and precise control

performance, and then to realize higher quality and lower energy costs.

This thesis is aimed at improving the performance of temperature control in multi-

input multi-output systems and effectively compress the pre-trained NN-based tempera-

ture model without the obvious control accuracy loss. The following solutions are mainly

proposed:

(1) A multi-input multi-output temperature control system not only has the charac-

teristics of nonlinear and large lag, but also has strong coupling and other uncertain fac-

tors. Commonly, multiple heaters are used to control the temperature of the controlled

object. However, the output of each heater (heating channel) will affect the output of

other channels. The temperature difference between different heating channels of the

controlled object will negatively affect the quality of the products in industrial process.

The design of the optimization control to such mutually interfering channel temperature

of the controlled object is difficult and complicated. To address this problem, a multi-

layer neural network control system is proposed for the multi-input multi-output system,

which is driven by a reference model. It eliminates the temperature difference between
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each pair of heating channels for achieving the uniform temperature of different heating

channels, while improving the transient and steady-state control performances of cou-

pling channels. The designed NN-based control system can receive real-time data and

do self-tuning to give optimal control input to each channel without the need of precise

system modeling and additional decoupling links. The effectiveness and reliability of the

proposed control scheme are verified based on the simulation and experimental results.

(2) Deep network models are usually over-parameterized to provide stronger char-

acterization and optimization capabilities. Even a network model that is not so big also

needs a large amount of memory and hardware to perform computation, which results

in slow inference speed and limits the deployment of models to embedded devices with

small storage capacity and low computational power. Considering our pretrained NN

control models, the network pruning technique is one of the effective model compres-

sion methods, which removes some unimportant parameters without affecting the initial

model accuracy obviously. Therefore, inspired by the reconstruction error-based prun-

ing method used in CNN models, which is based on minimizing the linear reconstruction

error to optimize the network, a layer-wise iterative pruning method is adopted to prune

our FNN-based and RNN-based temperature control model, by minimizing the nonlinear

reconstruction error between the outputs of the pruned model and unpruned models. It is

verified that the proposed method can eliminate a large number of redundant parameters

of the well-trained FNN and RNN temperature control models without a significant loss

of accuracy by experiments.
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Chapter 1

Introduction

In order to ensure production efficiency, quality and safety in manufacturing and

processing industries, temperature controllers play a crucial role in helping regulate and

control the temperature of different industrial systems. A temperature controller which

has characteristics of high speed, high performance and easy settings is always necessary

to meet a wide range of application needs, especially in packaging machines, semicon-

ductor production equipment, food processing, and many other areas[1, 2]. Commonly,

the long-term poor control actions may eventually lead to quality deterioration, extensive

downtime and extra costs in industries. It will be a huge loss both to the enterprise and

to customers. Such as in the semiconductor industry, a state-of the-art production equip-

ment may cost more than 1.5 billion. In some cases, any kind of downtime can even lead

to losses of more than 100,000 dollars an hour. Therefore, the requirement for highly

reliable temperature control performance cannot be emphasized enough. Furthermore,

the geometry of integrated circuits becomes smaller and smaller with the expansion of

the global market, most manufacturing firms including the semiconductor field are in

urgent need of achieving more accurate and reliable temperature control[3–5].

Meanwhile, although most manufacturing processes require low cost automation

systems and devices that can meet desired control targets, the establishment of sys-

tematic mechanism model and global mathematical model requires many experts and

high-level researchers, and the cost is high, especially for different batches, different

products and different cycles. It is hard to imagine modeling every batch, product, and

cycle to improve product yield and quality, and not every system can be mathematically

modeled[6, 7]. For many complex process systems, such as the research object of this

thesis is the thermal process system with non-linearity and large dead time, due to the

complexity of the system itself and various disturbances, it’s hard to establish a global

mathematical model of the system. Even if the partial model is obtained, it’s difficult

to ensure the accuracy, so model-based control methods are weak in solving practical
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problems.

Actually, there are many factors will lead to temperature variations during the pro-

duction process as Figure.1.1. As the processing speed increases, the precision and sta-

bility of the machine temperature are easily affected by the proportion of processing

materials, the size and shape of the workpiece, etc. In most cases, experienced oper-

ators are required to repeatedly make appropriate adjustments to stabilize temperature

changes and maintain production quality. Therefore, it is really difficult to achieve high

speed production while also maintaining the quality. Correctly identifying and control-

ling the temperature of the processing machine is the key factor to ensure the smooth

operation of the whole production process and prolong the service life of the machine.

As Industry 4.0 becomes the standard for various processing machines, equipment

manufacturers are in urgent of updating their temperature controller for more “smart”

features, making the production processes more efficient[8]. In the past few years, the

digital intelligent controller has been widely used in various applications, along with

the developed microcomputer processing and a variety of advanced algorithm arises for

overcoming the control problems in complicated systems[9, 10].

Move temperature control during industrial process from traditional control methods

based on precise mathematical models or complex optimization algorithm to simpler

real-time artificial intelligence-based(AI-based) control to reach higher quality and re-

duce downtime, energy and costs.

Figure 1.1: Various causes of temperature variations during production
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1.1 Temperature Control Requirements

The ideal temperature control needs to consider meeting the following requirements.

In practice, it is practically difficult to satisfy all of these conditions at once, and it is

normal to control each content to the point where the control system can accept it.

(1) Rapid temperature increase: Reach the target temperature setting as soon as pos-

sible or within the set time, while reducing the overshoot;

(2) Disturbance suppression: Even if there is disturbance, it can immediately return

to the set value with smaller temperature fluctuations.

(3) Temperature uniformity: Reduce the temperature differences of coupling points

and ensure the surface temperature uniform.

Take the packing process as an example, once the products(disturbance) are placed

on a packaging machine, the heater temperature will be decreased, thus resulting in heat

sealing error and poor product quality. As shown in Figure.1.2, once the disturbance oc-

curs, it will take a long time until the heater temperature is stabilized. The desired control

performance refers to a much smaller drop in temperature by stabilizing the heater tem-

perature immediately. However, the traditional control methods are difficult to achieve

the ideal interference suppression effect[11].

Figure 1.2: Disturbance effect in the industrial production process

1.1.1 Classical control strategies

Until now, PID(Proportional-Integral-Derivative) controllers are still the most widely

used closed-loop feedback controller in the industrial process control. The advantages

of PID control include simple structure, relatively good control performance, ease of

use, etc. According to the error signal between the actual process output and the target

value, they can adjust the control output automatically to maintain the output of process
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variables (PV) at the target value. The common process variables include temperature,

flow, pressure, etc. To ensure the quality of products and the lifespan of the equipment,

any change in the setpoint or sudden disturbance should be handeled timely. A typical

PID closed-loop control system can be illustrated as Figure 1.3.

Figure 1.3: Block diagram of the closed-loop control system with PID controllers

In fact, although the concept of PID control is simple, it is often very difficulty to

determine the controller parameters for achieving optimal control performance. In the

actual production process, define the initial start-up PID settings and the correspond-

ing adjustment to fluctuations for a standard PID controller always take a lot of time,

and it is difficult to reach the optimal adjustment without the operator’s rich experience.

Instead of manually adjusting parameters of controllers, many parameter tuning meth-

ods have been proposed as: Ziegler-Nichols(ZN) tuning method, Cohen-Coon response

curve method, Integral Square error(ISE)-based tuning method, etc[12, 13].

Today, most temperature process controllers are well equipped with auto-tuning func-

tions, they automatically calculate PID parameters when there are changes in target value

or a disturbance signal is added. As the industrial processes are becoming more and

more complex, the controllers are required to meet the higher control performance de-

mand under various working conditions. The main approaches of auto-tuning parameters

for solving the nonlinear, imprecise uncertain problems occurred in practical industrial

process control can be summarized as follows[14–17]:

(1) Adaptive PID control. It can not only adjust the parameters of the controller

automatically, but also has strong adaptability to overcome the problem that process

parameters and even model structure change caused by the noise, load disturbance or

other factors.

(2) Fuzzy PID control. It is a kind of control method using fuzzy set theory. Es-

pecially in those large lag, time varying, nonlinear complex systems without relying on

the accurate mathematical model of the system. It can achieve high performance of PID
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control, but also has characteristics of simple structure, strong flexibility and robustness.

(3) Neural network-based PID control. It combines neural network which has the

advantage of adaptive learning ability, strong real-time performance with the PID con-

troller. Based on the designed network structure, it can achieve the flexible adjustment to

the controller parameters and have obtained good dynamic performance in many studies.

(4) Predictive PID control. It uses nonparametric model predictive control algorithm.

It has the advantages of simple structure, convenient parameter setting, and can predict

the output signal of time-delay process.

Smith predictor control

To overcome the delay time of the controlled object, one of the common used strate-

gies is Smith predictor control method[18]. The block diagram of the corresponding

control architecture is as Figure 1.4.

Figure 1.4: Block diagram of control system with smith predictor

Here, Gp(s) represents the transfer function of the plant without delay term, which

is stable and strict proper term and e−τs is prue delay term. GM(s)e−τ̃ s is the internal

model of the controlled object Gp(s)e
−τs, which is used for the prediction of the system

behavior. Generally, the feedback controller Gc is PID or PI controller.

Assume that the predictor can match up with the actual model(without model error),

which means GM(s) = Gp(s) and τ̃ = τ . And there is no disturbance D(s) = 0, the

transfer function of the smith predictor part is given as Equation 1.1. The closed-loop

transfer function can be obtained as Equation 1.2.

G′(s) =
Gc(s)

1 +Gc(s)GM(s)(1− e−τ̃ s)
(1.1)

Y (s)

R(s)
=

G′(s)Gp(s)e
−τs

1 +G′(s)Gp(s)e−τs
=

Gc(s)Gp(s)

1 +Gc(s)Gp(s)
e−τs (1.2)
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By introducing a pure delay term in reverse parallel with the controller, smith pre-

dictive control strategy makes the equivalent transfer function not include the pure delay

term, so that the system without time delay can be easily controlled by conventional

control methods.

Although it is useful to handle the problem of time-delay system theoretically, it has

some defects in practical application: (1) It requires an accurate process model, and

when the model changes, the quality of control will significantly deteriorate; (2) It is

very sensitive to the change of parameters of the actual object. When the parameters

change greatly, the closed-loop system will become unstable and even completely fail.

Gradient temperature control

In order to achieves the uniform temperature over a surface with multiple heaters

by effective multi-point control, the gradient temperature method(GTC)[19] is one of

effective strategies, which is a multi-loop PID control technology. The control block

diagram is shown as Figure 1.5. It calculates the average temperature and the temperature

differences between any two points by the mode converter. Meanwhile, the outputs of

PID control are distributed by the precompensator to eliminate the effects of each control

output to the other points. In this way, the interference between heaters of each point is

reduced, thus the uniformity of the surface temperature is achieved.

Figure 1.5: Control block diagram of gradient temperature control

This method is viewed as an uniform temperature control for multi-point control sys-

tem, which not only increasing the dynamic performance of the thermal process, but also

eliminating the interference between heaters. However, the design of multiple compen-

sator and controllers is complex, including the structural mathematical analysis of the

controlled object and it is still difficult to obtain the optimal temperature control effects

automatically without the human intervention for the changes in the process.
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1.1.2 Intelligent control strategies

With the rapid development of the computers and other modern science and tech-

nology, as well as the continuous expansion of production system scale form complex

control systems, thus resulting in more complex control tasks and controller design. In

addition, the requirements for the levels of automation become more extensive, consid-

ering the intelligent robot system, computer integrated manufacturing system and other

complex systems, the classical and modern control theory and technology can not adapt

to the complex system control. In past decades, intelligent control becomes more and

more necessary in the production process[20, 21].

With the gradual development, intelligent control has been one of key advanced in-

formation and control technologies. It spans many disciplines, such as the information

theory, artificial intelligence, neurophysiology, electrical engineering and computer sci-

ence. If a system can continuously capture changes in the environment, obtain effective

information to overcome the uncertainty, and a series of control behaviors can be ef-

fectively planned and performed, it is usually viewed as an intelligent control system.

Actually, intelligent control can be viewed as is a kind of control technology using var-

ious artificial intelligence calculation methods. It represents a kind of advanced control

mode that integrates intelligent information processing, feedback and decision making.

In order to solve the problems that are difficult to be controlled well by the traditional

methods, intelligent control has been one of best practicable technologies which reaches

the advanced stage of this traditional control theory.

It is the advanced stage of the development of control theory, mainly used to solve

the control problems of complex systems that are difficult to be solved by traditional

methods[22, 23].

The main target of traditional control method is the controlled object, while that of

intelligent control is the controller itself. Classical control is more based on the mathe-

matical model analysis of the controlled object, but the intelligent control focuses on the

establishment of intelligent controller model. The process involves the data acquisition,

representation and storage, and the design of intelligent reasoning mode, etc.

On the other hand, the controlled object of intelligent control is quite different from

the classical control, its characteristics are as: (1) No need to establish the mathematical

model of the controlled object, which is especially suitable for solving problems with

nonlinear object, time-varying object and complex uncertain control object; (2) Easy to

process a large amount of information and stored data, and also including inference; (3)

Own adaptive ability and good robustness; (4) Own the ability to learn and the ability

can be increased gradually.
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Based on the above, the differences between intelligent learning theory and tradi-

tional methods are simply compared as follows.

(1) Conventional PID control strategies: They can not deal with strong nonlinear,

time-varying and existing disturbance system well, and does not have the learning func-

tion, does not have the adaptability to the system structure change.

(2) Intelligent control strategy: They focus on not the mathematical model analysis

of the control object, but the establishment of intelligent controller model, including the

acquisition, representation and storage of knowledge, the design of intelligent reasoning

mode, etc. It can deal with strong nonlinear, time-varying and periodic systems well.

Intelligent control is quite different from the framework of traditional control theory

which must be built based on the accurate mathematical/physical model in the tradi-

tional control. It is basically based on the actual control effect and does not depend on or

completely depend on the mathematical model[24]. It enables to simulate the nonlinear

characteristics of human thinking. Some intelligent control methods also have the abil-

ity of online identification, decision-making or overall self-optimization, as well as the

function of hierarchical information processing and decision-making.

1.1.3 Artificial intelligence control

Artificial Intelligence As shown in Figure 1.6, artificial intelligence(AI), starts from

studying and simulating different and complex human activities, and then gradually

learns the rules of control and information of the process system, it is actually regarded

as a system combining engineering control and information processing technologies. It

is gradually developing towards achieving the same level of intelligence as the human

brain[25]. It is a mixed disciplinary which is based on computer science, and developed

from psychology, philosophy and other knowledge.

Machine Learning It is an AI sub field and consist of technique that can recognize date

to trains programs, rather than explicitly writing a method to accomplish a specific task

with specific instructions, and it can learn from past experiences. Here, training refers

to provide the program with a lot of data and let the program automatically complete

configuration and improving itself.

Deep Learning Deep learning(deep neural learning/deep neural network), is a sub

field of machine learning, which is inspired by the structure and function of human

brain and then form neural networks consist of large amounts of neurons[26]. These

algorithms, which mimic the biological structure of human brain, are known as artifi-

cial neural networks (ANN). “Deep” is built by layers, meaning that the more layers a
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Figure 1.6: AI vs. ML vs. DL

network has, the deeper or complex it becomes.

As mentioned, deep learning is part of machine learning. However, machine learning

is the process of giving data to a computer to learn features of a task by making repeated

judgments. In other words, let the computer master the rules of the task, and then the

computer automates the task[27]. Different from the general machine learning, the char-

acteristics, classification and amount of data as learning materials are selected manually,

while deep learning is done automatically by the computer, as shown in Figure.1.7.

Figure 1.7: Comparison of machine learning and deep learning

In modern advanced manufacturing system, it is necessary to use incomplete or in-

accurate data to solve the difficult or unpredictable situation. Artificial intelligence tech-

nology provides some effective solutions to solve this problem, such as follows[28–30]:

(1) The fuzzy neural network method adopted to model the complex dynamic en-

vironment of different manufacturing processes, and combine multi-sensor data fusion

technologies to preprocess and realize an integrated process of the effective information.
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(2) The expert system is adopted as a feedback mechanism, relying on apriori knowl-

edge to modify the control mechanism or select better control modes and parameters.

(3) The fuzzy set decision is adopted to select more appropriate control actions. It

can help in increasing the accuracy of the decisions in uncertain environment.

(4) The neural network is adopted for its strong learning and parallel information

processing abilities. It has realized the online pattern recognition and processing.

Artificial intelligence-based(AI-based) controllers have special characteristics include

the ability of processing non-traditional input data(visual information about the equip-

ment or product state), the ability of processing and feedback to control in real time after

data monitoring and the ability of continuous learning from huge amounts of raw data

with different features. Today, all adjustments typically made by experts in the field

can be automated adjusted by using artificial intelligence algorithms. In terms of the

operation quality of the current artificial intelligence control system, the neural network

control system plays a greater role in the industrial automation control system because

of its advantages of fast data analysis and higher control accuracy.

In view of the above problems related to temperature control that cannot be solved by

traditional control methods in the production process, it is a very important and valuable

research direction to combine neural network learning and control theory methods to

design controllers directly based on system input and output data.
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1.2 Thesis Outline

Based on the above all, this thesis focus on how to improve the control performance

of nonlinear, larger delay, strong coupling temperature systems by utilizing the neural

network-based artificial intelligence technology, achieving optimal and automatic tem-

perature control.

This thesis mainly consists of six chapters, and it is organized as follows. In Chapter

1, first introduce the background of temperature control, review the current application of

classical control and intelligent control methods in temperature control and the existing

problems and difficulties. And then it leads to the advantages of neural network in the

application of temperature control and the research content of this thesis.

In Chapter 2, the design of the controlled objects and the establishment of experiment

setup are introduced, including the single-input single-output and multi-input multi-

output temperature control systems. The controlled systems are modelled by system

identification and expressed in transfer functions, respectively. They are used for simu-

lating and experimental verification of the designed temperature control methods in the

following chapters.

From Chapter 3 to Chapter 4, the main work of this thesis is introduced in detail.

Specifically, Chapter 3 introduces the basic knowledge involved in this chapter, mainly

related to neural networks. And then propose a multi-layer FNN-based control method

for multi-input multi-output uniform temperature, and an ideal reference model is in-

troduced for guiding the optimization of the neural networks. The neural network self-

learns and adjusts the output to achieve the decoupling effect of mutual interference.

Simulation and experiments are performed and the results are quantitatively analyzed to

demonstrate the efficiency and feasibility of the proposed control systems. In chapter 4,

the over-parameterization problem of the neural network model is considered. Based on

the pre-trained neural network model, an efficient network pruning method based on the

optimization objective of layer-wise nonlinear reconstruction error is proposed to elim-

inate redundant parameters in the temperature control model based on FNN and RNN.

The temperature control system based on RNN model is proposed to overcome the prob-

lem that the traditional FNN can not effectively utilize and extract useful information

from time-series data, for further improving the performance of the temperature control.

After detailed design, a reasonable and feasible control system structure is given. The

effectiveness of the proposed RNN-based control method is shown through experiments.

Finally, Chapter 5 makes a summary of the results obtained in this thesis, and point-

ing out the inadequacies in studies and briefly describes the future research directions.
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Chapter 2

Modeling Method for Thermal Process

Generally, the design and analysis of the control system requires the design of the

controller according to the characteristics of the controlled object, in order to obtain the

optimal control system that meets the requirements of performance indicators. One of

the main purposes of analyzing and studying the dynamic system is to obtain the optimal

setting parameters of the controller, but in the actual process, most of the control objects

are relatively complex, and for the consideration of safety, economy and feasibility of

experiments, it is necessary to carry out experimental research by replacing the actual

system with a model (physical model or mathematical model)[31, 32]. Such as in the

study of guided flight, aerospace and reactor control systems, or the high-temperature

processing systems, without simulation experiments at first, it will not only affect the

production, but also bring great danger to human life and health.

In this chapter, the background on the modeling method of the thermal process is de-

tailed introduced and the system identification experiments are performed on the Single-

Input Single-Output temperature control system and Multi-input Multi-output tempera-

ture control system, respectively. The model parameters obtained by system identifica-

tion will be used to select the controller parameters in the comparison experiment in later

chapters.

2.1 Modeling Method Based on System Identification

Commonly, there are three modeling methods for temperature control system re-

search: (1) mechanism modeling (white box), (2) identification modeling (black box)

and (3) gray box modeling. Mechanism modeling is based on the analysis of heat transfer

and the establishment of temperature model through the energy balance. Using mecha-

nism model can clearly simulate the nature of temperature change of the control system,

this means that the users know all the details about how the system works. Hence, the
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measurement of unknown parameters will waste lots of manpower and wealth. On the

opposite, identification modeling which is based on measurement, deriving the mathe-

matical models that describe system behavior from input-output data of the controlled

system. A system model entirely derived from experimental data (input and output data)

is called a black box model[33–35].

In the production process, many used modeling method is to regard the process as

a black box, according to the input and output data of the process, through the method

of system identification to establish a mathematical model. However, more commonly,

mechanism modeling and data-driven identification modeling are combined for better

model estimation. As some of the physical laws and model structure of our temperature

control system are known, such as the step response characteristics of the temperature

control system match the first-order plus dead-time mathematical model. The specific

and simple structure can be obtained in advanced as above, the next is deriving these

unknown numerical values of the model parameters from data. In this chapter, in order to

describe the behavior of the controlled temperature system, system identification based

on the time input and output signals is performed.

2.1.1 Dynamic characteristics of thermal process systems

Commonly, a thermal process can be simplified by a First Order Plus Dead Time

(FOPDT) model[36] which is derived from the following differential Equation 2.1 and

the step response curve of it is as shown in Figure 2.1. Dead time or time delay refers to

a shift effect of the input variable u(t) for the output of the dynamic system response.

Figure 2.1: Step response of a FOPDT system

T
dy(t)

dt
= −y(t) +Ku(t− τ) (2.1)
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where the unknown parameters are steady-state process gain (K), overall process time

constant (T ) and process dead time (τ ), respectively. As the step response curve shown

below, the process time constant (T ) is the time used for the system output reaches 63.2%

of the steady state and it reflects the response speed of the system response.

The transfer function in the Laplace domain can be written as Equation 2.2. The

common process variables models are listed in Table 2.1. The difficulty of such control

systems usually depends on the ratio of τ to T. The larger the ratio, the harder it is

to control the system. Commonly, the ratio value τ /T in the temperature process is

within the rang of 0∼0.5, and even in some special process systems with extremely slow

response speed, the ratio may exceed 1.

G(s) =
Y (s)

U(s)
=

Ke−τs

Ts+ 1
(2.2)

Table 2.1: Representative models of different process variables

Process Transfer function Gain Time Constant T[s] Dead Time τ [s]

Temperature K
Ts+1e

−τs 0.1∼1.0
1∼3000

120∼12000
0∼30
0∼600

Pressure K
Ts+1e

−τs 0.5∼5 60∼6000 0∼600

Flow K
Ts+1 1∼4 6∼18 0∼12

Level K
Tse

−τs - 120∼1200 0∼180

Time delay effect The pure delay term of the controlled object brings damage to the

control performance of the control system, which reduces the stability and deteriorates

the dynamic characteristics of the system[37]. Especially when the ratio of the pure

delay time (τ ) to the time constant (T ) of the object is greater than 0.3 (called large

delay process), it is difficult to obtain satisfactory control performance by conventional

control methods. The magnitude of the time delay e−τs in the frequency domain can also

be written in e−jwτ as Equation 2.3, where the operator s = jw. If the magnitude and

phase of a pure time delay in the frequency domain are plotted, the magnitude of it is

independent of frequency which is just constant as Equation 2.4.

e−jwτ = cos(wτ)− jsin(wτ) (2.3)

∣∣e−jwτ
∣∣ = |cos(wτ)− jsin(wτ)|

=
√

cos2(wτ) + sin2(wτ) = 1
(2.4)
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The phase shift produced by a time delay decreases linearly with a slope of −wτ as

given in Equation 2.5, where τ is the length of the time delay. The delay terms only

change the timing of output. The magnitude is constant at 0dB, and the phase decreases

exponentially. The delay term makes the phase margin decrease and when the phase

margin becomes too small or negative.

∠e−jwτ = tan−1(
−sin(wτ)

cos(wτ)
)

= −tan−1(tan(wτ)) = −wτ

(2.5)

2.1.2 Overview of system identification

For model-based method control system, it is very important to build a good model

that enables to represent the original system characteristics perfectly. The models de-

scribing the system behavior can be mainly divided into the following two types: para-

metric model and non-parametric model[38, 39].

• Parametric models characterize the dynamic characteristics of a system with a fi-

nite number of parameters.

• Non-parametric models can not use a finite number of parameters to describe the

system and are usually expressed as response curves or discrete values.

Therefore, the parametric model identification method estimates the unknown pa-

rameters in the given model structure (transfer function, state equation or difference

equation) by minimizing the criterion function which calculates the error between the

estimation model and actual models. The process of estimating parameters is in the way

of numerical searching, and finally it can obtain the mathematical models of a dynamic

system, such as a transfer function based on the measured data to describe the behavior

of a linear system. And there are many well-established models have been successfully

used in linear or nonlinear system identification. On the opposite, the non-parametric

method is modeling the system directly with an impulse response (correlation analysis)

or frequency response (spectral analysis). It doesn’t rely on given parameterized mod-

els to estimate the system. A typical technique is that the neural network models the

dynamic system based on the black box identification method.

In order to implement our temperature control systems in the following chapters, the

transfer function which can represent the thermal dynamics of our controlled objects is

derived. Here, the parametric system identification method is considered to fit a transfer

function based on the measured input-output data.
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2.1.3 Basic process description

System identification is a data-driven method, the first step is to set up an experiment

or a test to collect that data from the real system. The general process of mathematical

simulation which is generally called computer simulation can be summarized as follows:

Step 1: Determine the system identification conditions;

Step 2: Collect the input and output signals from the control system in time or fre-

quency domain and preprocessing them;

Step 3: Select a right model structure;

Step 4: For these adjustable unknown parameters of the model, apply an estimation

method to get them;

Step 5: Analyze and evaluate the estimated model to ensure the model is accurate

enough to meet your control system requirements.

It begins with prior information about the control system to be identified, then mod-

ifying some choices as needed and working through the various sub problems described

above in turn, this process is performed iteratively until the model validation meets the

criteria. In addition, the selected estimation model needs to reproduce measured signals

while the structure is required as simple as possible. Based on the above, the general

process of modeling dynamic systems can be summarized in Figure 2.2.

Figure 2.2: Flow chart of building models of dynamic systems

2.1.4 Parameter estimation method based on ARX model

(1) ARX Model Structure

One of parametric models for black box modeling is Auto-Regressive with eX-

ogenous(ARX) model[40], which parameters can be estimated using the least-squares

method. Commonly, the difference equation of the process be written as the following

n-th order function:

y(t) + a1y(t− 1) + · · ·+ anay(t− na) = b1u(t− 1) + · · ·+ bnu(t− n) (2.6)
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The ARX polynomial model in Figure 2.3 can be described as the following Equa-

tion 2.7, including the model input u(t), the model output y(t) at time t, the added white

noise w(t) and ni is the i-th input delay.

Figure 2.3: ARX model structure

A(q)y(t) = B(q)u(t− ni) + w(t) (2.7)

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q) = b1q
−1 + · · ·+ bnb

q−nb

(2.8)

Both variables A(q) and B(q) are polynomials by the time-shift factor q−1 (q−1u(k) =

u(k − 1)), which can be defined by the following equations, respectively. The variables

ai and bj are the estimated model parameters, where i = 1, · · · , na and j = 1, · · · , nb,

respectively. The na is the number of poles, representing the order of the observed state.

nb is the number of zeros, representing the model order of the control signal.

Rewrite the Equation.2.6 with error as:

y(t) = −a1y(t− 1)− · · · − any(t− n)

+ b1u(t− 1) + · · ·+ bnu(t− n) + w(t)

= φ(t)θ + w(t)

(2.9)

where the parameter vector θ of the current model and data vector φ(t) are defined as:

θ = [a1, · · · , ana , b1, · · · , bnb
]T ∈ R(na+nb) (2.10)

φ(t) = [−y(k − 1), · · · ,−y(t− na), u(t− 1), · · · , u(t− nb)]
T ∈ R(na+nb) (2.11)

Then, the output y(t) can be written as:

y(t) = φT (t)θ + w(t) (2.12)

The transfer function of the process and noise model are respectively given by:

G(q, θ) =
B(q)

A(a)
, H(q, θ) =

1

A(q)
(2.13)
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(2) Parameter Estimation

For the ARX model, least squares(LS) algorithm which is a special case of the pre-

diction error method (PEM) is used to estimate the model parameters[41]. It is the most

efficient polynomial estimation method because this method solves linear regression

equations in analytic form. Moreover, the solution is unique. The general process of

parameter estimation is as Figure 2.4.

Figure 2.4: System identification based on the prediction error method

As mentioned above, the prediction output ŷ which uses all the past information and

established models with parameter vector θ is described as:

ŷ(k|θ) = [1− A(q)]y(k) +B(q)u(k)

= θTφ(k)
(2.14)

And then the error ε between the model output ŷ(k) and the actual measured output

y(k) is calculated as Equation 2.15.

ε(k,θ) = y(k)− ŷ(k|θ) = y(k)− θTφ(k) (2.15)

The prediction error method estimates the parameter vector of the current model by

optimizing the loss function JN as:

JN(θ) =
1

N

N∑
k=1

l(k,θ, ε(k,θ)) (2.16)

θ̂(N) = arg min
θ

JN(θ) (2.17)
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where θ is unknown parameter, l(k,θ, ε(k, θ)) is prediction error

JN(θ) =
1

N

N∑
k=1

ε2(k,θ) =
1

N

N∑
k=1

{y(k)− ŷ(k|θ)}2

= θTR(N)θ − 2θTf(N) + c(N)

(2.18)

and R(N), f(N) and c(N) are given by:

R(N) =
1

N

N∑
k=1

φ(k)φ(k)T (k)

f(N) =
1

N

N∑
k=1

φ(k)y(k)

c(N) =
1

N

N∑
k=1

y2(k)

(2.19)

Let the differential of the cost function J at θ equal 0 as Equation 2.20., then least

squares estimation of unknown parameters based on N input and output data can be

derived by:
d

dθ
JN(θ) = 2R(N)θ(N)− 2f(N) = 0 (2.20)

θ̂(N) = R(N)−1f(N) (2.21)

(3) Model Validation

In order to evaluate the accuracy of the identified model, error between the actual

output y(k) and the estimated model output ŷ(k), the percentage of fit (Fit(%)) as the

following expression, where y(k) is the mean of the actual output. The higher the fit

value, the higher the model identification accuracy[42].

Fit(%) = (1−

√∑N
k=1[ŷ(k)− y(k)]2√∑N
k=1[y(k)− y(k)]2

)× 100% (2.22)

y(k) =
1

N

N∑
k=1

y(k) (2.23)

2.2 System Identification Experiments

In terms of temperature control, the delay time of the process control system can

reach 10 to 100 seconds. If the experiment time is too short, sometimes the system
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cannot reach the stable state, so in order to obtain the data of the process from the initial

input excitation to the steady state, it is usually necessary to set significant experiment

time. Ensure the measured data capture the complete dynamics of the control system,

the time of the open-loop identification experiment needs to be set much longer than the

settling time of the system. In addition, apply appropriate sampling time or frequency

resolution to capture data is also important for an accurate estimation model.

In this part, specific experimental setup of our temperature control system and exper-

iment process of system identification are described.

2.2.1 Experimental setup

The overall platform for identifying the Single-Input Single-Output(SISO) system

and Multiple-Input Multiple-Output(MIMO) system used in the following chapters is

setup and detailed explanation is given as follows.

Figure 2.5: Experimental setup of the temperature control system

As shown in Figure 2.5, the digital temperature controllers(RKC, FZ400) are used

to control and monitor the temperature of the controlled object, multiple sensors are

connected between controller and controlled object, and then send its feedback to the

controller. The process heaters start working when get power from the Solid-State Re-

lay(SSR) and the AC power source. Here, the SSR is switching device/power regulator

between the heaters and the controller for rapidly controlling the real-time temperature.

In particular, the controller can send the control signal to the primary terminals of the

SSR for turning on and turning off control. The whole control model is developed and
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Figure 2.6: Setup of the DSP-based experimental system

built in the MATLAB/Simulink and using the dSPACE DS1104 R&D digital signal pro-

cessing controller board to link to the hardware[43]. The real-time testing of a designed

control algorithm in Simulink is executed by the control board. The DSP-based DS1104

board is commonly installed in the personal computer with a PCI slot and it automati-

cally complies the real-time model and generates the controller code for the hardware.

As shown in Figure 2.6, the installed model of the control system in the Matlab/Simulink

software will be compiled and the real-time codes are created which are included in a

specific (.sdf) file, then the control desk can access and monitor the real-time variables

which include the inputs and outputs of the implemented control system. The data will

be transferred by the ribbon cable which connects the DS1104 controller card and the

CP1104 I/O box. The digital signals will be sent from the DS1104 to the CP 1104.

The detailed information of used equipment are listed in Table 2.2 as follow. The

simplified block diagram of the temperature control system is given in Figure 2.7. The

applied process and temperature digital controllers(FZ400), which has features includ-

ing: (1) measurement accuracy: ±0.1% of displayed value; (2) sampling time: 0.05

sec; (3) 11-segment 5 digit LCD display. The physical drawings of the experimental

platform and modules for process modeling and control system design are shown in the

Figures 2.8 and 2.9.
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Table 2.2: Experimental equipment information of our temperature control system.

Products Information

Controlled Object Aluminum block: 120 × 60 × 50 (mm)
PC CPU: i5-8400; RAM: 16.0 GB; GPU: On-Board

DSP dSPACE: DS1104 R&D Controller Board
AD-DA Converter dSPACE: Panels for Single-Board-Hardware

Heater Watlow: Firerod Cartridge Heater, type G2A56 (150 Watt)
Thermocouple RKC: Type K, class 2 (−200 ◦C–900 ◦C)

Solid State Relay (SSR) Omron: G3PE-245BL, DC12-24
Temperature Controller RKC: FZ400

Figure 2.7: Simplified control flow chart

Figure 2.8: Experimental platform of temperature control systems

Figure 2.9: Images of the heater (left) and thermocouple (right)
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2.2.2 Single-Input Single-Output control system identification

The controlled object for our Single-Input Single-Output (SISO) control system is

built as Figure 2.10. There are two aluminum blocks connected tightly on the same

plane by nuts and each block is 60×60×50(mm) in size. Define the left block as Chan-

nel1(ch1), and the right block as Channel2(ch2), respectively. Each block has two heaters

in the hole of 30[mm] and one sensor for detecting the block temperature output, which

are placed closer to the inner center, respectively. The detailed experimental conditions

are given in Table 2.3. The ambient temperature during the performed identification

experiments was 22◦C, the sampling time is 0.1s and the experimental time is set as

80,100s for capturing enough information of the controlled system.

Table 2.3: Experimental condition settings

Sampling time 0.1 s
Experimental time 80,100 s

Input signal 40% PWM duty of step signal (4V)
Output signal temperature of sensor : 400◦C/10V

Ambient temperature(initial) 22◦C

Figure 2.10: Experimental setup for the SISO controlled object

For getting the transfer functions of each channel of the temperature system. In

simulation, the system identification procedure and identification condition by m-file in

MATLAB software for control system model identification are given as follows:

1. Selection of input and output signals

2. Power spectrum verification of measured signals from actual systems

3. Check correlation of input and output signals

4. System Identification: the range of selection of degree of ARX model in minimizing

prediction error including: numerator oreder, denominator order and delay time

5. Confirm pole, zero of the identification model (higher order model)

6. Model order reduction
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7. Compare time response or frequency response between identified model and reduced

dimension model.

2.2.3 Identification results of SISO system

As introduced above, the measured output time-domain response data is preprocessed

for system identification in the open-loop step response test, such as removing the initial

value from the output data shown in Figure 2.11. For a sequence of time samples, Figure

2.12 illustrates the power spectrum (PS) estimation of the measured signals.

Figure 2.11: Measured input and output data of step response (left) and after removing
the offset (right)

Figure 2.12: Power spectral density Figure 2.13: Fit ratio of identified model

After the higher order ARX model is derived, reduce the dimension of the model into

the objective transfer function in the first-order form. Model identification process in-

cludes fitting parameters in a dynamic continuous or discrete form of the FOPDT model,

and the unknown parameters for this system include the time constant (T ), gain (K), and
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dead time (L), introduced in previous section 2.1.1. According to the high fitting ratio

of the identified result as Figure 2.13, the process is finally derived into the following

transfer function:

P (s) =
2.854

2395s+ 1
e−444.7s (2.24)

As shown in Figure 2.13, the percentage of fit which indicates the error between the

actual output y(k) and the estimated model output ŷ(k) is equal to 95.73%. The stability

and performance of the closed-loop system are illustrated by observing the open-loop

behavior of the system in Figure 2.14, which is the Nyquist diagram of the identified

system model. The point -1+j0 is not encircled and the time delay term which will add

the negative phase makes the curve rotate in the direction of the origin.

Figure 2.14: Bode and nyquist plots of the identified system model with time-dealy
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2.2.4 Multi-Input Multi-Output control system identification

The Multi-Input Multi-Output Control (MIMO) System is built as Figures 2.15. In

order to verify the control performance of our proposed NN-based MIMO control sys-

tem in the following chapter, the controlled object is simplified and constructed by a

two-input two-output model. The controlled object consists of four aluminum blocks

which are tightly connected on the same plane by nuts and each is 60×60×50(mm) size.

And each block is separated in the same distance. Define the left two blocks into a

whole and marked by Channel1(ch1), the right two blocks are regarded as a whole and

marked by Channel2(ch2). Each block has two heaters in the hole of 30[mm] and one

sensor for detecting the block temperature output, which are placed closer to the inner

center, respectively. Considering the coupling effect in such a two-input two-output con-

trol system, which can be described as Figure 2.16. During the system identification

experiments, the ambient temperature (initial temperature) of the identification exper-

iments was 28◦C. A step signal (20% PWM duty cycle) is sent to Channel1(ch1) and

Channel2(ch2) heaters across the solid state relay, respectively.

Figure 2.15: Overall view of equipment(left) and the controlled blocks(right)

Figure 2.16: Coupling effects in the 2I2O temperature system
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As the same in the SISO system identification, the control system models of two-

input two-output controlled object are identified from the input and output data obtained

from the open-loop step response tests, respectively. Similarly, the system transfer func-

tions of each blocks are derived by estimating the ARX model based on the least-squares

criterion in MATLAB. Set the objective structure of the control model is first-order plus

dead-time form, the high order models are reduced to the first-order transfer function.

For each block, the following FOPTD transfer function as Equation 2.25 can be ob-

tained. In the obtained 2 × 2 matrix, P11 and P22 represent the self-interaction of each

heating channel, respectively. The off-diagonal terms P12 and P21 indicate the mutual

coupling effect between the heating channels of the controlled object, respectively.

Gp(s) =

[
P11 P12

P21 P22

]
=

 K11

P11s+1
e−L11s K12

P12s+1
e−L12s

K21

P21s+1
e−L21s K22

P22s+1
e−L22s



=

 2.7502
2482.4s+1

e−431s 1.4614
3085.1s+1

e−1042s

1.7352
3195.9s+1

e−973s 2.3937
2588.6s+1

e−464s


(2.25)

Figure 2.17: System identification results.

From the fitting ratio of of each block with coupling terms in the controlled system

in Figure 2.17, the estimation accuracy of each system model compared with the corre-

sponding estimated model is over 95%. The bode plots and nyquist plots of the elements

of main diagonal in the identified coupling system model (P11 and P22) are given in
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Figure 2.18 and 2.19, respectively.

Figure 2.18: Bode plot (left) and Nquist plot (right) of identified MIMO (P11)

Figure 2.19: Bode plot (left) and Nquist plot (right) of identified MIMO (P22)

28



2.2.5 Approximation of time delay transfer function

The exponential term e−sτ for time delay in the transfer function can also be ex-

pressed in the power series expansion as Equation 2.26. One of common applied rational

approximation methods of the time delay term is Padé approximation[44], which has no

restriction on the order of both numerator m and denominator n. It is suitable for weak

condition of physical realizability and the denominator order n≤10.

e−sτ ≈ 1− sτ +
1

2
(sτ)2 − 1

3!
(sτ)3 + · · · (2.26)

The corresponding first order and second order of Padé approximations of the expo-

nential terms are:

e−sτ ≈
1− sτ

2

1 + sτ
2

(2.27)

e−sτ ≈
1− sτ

2
+ τ2

12
s2

1 + sτ
2
+ τ2

12
s2

(2.28)

Figure 2.20 shows the step response of a pure time delay of 444.7s, which is ex-

pressed by Padé approximations of 1st, 2nd and 3rd order, respectively. Here, the time

and frequency responses of the true delay time is compared with different order approx-

imation of it. Although they have an obvious deviation from the exact response for the

early time, as the order increases it has less overshoot and faster convergence.

ex ≈ 1

(x
n
+ 1)n

(2.29)

Figure 2.20: Padé approximation of different orders
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The amplitude and phase approximation of Padé approximation is more accurate as

the order increases, the non-minimum phase is also introduced and shows up as a reverse

shock in the step response curve as shown. In order to ensure the accuracy and reduce the

order of the delay term, here the 2-order exponential approximation is used to describe

the system delay as Equation 2.29.

For a better observation of the approximation results, Figure 2.21 illustrates step

response results of the control system with exact delay, Padé approximation and expo-

nential approximation in time domain.

Figure 2.21: Comparison of approximate results for pure delay links in time domain

The first-order plus dead-time transfer function of the identified model in the SISO

system can be written by Equation 2.30. The frequency response of the identified model

is also plotted in Figure 2.22 and compared with the approximation model.

P (s) ≈ 2.854

2395.4s+ 1
∗ 1

(444.7s
2

+ 1)2
(2.30)

In the same way, the transfer function of time delay for the identified P11 and P22 in

the MIMO system can be written as follows:

P11(s) ≈
2.7502

2482.4s+ 1
∗ 1

(431s
2

+ 1)2
(2.31)

P22(s) ≈
2.3937

2588.6s+ 1
∗ 1

(464s
2

+ 1)2
(2.32)
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Figure 2.22: Comparison of approximate results in frequency domain

2.3 Classical Control Strategies

2.3.1 Integral-proportional derivative(I-PD) controller

For the heating system with frequent changes in the reference signal, how to reduce

the overshoot and steady-state error is important tasks for designing a good control al-

gorithm. Consider a general formula of a two-degree-of-freedom PID controller in the

parallel form as[45]:

u = P (br − y) + I
1

s
(r − y) +D

1

1 + η 1
s

(cr − y) (2.33)

where, r, y and u are the reference signal, system output and the controller output, re-

spectively. And P , I and D correspond to the proportional gain, integral gain and deriva-

tive gain, respectively. Here, the low-pass filter factor η in the derivative term is usually

used to inhibit the effect of high frequency noise. In addition, b and c are defined as the

reference value weights affecting the proportional and derivative terms, respectively.

To reduce the impact of frequent changes in the reference signal r on the controller

output u, the components b and c are equal to 0 for avoiding a large spike caused by the

derivative and proportional terms. This variant of the PID controller is called is integral-

proportional derivative (I-PD) controller, given by Equation2.34.

u = −Py + I
1

s
(r − y) +D

1

1 + η 1
s

y (2.34)
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The block diagram of a I-PD controller-based control system is shown as Figure 2.23.

The controller parameters contains proportional gain Kp, integral time constant Ti and

derivative time constant Td.

Figure 2.23: Structure of a parallel I-PD controller

The unknown parameters of the controller are determined by Ziegler–Nichols pro-

posed tuning rules in 1942, which is also based on the information obtained from the

step response test[46]. Here, the parameters are adjusted for an ideal controller as rules

given in Table 2.4, where the variable R = K/T is obtained by the following FOPDT

transfer function:

P (s) =
K

Ts+ 1
eLs (2.35)

Table 2.4: ZN controller tuning rules based on step response

Controller Proportional Gain Kp Integration Time Ti Derivative Time TD

P 1/RL - -
PI 0.9/RL 3.33L -

PID 1.2/RL 2L 0.5L

Here, consider our identified and approximate model in the SISO and MIMO control

system as Equations 2.30 and 2.33, the corresponding parameters of the controller are

calculated in Table 2.5.

Table 2.5: Determined I-PD controller parameters

Controlled Object Proportional Gain Kp Integration Time Ti Derivative Time TD

SISO 2.264 889.48 222.37

MIMO (P11) 2.525 861.51 215.38

MIMO (P22) 2.797 927.98 231.99
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2.3.2 Anti-windup compensator

When the system reaches saturation, due to the existing of integration, the system

is continuously stacking errors and thus affects the speed of desaturation. In most PID

control systems, without the anti-windup, the controller will operate in a nonlinear region

which output is outside the saturation limit for input signal[47]. It means that even

though there is increasing control signal, it doesn’t have any effect on the system output.

And when the reference signal changes frequently, there is an obvious delay before the

controller output recover to the actuator’s range with a steady-state value.

Figure 2.24: I-PD controller block with back-calculation based on back-calculation

In order to ensure the controller output returns to the linear region quickly and im-

prove the control performance, a commonly used strategy is anti-windup based on back-

calculation as Figure 2.24, where SV and MV are the setpoint value and the manipulated

variable value, respectively. The saturation limit of control output is also set as 100%.

It adds a feedback loop to reduce the effect of the integrator when the I-PD controller

output reaches the saturation and start to operate in the nonlinear region.

Figure 2.25 illustrates the controller output results of simulating the I-PD control

model without and with anti-windup activated on the closed-loop. With the anti-windup

feedback loop, the control signal can quickly return to the linear region and with smaller

vibrations.

To better visualize the effect of anti-windup compensation in control system, Fig-

ure 2.26 illustrates the measured temperature output PV (process variable) with and with-

out the anti-windup feedback loop. It is obvious that there is a big overshoot and long

delay responding to the changes in the reference signal without the anti-windup loop. In

contrast, the saturated input with anti-windup effectively improves the reference tracking

performance.
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Figure 2.25: Comparison of saturated controller output MV with and without the back-
calculation feedback loop

Figure 2.26: Measured process output(PV) with and without anti-windup compensator

2.3.3 Feedforward compensation-based I-PD controller

The main task of control algorithm design is to ensure the reference tracking perfor-

mance and anti-interference ability of the system. Whereas the pure feedback controller

(single-degree) has the inherent limitations, so that cannot simultaneously meet the re-

quirements of tracking reference and disturbance rejection. In most cases, it is difficult
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to find the best compromise between them.

Therefore, after the feedback loop is adjusted for the disturbance suppression control,

a feedforward control loop [48] is added as Figure 2.27 to improve the tracking of the

target value, where kf is a feedforward gain.

Figure 2.27: Structure of a feedforward compensation-based I-PD controller

Generally, the feedforward compensation term need to calculate the corresponding

control input according to the target output, which requires the reverse model of the

controlled object. The reverse models sometimes are physically hard to be realized,

such as system with dead time, or zero of the controlled object in the right half plane.

Hence, instead of the calculating the transfer function of inverse system, using a static

feedforward compensator (kf ) that is equal to a constant gain for compensate the steady-

state error. This structure is simple and easily implemented. Here, define the kf=1 is fast

response mode and kf=0 is slow response mode.

The experiment time is set as 15,000s and the sampling time is 0.5s. The initial

value is zero. Perform reference value tracking tests in both response modes. The mul-

tiple cycles of time response for reference tracking based on the identified SISO system

model, which containing the temperature increasing (100◦C→105◦C in 5000s) and de-

creasing (105◦C→100◦C in 5000s) periods in 10,000s, are shown in Figure 2.28 and one

complete cycle is enlarged as Figure 2.29. The actual control output MV with different

feedforward gains are compared in Figure 2.30.

From the above simulation results, compared with the continuous time response

curve without the feedforward loop (kf ), the fast mode control results in approximately

40% overshoot although it responses faster than the slow mode with about 8% overshoot.

Obviously, the feedforward compensation gain is helpful to improve the system response

speed in reference tracking.
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Figure 2.28: Comparison of time response curves of reference tracking for multiple
cycles in two modes (fast: kf=1 and slow: kf=0)

Figure 2.29: One cycle of reference value tracking response (containing two periods
from 100◦C to 105◦C and from 105◦C to 100◦C )

Experimental Results

The designed control structure with two response modes (fast: kf=1 and slow: kf=0)

are tested in the actual system for verifying the tracking performance and accuracy of

the identified control model. The block diagram of the control system designed in MAT-

LAB/Simulink is given in Figure 2.31.
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Figure 2.30: Control input in one cycle of reference value tracking response

Figure 2.31: Control system model built in MATLAB/Simulink software

The experiment time is set as 40,000s and the sampling time is 0.5s. After the tem-

perature of the controlled object goes up from the initial temperature to 100◦C and the

system output reaches steady state in 10,000s, a step signal of ±5 degree is added to

the baseline value 100◦C. The controlled object is heated and the output temperature

increases from 100◦C to 105◦C in 5000s, and then decreases from 105◦C to 100◦C in

5000s, respectively. One complete cycle contains one increasing change and one de-

creasing change in the continuous time response.

The following figures show the comparison results of different response modes based

on the identified model in the actual experimental system, respectively. The temperature

changes up and down multiple times in the whole time response as shown in Figure 2.32.
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Figure 2.32: Comparison of time response curves of reference tracking for multiple
cycles in two modes (fast: kf=1 and slow: kf=0)

Figure 2.33: One complete cycle of reference value tracking response (containing two
periods from 100◦C to 105◦C and from 105◦C to 100◦C )

38



From the results of the enlarged one cycle response in Figure 2.33, the experimental

and simulation results are consistent. The accuracy of the identified model is confirmed.

On the other hand, by adding the feedforward gains, the system output can follow the

constantly changing setpoint at different speeds without steady-state error. However, al-

though the response speed of system with the gain kf=1 is accelerated compared to that

with the gain kf=0, the overshoot of the system is also increased and thus the system

stability deteriorates. It is apparent that although the operation of PID controller is sim-

ple, but the quality of regulation is general, and the parameters need to be constantly

corrected in application for satisfying the desired dynamic and steady-state response re-

quirements.

2.4 Conclusion

In this chapter, the modeling method based on the system identification method are

applied for obtaining the transfer functions which describes the controlled system be-

havior. Based on the identified models, classical control strategies commonly used in

industrial process control are also discussed. To solve the problem in classical con-

trol theory that is hard to meet the requirements in reference tracking performance and

disturbance rejection, especially in large-delay and strong coupling temperature control

systems, the I-PD control method based on the identified models will be used in the

following chapters, for comparing with the proposed NN-based learning control meth-

ods. The aim is to deal with the conflict between response speed, overshoot, disturbance

suppression capacity in temperature controlling, and to get satisfied static and dynamic

response performances.
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Chapter 3

Reference-model-based Neural
Network Control Method for MIMO
Temperature Control System

The temperature control requirements for most industrial processing are very strict,

and thus the precise and automatic control performances are gradually to be realized in

practical production. There are many factors affecting the control accuracy including:

(1) a time delay (thermal lag) of the temperature change of the controlled object; (2) the

relative location of the sensors and heaters in the load; (3) the response speed and appli-

cability to different applications of controllers; (4) capacity and excessive heat losses of

the heaters, etc. Commonly, for an operating thermal system, one or several heaters and

sensors are placed in the workload, the temperature difference(gradient) always exists at

all times. Physically, it is observed that the measured temperature decreases gradually

from the position near the heat source to the edge of the entire system. The relative lo-

cation of measurement and heater elements are required to be as close as possible to the

controlled points. Moreover, the appropriate thermal insulation measures are required to

reduce the heat loss from the process systems.

In addition, due to the asymmetry of the structure of the products, the interference

of each control output of heaters placed over a surface, and disturbance errors caused

by different processing equipment in the high speed machining process, the inconsistent

distribution of temperature becomes more likely to happen and brings huge damages

to the production. Such as in many applications, a multi-level furnace and wafer sur-

faces, uniform temperature of the surface is a very important factor affecting the product

quality[49, 50]. In order to reduce energy loss, the time required to control and adjust

the temperature deviation, and the interference between heaters placed over the surface,
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precise and effective control algorithm is the key to the higher product quality and pro-

duction efficiency in the thermal processing.

In recent years, the application of neural networks has become a new research fo-

cus in the control of time-delay systems, especially for a large lag, strong coupling and

nonlinear temperature system, many studies have proved the effectiveness of it. Because

of its nonlinear approximation, self-learning and self-organizing ability, neural network

control is easier to realize adaptive control of time-delay systems without accurate identi-

fication of controlled objects. And the neural network controller has the characteristics of

simple structure, strong adaptability and real-time control. For an equipment with multi-

modules, Zhang et al. developed a control system which utilized the advantages of PID

controller and fully connected neural network, which can adjust the internal temperature

of the controlled object without object modeling[51]. Lee C et al. designed separate PID-

NN controllers to control a nonlinear and complex fan cooling system for improving the

transient-state temperature response[52]. The focus of past studies is almost utilizing the

learning properties of neural networks to realize the optimal parameters adjustment of

the PID controller. Actually, the neural networks can act as a controller directly in feed-

back control to replace a traditional PID controller and improve the control performance

effectively[53, 54].

Figure 3.1: Temperature difference between a pair of points on the panel

In this chapter, in order to achieve a uniform temperature of different points in one

plane and reduce the temperature difference between output of every pair of points as

shown in Figure 3.1, while improving the dynamic and steady performances, a reference-

model-based multi-layer neural network control system is proposed for the multi-input

multi-output(MIMO) system. The basic concepts of applied neural networks are intro-

duced at first, and then describes the proposed reference model-based MIMO control

system composition and principle in detail. Finally, to verify the effectiveness and relia-

bility of the proposed control scheme, the simulation and experiments are carried out.
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3.1 Data-driven Control Method

A large amount of data is generated and stored in industrial processes at all times,

containing all useful information about process operation and equipment state. There-

fore, in the case that accurate process model cannot be obtained easily, data-driven con-

trol methods can be adopted to directly design the controller by analyzing and learning

the offline or online process data.

Model-free Adaptive Control From the perspective of data model, model-free adap-

tive control mainly refers to the design, analysis and operation of the control system in

adaptive control without mechanism model and parameter analytic model of the con-

trolled system. However, as a data-driven control method, model-free adaptive control

needs to effectively organize and sort out input and output data of the system, mine out

effective information and calculate control instructions according to the information[55,

56]. Therefore, consider the complexity of thermal processes and the exact process

model is not easy to be obtained, a neural network-based data-driven control method

is presented to solve nonlinear, uncertain problems in our control system.

3.2 Review of Artificial Neural Networks

Artificial Neural Network (ANN) models refer to a series of mathematical models

inspired by biology and neuroscience[57]. They are formed on the basis of mimicking

the information transmission patterns of neurons in the human brain, but they are applied

in machine. In the field of artificial intelligence, ANN is often called Neural networks

(NN) and is one of performing frameworks in machine learning. They are widely used

for processing large amount of data samples to model these unclear relationships be-

tween different patterns. Many successful applications of neural networks in different

fields including: regression estimation of temperature and stock prices, classifications of

images and handwritten digits, etc.

A fully connected multi-layer neural networks are built up of many layers with lots

of nodes/neurons connected to each other. The dimension of each layer can be dif-

ferent as required in applications. Figure 3.2 shows a typical multi-layer(two-layer)

fully-connected neural network structure with different numbers of neurons i, j, k in

input layer, hidden layer and output layer, respectively. It consists of the input signal

x=(x1, . . . , xi)
T and the output signal y=(y1, . . . , yk)T . Weight parameters Win ∈ Rj×i

and Wout ∈ Rk×j are the connections between the input layer and the hidden layer and

the connections between the hidden layer and the output layer.
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Figure 3.2: A typical multilayer forward neural network

In a neural network, each layer of neurons learns a more abstract representation of

the values of the previous layer. Commonly, a neural network model with many hidden

layers (>2) is called deep neural network (DNN)[58, 59]. As the number of layers of the

network increases, the latter can represent a deeper information abstraction of the former.

Such as in the classification problem, more abstract features are extracted to distinguish

things, so as to obtain better ability to distinguish and classify. Different from machine

learning, it can use a large amount of labeled data for training the model and directly

learns features from data without manual feature extraction.

3.2.1 Types of learning modes

Supervised learning It develops models for prediction based on labeled input and out-

put data, which means there are corresponding output variables to the given input vari-

ables. It’s usually used to solve classification (put things into categories) and regression

(predict continuous, specific values) problems. It is characterized by a clear goal, so that

results can be measured.

Unsupervised learning It commonly refers to one technique of machine learning for

pattern recognition and clustering of data[60]. The input data feed into it are unlabeled,

which means there are not corresponding output variables to the given input variables.

It’s characterized by training without a clear purpose, and you can’t know in advance

what the outcome will be.

3.2.2 Forward propagation computation

Feedforward neural network obtains the final output a(L) of the network through layer

by layer information transmission as Equation 3.1. The entire network can be viewed as
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a composite function f(x;W,b), taking the vector x as the input a(0) of the first layer

and the output a(L) of layer L as the output of the whole function, where a(0) = x. A

typical neuronal structure is as Figure 3.3.

x = a(0) → z(1) → a(1) → z(2) → · · · → a(L−1) → z(L) → a(L)

= f(x;W,b)
(3.1)

Figure 3.3: Typical neuronal structure

Suppose a neuron receives D inputs: x1, x2,..., xD, let vector x = [x1; x2;...; xD]

represents this set of inputs, and use net input z ∈ R to represent the weighted sum of

input signals x obtained by a neuron. W = [w1; w2;...; wD]∈ RD is D dimensional

weight vector and the bias b ∈ R.

z =
D∑

d=1

wdxd + b = W⊤x+ b (3.2)

The following table gives the common notations describing the feedforward neural

networks[61].

Table 3.1: Signs of a feedforward neural network

Sign Definition
L number of the network layer
Ml number of neurons in layer l
fl(·) activation function of layer l
Wl ∈ RMl×Ml−1 Weight matrix for layer l − 1 to layer l
bl ∈ RMl bias for layer l − 1 to layer l
zl ∈ RMl input of neurons in layer l (net activation)
al ∈ RMl output of neurons in layer l (activation)
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Activation function

Activation function is very important for neurons in each layer to enhance the repre-

sentation ability and learning ability of the network, the activation function should have

the following properties[62]:

(1) They are usually continuous and differentiable (allowing non-differentiable at a

few points) nonlinear functions, because the network parameters can be learned directly

using numerical optimization methods.

(2) The activation function and its derivative function should be as simple as possible

to improve the efficiency of network calculation.

(3) The range of the derivative function of the activation function should be within

a suitable interval, neither too large nor too small, otherwise it will affect the efficiency

and stability of training.

Several widely used activation functions are characterized by:

a) Sigmoid function: It is a S-shaped function and can smooth and bound its total

input. It always gives a real-valued output and have nice derivatives which make learning

easy.

y =
1

1 + e−z
(3.3)

b) Tanh (hyperbolic tangent) function: It can be regarded as the enlarged and shifted

sigmoid function, whose range is (−1, 1) and defined as follows.

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(3.4)

c) Rectified linear unit(ReLU): It is also called rectifier function[63], which can make

all the negative input values zero and keep the positive inputs the same. It has been the

most commonly used function in deep neural networks. It is actually a ramp function

and defined as:

ReLU(x) =

x, x ≥ 0

0, x < 0
(3.5)

The derivative of the function is given in Equation:

f
′
(x) =

1, x ≥ 0

0, x < 0
(3.6)

For most NN models with ReLU activation function, the current widely used weight

initialization method is called He initialization. It produces random numbers with a

Gaussian probability distribution. And it is usually along with the mean value of zero
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and standard deviation value of
√

(2/nl), where the variable n indicates the number of

neurons at layer l.

3.2.3 Error backpropagation and gradient descent

Since the deep learning network is characterized by layer depth and layer nesting,

when calculating the gradient of the objective function of the deep network, it is neces-

sary to calculate and update parameters in reverse propagation mode from deep to shal-

low. So the back propagation method is the concrete implementation of gradient descent

method in deep network. It is a fast algorithm for computing partial derivative for gradi-

ent descent, which speeds up the process of updating parameters in networks[64, 65].

Gradient descent method It is an iterative optimization algorithm for finding the local

minimum of the given loss function J containing parameters to be adjusted as shown in

Figure 3.4. Two steps are performed by iteration: firstly, compute the derivative of the

loss function for the starting point, namely gradient. Then, take the next step in the

opposite to the calculated gradient from last point. A tuning parameter η called learning

rate is applied in the optimization process to decide the length of each updating step.

Figure 3.4: Gradient descent calculation for updating model parameters

Compared with the gradient descent method which uses all or batch data samples

to perform an update iteration, Stochastic Gradient Descent(SGD)[66] only randomly

selects one data each time to calculate the gradient and update the gradient. This has the

advantage of being fast to update the parameters and can be used for online streaming.

The new data at each time step can be directly input to the algorithm for gradient update.

A schematic diagram of the error back propagation method is shown in Figure 3.5.

Meanwhile, the most commonly used loss function is mean squared error (MSE) for

regression as Equation 3.7.
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E =
1

2

∑
k

(tk − yk)
2

(3.7)

It is an evaluation function to solve the optimization problem by the gradient descent

method. In this way, weights and thresholds are modified repeatedly to minimize the

error function, as the same as the loss function above.

The backpropagation algorithm calculates that the error term of a neuron at layer l,

which is the sum of the weight of the error terms of all neurons at layer l + 1 connected

to this neuron. Then, multiply by the gradient of the neuron’s activation function as

Equation 3.8.

Figure 3.5: Backpropagation algorithm flow

δoutk =
∂E

∂zk
=

∂E

∂yk

∂yk
∂zk

= f ′
k(zk)

∂E

∂yk
= f ′

k(zk)(yk − tk)

(3.8)

The gradients of loss with respect to the hidden layer nodes δhiddenj and the front layer

δhiddeni can be derived by:

δhiddenj = f ′
j(zj)

∑
k

δoutk wjk (3.9)

δhiddeni = f ′
i(zi)

∑
j

δhiddenj wji (3.10)

The gradients for weights can be obtained from the following equations.

∂E

∂wkj

=δoutk yj (3.11)

∂E

∂wji

=δhiddenj yi (3.12)

47



Therefore, the training process of feedforward neural network using error backprop-

agation algorithm can be summarized as the following three steps:

(1) Feedforward calculation of the net input z(l) and activation values a(l) of each

layer until the last layer, as Equation 3.2 above;

(2) The error term δ(l) of each layer is calculated by back propagation as follows.

δ(l) = f ′
l(z

(l))⊙ (W (l+1))⊤δ(l+1) (3.13)

(3) Calculate the partial derivatives of parameters of each layer and update the pa-

rameters, including weights and biases at each layer.

3.3 Proposed Multi-layer NN-based MIMO Temperature

Control System

This section describes the composition and control principle of the proposed reference-

model-based NN control method in the multi-input multi-output (MIMO) temperature

control system. In this thesis, the MIMO system is simplified into a two-input two-output

(2I2O) model as introduced in previous chapter. The block diagram of the proposed con-

trol system is given in Figure 3.6 and the details are described in the subsequent sections.

Figure 3.6: Block diagram of the proposed Multi-layer NN-based control system
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As shown above, the NN-based MIMO temperature control system is mainly com-

posed of the 2I2O controlled object Gp, two I-PD controllers C1 and C2 in each closed

loop, and two customized neural network controllers CNN1 and CNN2 for adjusting each

control input, where uN1 and uN2 are controller outputs, respectively. In particular, r in-

dicates the input reference signal and y1 and y2 are the actual responses of two channels

in the system, respectively. The inputs to each NN controller consist of the reference

input and the actual output of each heating point/channel. Each control input of coupling

channels is the sum of the output of feedback controller and the output of NN controller

(v1 and uN1, v2 and uN2), respectively.

In order to eliminate the effects of time-delay, coupling interference between differ-

ent heating channels and improve the response performance of all channels, a reference

model Rm is specifically pre-designed for providing the reference output to each chan-

nel response. To make full use of the self-adapting learning and adjustment abilities

of neural network controller, the reference model Rm is established with the maximum

time-delay among the heating channels, each channel output can follow the reference

model output by training the NN to minimize the error between the ideal output and the

actual output, respectively.

The NN controller learns the control law by processing real-time input and output

data, then adjusting the control signals to each controlled channel. Through the NN

controller self-learning, each controlled channel can completely track the output of the

designed reference model, so as to achieve decoupling results effectively and improve

the dynamic response performance.

Figure 3.7: Proposed RM-based FEL control system

Such a two-degree-of-freedom control system can be simplified as Figure 3.7, it can

be viewed as a variant of feedback error learning (FEL) control [67]. Each signal is
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defined as follows:
y = Gp(s)u, u = ufb + uff ,

ufb = Cfb(s)e, uff = Cθ(s)r,

er = yr − y, yr = Rm(s)r.

(3.14)

In this reference-model-based feedback error learning control scheme, the controlled

object can be stabilized by the designed feedback controller firstly. Then the feedfor-

ward controller tunes the control input by online feedback error learning. Here, the NN

controller learns the adjustable parameters θ to reduce the error between the reference

signal r and plant output y to be zero, i. e., er(t)→ 0 and e(t)→ 0 (t→∞). Therefore,

the feedforward control signal uff needs to satisfy the following equation:

y = Gp(s)u = Rm(s)r

uff =
Rm(s)

Gp(s)
r

(3.15)

However, the accurate parameters of the transfer function Gp(s) can not be obtained

in most cases, the exact feedforward controller is hard to design. Therefore, an ad-

justable feedforward controller is essential in the FEL control system. In many studies,

it is proved that the output error can converge to zero for any given reference signal un-

der a certain strictly positive real condition[68, 69]. The following sections detail the

implementation of the proposed control system.

3.3.1 Multi-layer fully connected network

In our proposed control system, a fully-connected neural network controller with a

2-10-10-1 architecture for each channel control is as shown in Figure 3.8. Each neural

network controller input NNin consists of a reference input signal SV , the actual system

output PV , and involved weight W and bias θ parameters are adjustable parameters

during training each NN controller.

W1 =


W1,1 W1,2

...
...

W10,1 W10,2

 ,W2 =


W1,1 · · · W1,10

...
. . .

...

W10,1 · · · W10,10

 ,W3 =


W1

...

W10

 (3.16)

θ1 =


θ1,1

...

θ1,10

 , θ2 =


θ2,1

...

θ2,10

 (3.17)

The number of the layers and neurons in each layer of the network are hyper-parameters,
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Figure 3.8: The multi-layer neural network with a specific structure

Figure 3.9: Forward propagation of a multi-layer neural network

which are usually obtained by manually adjusting parameters based on experience. Too

large model will slow down the inference speed and lead to over-fitting problem, while

too small network will lead to under-fitting problem. Although there is still not enough

theoretical guidance to determine the optimal settings of the network model, some tips

will take effect like: in most cases, one or two layers has quite enough information pro-

cessing ability and add the number of layers tends to obtain a higher performance than

adding more neurons in one layer. The optimal number of hidden layer neurons should

be obtained by continually experimenting and comparing. It is recommended to start

with a small number such as one to five layers, and reduce the number of layers and neu-

rons if the network is over-fitting. In addition, dropout, regularization and other methods

to reduce over-fitting can also be considered in practice.

Forward propagation calculation The forward propagation calculation of the multi-

layer neural network is as Figure 3.9, where the parameter variables are described as

Equations 3.16 and 3.17. The forward calculation of neural network propagating infor-

mation by iterating the following formula.
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Y1 = σ1(W1 ∗NNin + θ1)

Y2 = σ2(W2 ∗ Y1 + θ2)

NNout = W2 ∗ Y2

(3.18)

Adjust parameters by BP algorithm The error term δ of each layer is calculated and

update weight W and bias θ parameters by BP algorithm as introduced above. Here,

involved weight parameters W3, W2 and W1 are adjusted as the following equations.

δ3 = −(RMout − PV )

W3 = W3 − α ∗ δ3 ∗ Y2

(3.19)

δ2 = ∇Y2 ∗W3 ∗ δ3
W2 = W2 − α ∗ δ2 ∗ Y1

(3.20)

δ1 = ∇Y1 ∗W2 ∗ δ2
W2 = W1 − α ∗ δ1 ∗NNin

(3.21)

Similarly, the biases θ2 and θ1 of each hidden layer are adjusted as Equation 3.22,

where the learning rate α and β decide the learning step of adjusting the weight and

bias values based on the gradient descent method during training the neural network

controller. The least squares cost function calculates the total squared error between the

target output (reference model output RMout) and actual output (temperature output of

each channel) to find a best set of parameters W and θ which can minimize the error.

θ2 = θ2 − β ∗ δ2
θ1 = θ1 − β ∗ δ1

(3.22)

It’s also important to note that there is no way to ensure that the network to converge

certainly. There are many factors will affect the results, such as the initial parameters,

the optimization algorithm, the learning rate, etc. Considering these facts, there are some

techniques that help our network to converge easier and faster, for instance, the stochastic

gradient descent learning is easier to converge than batch learning and can realize online

learning.

3.3.2 Reference model design

For the flexible control, the output of the system does not directly track the given

input, but tracks the output trajectory of the pre-designed reference model response. This

adaptive control system will adjust parameters according to the working state of the ideal
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model. Commonly, the reference model is designed based on the characteristics of the

controlled object, which makes the model more referential and improves the performance

of the system.

Therefore, the design of the reference model (RM) used in our MIMO control system

is as Equation 3.23, which takes the same transfer function form (FOPDT).

Rm(s) =
1

T · PRM · s+ 1
∗ 1

( τs
2
+ 1)2

. (3.23)

Where the time constant T is the minimum value between the identified diagonal terms

P11 and P22, and the dead time τ is the maximum value between them. The identified

models of different heating channels/points mainly provide the design format for the

reference model. It has desired response speed by multiplying a constant gain PRM (<1)

to time constant, and ensures the heating channel model with smaller time delay can be

consistent with the slow model that refers to the channel with largest time delay in the

total heating channels of the controlled object.

Based on the identified system models P11 and P22, the transfer function of the ref-

erence model Rm is as Equation 3.24. Here, the introduced factor is 0.01. The step

responses of our defined reference models with and without the gain PRM are compared

with the responses of system models P11 and P22 as Figure 3.10 below.

Rm(s) =
1

2482.4 ∗ 0.01s+ 1
∗ 1

(464s
2

+ 1)2
(3.24)

The characteristics of the step response for the reference model can be derived by

the syntax “stepinfo” in MATLAB, including the rise time, settling time and overshoot,

etc[70]. By default, the rise time refers to the time it takes for the output of the dynamic

system rises from 10% to the 90% of the final target value at the first time. The settling

time is the time of the system takes from the initial value to the final steady-state value

within 2% or 5% error. The overshoot is the percentage amount of the response in which

the peak of the fluctuation exceeds the stable value.

In Table 3.2, the open-loop step response characteristics of the designed reference

model with the model without additional gain PRM are compared. As the figure shows,

the pre-defined model based on the controlled object characteristics has ideal transient

and steady-state response performances for the step input by adding the gain to the time

constant of which is smaller than 1, it will be used to train our neural network in the

following sections.
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Figure 3.10: Comparison of step responses of designed reference model

Table 3.2: Step response characteristics for the designed reference model

Dynamic System Rise Time [s] Settling Time [s] Overshoot [%]

With gain PRM 781 1378 0

Without gain PRM 5,530 10,198 0

3.4 Experiment

From the transfer functions of the identified system models P11 and P22, the unknown

parameters of each feedback controller (C1 and C2) are determined by the Ziegler–Nichols

rules given above. The results of involved parameters in C1 are Kp1 = 2.5146, Ti1 =

861.5 and Td1 = 215.375, respectively. The results of involved parameters in C2 are Kp2

= 2.7968, Ti2 = 927.98 and Td2 = 231.995, respectively.

The backpropagation training uses stochastic gradient decent to update parameters

for each layer in the neural network controller and initialize the training hyperparameters

with α = 1×10−10 and β = 1×10−5. These values are usually chosen by trial and error

to observe the convergence of loss for better model performance. The ReLU (rectified

linear unit) is used for improving the training speed and avoiding gradient vanishing

problem as the increasing number of layers in the deep networks. Its derivation is easy

to be obtained when computing the error gradient by back propagation.
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The simulation process consists of two stages to verify the performance of the de-

signed control system for reference signal tracking and the variation of temperature devi-

ation. The first stage is training the neural network controller until minimizing the track-

ing error to find a set of model parameters. Ensure enough time for the training process,

the reference signal 100◦C is provided and the length of time is 15,000. The sampling

time is 0.5s. At this stage, the temperature of each channel is controlled from the initial

temperature to the reference 100◦C. After the system response reaches the steady-state

value, an amplitude with value ±5 is added to the reference input periodically.

Therefore, at the second stage, the controlled temperature output goes up (100◦C

→ 105◦C) and down (105◦C → 100◦C) in a regular cycle, the full tracking time of

one cycle is 10,000s containing temperature up and down stages, respectively. For better

observation of the response performance of tracking changed reference signals, the offset

value is 100◦C, and then verify the effectiveness of the trained NN controller in our

coupling, time-delay temperature control system by computing the characteristics of the

controlled system.

3.4.1 Simulation results

Follow the simulation settings, Figure 3.11 illustrates the results of temperature re-

sponse for changed target inputs from 100 ◦C to 105 ◦C and from 105 ◦C to 100 ◦C,

respectively. And these results based on the proposed control method are quantitatively

compared with the control performance of the conventional I-PD control method as dis-

cussed above, which is divided into two control modes with feedforward gain Kf equals

to 0 (slow) and 1 (fast), respectively.

For the target value tracking in both rising and falling directions, the proposed NN-

based control system ensures each channel output can follow the reference model out-

put after training each NN model effectively and quickly as the curves shown in Fig-

ure 3.11(b). In the multiple cycles for the changed reference tracking, the first complete

rise and fall temperature response are nearly identical with the last cycle. It indicates

that each neural network controller quickly completes the parameter adjustment in the

training stage, and the well-trained NN model effectively learns the control law, so that it

can control each channel to track the ideal reference model output rapidly. The response

characteristics describing the temperature rise tracking performance of each channel are

computed and listed in Table 3.3, which are compared with the I-PD (fast mode) and

I-PD (slow mode) control responses.

For each channel temperature output, the rise time it takes for the proposed NN-

based control is 753s and 788s, respectively, compared with the I-PD (Kf=0) control
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Table 3.3: Comparison of simulation results for time response (100 ◦C to 105 ◦C).

Characteristics Ref CH1 (Kf=1) CH2 (Kf=1) CH1 (Kf=0) CH2 (Kf=0)

Rise Time [s] 781(100%) 459(58.8%) 482(57.9%) 931(119%) 990(126.8%)

Settling Time [s] 1378(100%) 3663(265.8%) 3554(257.9%) 3634(263.7%) 3144(228.2%)

Overshoot [%] 0 48.6 47.5 10.1 8.0

Characteristics Ref CH1 (NN) CH2 (NN)

Rise Time [s] 781(100%) 753(96.4%) 788(100.1%) - -

Settling Time [s] 1378(100%) 2122(153%) 2178(158.1%) - -

Overshoot [%] 0 0 0 - -

that takes 931s and 990s, respectively. More than 20% of the time is shorten for each

channel response, respectively. Although the time takes in I-PD (Kf=1) is 459s (CH1)

and 482s (CH2), respectively, which is smaller than the NN-based control, there are

also obvious overshoots of 48.6% (CH1) and 47.5% (CH2) over the final steady-state

value, respectively. Compared with the rise time of the ref-model output, the rise time of

NN-based system outputs,

The settling time (2%) it takes for the proposed NN-based control is 2,122s (CH1)

and 2,178s (CH2), respectively, which is only 57.9% and 61.7% of the results compared

with I-PD (Kf=1) control taking 3,663s (CH1) and 3,554s (CH2), respectively. The

similar results can be obtained when comparing the settling time between NN-based and

I-PD (Kf=0), which is only 58.4% of the time for the CH1 response and 69.3% for the

CH2 response. The overshoots of each output in I-PD (Kf=0) are about 10% (CH1)

and 8% (CH2) of the steady-state value based on the offset, respectively. These results

indicate that the proposed NN-based multi-point control method cannot only improve the

transient response speed but also almost has no overshoot during the reference tracking

from the initial value to the steady-state value in the rising direction.

In the temperature falling direction, the response characteristic indictors of each

channel control output are computed and listed in Table 3.4, which are also compared

with the I-PD (Kf=0) and I-PD (Kf=0) control responses.

Compare the results of each channel response output, the rise time it takes for the pro-

posed NN-based control is 2141s and 2065s, respectively, which is only 58% (CH1) and

65.8% (CH2) of the corresponding heating channel output of I-PD (Kf=0), respectively.

Although the I-PD (Kf=1) control response takes shorter rise time, there are significant

overshoots in both heating channels, which are over 45% of the final steady-state value

based on the offset, respectively. The settling time it takes for the proposed NN-based

control, which is 2,141s (CH1) and 2,065s (CH2), respectively, it reduces about 41.6%
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(a) Full cycles of time response for the control system.

(b) One complete cycle of the reference tracking.

Figure 3.11: Comparison of simulation results for reference tracking performances. (a)
Time response of the whole control cycles. (b) Temperature output response in the rising
direction (100 ◦C → 105 ◦C) and falling direction (105 ◦C → 100 ◦C), respectively.

and 41.9% by comparing with I-PD (Kf=1) control taking 3,669s (CH1) and 3,552s

(CH2), respectively. The similar results can be obtained when comparing the settling

time between NN-based and I-PD (Kf = 0), which is shorten by about 42% and 34.2%

for each channel response output. And the overshoots of each output in I-PD (Kf=0)
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Table 3.4: Comparison of simulation results for time response (105 ◦C to 100 ◦C).

Characteristics Ref CH1 (Kf=1) CH2 (Kf=1) CH1 (Kf=0) CH2 (Kf=0)

Rise Time [s] 781(100%) 459(58.8%) 482(61.7%) 931(119.2%) 990(126.8%)

Settling Time [s] 1378(100%) 3669(266.3%) 3552(257.8%) 3689(267.7%) 3136(227.6%)

Overshoot [%] 0 48.6 47.5 10.1 7.9

Characteristics Ref CH1 (NN) CH2 (NN)

Rise Time [s] 781(100%) 767(98.2%) 772(98.8%) - -

Settling Time [s] 1378(100%) 2141(155.3%) 2065(149.9%) - -

Overshoot [%] 0 0 0 - -

are about 10.1% (CH1) and 7.9% (CH2) of the steady-state value based on the offset,

respectively. From the above results, the proposed control method cannot only improve

the transient response speed but also almost has no overshoot during the reference track-

ing from the initial value to the steady-state value in both rising and falling directions of

the temperature changing curves.

For verifying different reference signal tracking performances, as shown in Fig-

ure 3.12 and 3.13, the proposed NN-based controller regulates the controlled MIMO

system output by tracking the same reference output to overcome the coupling effects,

short the dynamic response time and achieve better transient and steady performances.

Figure 3.12: Compare the tracking responses of different reference signals(from 100◦C)
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Figure 3.13: Compare the tracking responses of different reference signals(from 80◦C)

Temperature difference

The following figures illustrate the temperature difference during the reference track-

ing in both rising and falling directions.

Compute the peak values which represent the maximum difference between channel

temperature outputs, the results are 0.23◦C (4.6% of |yfinal − yinitial|) of the NN-based

control, 0.35◦C (7% of |yfinal − yinitial|) of the I-PD (Kf = 1) control, and 0.31◦C (6.2%

of |yfinal − yinitial|) of the I-PD (Kf = 0) control, respectively. The NN-based control

reduced by 2.4% and 1.6% of the maximum differences in temperature, compared to

the I-PD controller with the feedforward gain Kf equals to 1 and 0 in the feedforward

loop, respectively. The time it takes for the fluctuation of temperature difference from

the peak values to the steady-state value also reflects the control system performance for

the changed input signals. The NN-based control system takes about 2,400s to control

the difference in temperature to zero, I-PD (Kf = 1) takes 5,300s and I-PD (Kf = 0)

takes 5,800s at the same condition, respectively. By comparison, the NN-based control

shortens the time by over 50% of that in the other two control modes.

Mutual coupling interference rejection

To analyze the mutual coupling interference between heating channels and how to be

rejected in different control systems, plot the reference tracking response curve of both
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(a) Temperature difference changing curves(100 ◦C→105 ◦C).

(b) Temperature difference changing curves(105 ◦C→100 ◦C).

Figure 3.14: Simulation results comparison for temperature differences between CH1
and CH2. (a) Rising period. (b) Falling period.

I-PD control systems with coupling terms (P12 and P21) and without, respectively.

Figure 3.15(a) is comparison result of output time responses with and without cou-

pling terms, Figure 3.15(b) is the curve of absolute difference between the outputs of

coupling channels. To compare the results of tracking the target input 100◦C at the same

conditions as Figure 3.15(a), the systems with coupling has overshoots about 11.2%

(CH1) and 8.4% (CH2) of the reference in each channel output, respectively. The system

without couplings has overshoots about 9.4% (CH1) and 7.8% (CH2) of the reference

in each channel output, respectively. Because of the existence of the interference be-

tween different channels, the response performance of each channel output is obviously

changed.

Furthermore, compare the absolute values of the temperature difference between two

channels in control systems with coupling terms as Figure 3.15(b). It’s obvious that there

are obvious tracking differences in both channel outputs of the I-PD control systems with

coupling terms. On the contrary, the proposed NN-based decreased the maximum values

to 11.4◦C (CH1) and 16.6◦C (CH2), respectively. The simulation results indicate that the

proposed method can effectively reduce the mutual coupling inference without designing

additional decoupling links.
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(a) Time response comparison.

(b) Absolute temperature difference.

Figure 3.15: Mutual coupling interference in the control system.

Comparison of disturbance rejection performance

For testing the disturbance rejection performance in the rising and falling directions,

similarly, a reference input of 100◦C is set at first. After the control system output

is controlled to stay the steady-state value in 10,000s, then the target value is set as

105◦C lasting for 10,000s. In this stage, add a pulse disturbance signal with an amplitude

of -20 and pulse width of 100s to the control system in 5,000s after the output keeps

at the steady-state value of 105. In the negative direction for the temperature output

changes from 105 to 100 which lasts for 10,000s, a same pulse disturbance signal with

an amplitude of 20 is added in 5,000s after the output keeps at the steady-state value of

100. The system output goes up to 105 from the initial value and then down to 100 in

one cycle for 20,000s.

To verify the disturbance rejection performance of the NN-based control systems,

plot the reference tracking curves under the same simulation conditions as Figure 3.16(a).
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The dynamic characteristics of the NN-based MIMO control systems are calculated in

the Table 3.5 and Table 3.6 in both directions, respectively, where the I-PD control re-

sults are as a baseline for comparison. By comparing the temperature drop and overshoot

after applying the disturbance signal, the NN-based control system shows the better per-

formance in suppressing the disturbance.

Table 3.5: Disturbance rejection performance for 100◦C-105◦C

Characteristics Ch1(IPD) Ch2(IPD) Ch1(NN) Ch2(NN)

Settling Time Ts [s] 4235(100%) 4144(100%) 2788(65.8%) 2715(65.5%)
Overshoot [◦C] 1.6(100%) 1.5(100%) 1.3(81.2%) 1.2(80%)
Drop [◦C] 2.1(100%) 2.2(100%) 1.9(90.4%) 1.8(81.8%)

Table 3.6: Disturbance rejection performance for 105◦C-100◦C

Characteristics Ch1(IPD) Ch2(IPD) Ch1(NN) Ch2(NN)

Settling Time Ts [s] 4221(100%) 4156(100%) 2795(66.2%) 2788(67.1%)
Overshoot [◦C] 2.2(100%) 1.9(100%) 2.0(90.9%) 1.8(94.7%)
Drop [◦C] 1.6(100%) 1.5(100%) 1.3(81.3%) 1.2(80%)

3.4.2 Experimental results: reference tracking

In the simulation experiment, there is no power devices and drive circuits such as the

SSR(Solid state relay). In practice, however, the semiconductor manufacturing equip-

ment is affected by such delays, nonlinearity and noise, so the actual experiments are

carried out simultaneously. To validate the validity and reliability of the designed con-

trol systems, perform the experiments on the implemented experimental platform as in-

troduced in the previous chapter. The detailed experimental conditions are given below.

The ambient temperature was 28◦C and the sampling time is 0.1s. Similar to the sim-

ulation settings, the reference input is set to 100◦C in 10,000s, and the NN controllers

finish the model parameter training in this length of time. In each sampling time, the

training data for the NN controller include the input signal contains the reference r and

the actual channel outputs (y1 and y1), the teaching signals contain the error values (er1
and er2) between the actual outputs and the reference model output, and the real-time

control outputs (y1 and y2), respectively. Then an amplitude of ±5◦C input signal is

added in one cycle, the channel outputs follow the given reference changing which con-

tains the rising stage of 8,000s and the falling stage of 8,000s. It means that after the

output temperature reaches the offset value 100◦C, both channel outputs are controlled
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(a) Temperature output in one cycle

(b) Local enlarged image of disturbance response

Figure 3.16: Disturbance response of NN-based MIMO control system in time domain

varied within the ranges of [100, 105] and [105, 100] periodically. The ascent and de-

scent phases are viewed as the testing phases of the control system. For verifying the

effectiveness and learning efficiency of the NN controller, compare the measured ascent

and descent temperature outputs with the experimental results for the conventional I-PD

control systems in the same conditions.

Figure 3.17(a) illustrates the reference tracking results for changed input signals in
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(a) Full cycles of time response for the control system.

(b) One complete cycle of the reference tracking.

Figure 3.17: Comparison of experimental results for reference tracking performances.
(a) Time response of the whole control cycles. (b) Temperature output response in the
rising direction (100 ◦C → 105 ◦C) and falling direction (105 ◦C → 100 ◦C), respectively.

multiple cycles, and (b) shows enlarged comparison results for both channel outputs in
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ascent and descent direction. In both directions of the output temperature changes, the I-

PD control with the feedforward gain 1 response rapidly, but is along with obvious large

overshoots. The I-PD control with the feedforward gain 0 gives flat response, which

is slower than the NN-based control without the overshoot. The proposed NN-based

control system follows the reference model response rapidly and stably as desired.

The measured time series data of each channel output are preprocessed to suppress

the noise by a second-order Butterworth digital low-pass filter, which has a cut-off fre-

quency of 0.05 Hz. The sampling rate of the filter is 10Hz. In MATLAB, the final

steady-state values are set as 105 and 100 for the corresponding stages manually to com-

pute the response characteristic values, respectively, for processing the data with noise

that cannot reflect the true final value. Define the threshold percentage of the settling time

is 5%, which represents the system response converges to the steady-state value within

the acceptable error percentage. To compare the rise time, settling time and overshoots

of different control systems in the response [yinitial, yfinal], where the initial offset is 100

in the rising direction which corresponds to yfinal=105, and 105 in the falling direction

which corresponds to yfinal=100, respectively.

To better view and compare the tracking performances between the proposed NN-

based control system and the traditional control systems, the corresponding evaluation

indexes of dynamic characteristics are computed as listed in Table 3.7.

Table 3.7: Comparison of results for reference tracking in rising direction.

Characteristics Ref CH1 (Kf=1) CH2 (Kf=1) CH1 (Kf=0) CH2 (Kf=0)

Rise Time [s] 781(100%) 535(68.5%s) 558(71.4%) 947(121.3%) 973(124.6%)

Settling Time [s] 1378(100%) 3824(277.5%) 3719(269.9%) 3414(247.8%) 3218(233.5%)

Overshoot [%] 0 2.01(40.1%) 1.92(38.4%) 0.69(13.9%) 0.53(10.5%)

Characteristics Ref CH1 (NN) CH2 (NN)

Rise Time [s] 781(100%) 812(104%) 821(105.1%) - -

Settling Time [s] 1378(100%) 2217(161.8%) 2205(160%) - -

Overshoot [%] 0 0.06(1.3%) 0.08(1.7%) - -

Compare to the reference model output, the numerical experiment results show that

the controlled coupling channel outputs follow the same model output as much as possi-

ble, which bring quicker and smooth tracking curve than the traditional control, though

there are still errors between them. Form the comparison results between the NN-based

control and the traditional control, the improved percentage values in the rise time for the

proposed NN-based control are 14.6% and 18.3% and in the settling time reach 38.6%

and 37%, respectively, when compare with I-PD with gain Kf=0. And compare with

65



the I-PD control with gain Kf=1, the NN-based control has an improvement of over

40% in settling time and the overshoot is reduced to 0.06(1.3%) and 0.08(1.7%), respec-

tively. The overshoots of the traditional control systems in fast control mode are about

40.1 and 38.4, in the slow control mode are 13.9 and 10.5 of the reference response

(|yfinal − yinit|) expressed as a percentage, respectively. From the ascent response char-

acteristics, the NN-based control system provides better response characteristics not only

in the rise time and settling time, but also the overshoots are reduced obviously.

Table 3.8: Comparison results for reference tracking in falling direction.

Characteristics Ref CH1 (Kf=1) CH2 (Kf=1) CH1 (Kf=0) CH2 (Kf=0)

Rise Time [s] 781(100%) 519(66.5%) 536(103.3%) 1027(131.5%) 1093(139.9%)

Settling Time [s] 1378(100%) 3863(280.3%) 3870(280.8%) 3493(253.5%) 3325(241.3%)

Overshoot [%] 0 2.14(42.7%) 2.07(41.4%) 0.62(12.3 %) 0.48(9.7%)

Characteristics Ref CH1 (NN) CH2 (NN)

Rise Time [s] 781(100%) 877(112.3%) 894(114.5%) - -

Settling Time [s] 1378(100%) 2146(155.7%) 2093(152.9%) - -

Overshoot [%] 0 0.11(2.1%) 0.12(2.4%) - -

Similarly, the numerical experiment results for the falling direction are compared be-

tween the NN-based control and I-PD control in percentage and given in Table 3.8. The

NN-based control system provides better response characteristics not only in the rise time

and settling time are shortened, but also the overshoot occurs in the reference tracking

are decreased to 2.1% and 2.4% of the reference response, respectively. Obviously, the

reference tracking of both channels in the proposed system has faster speed and smaller

vibration compared to the results with the traditional methods. Compare to the reference

model output, the numerical experiment results show that the coupling channel outputs

follow the same model output as much as possible, which bring quicker and smooth

tracking curve than the traditional control, though there are still errors between them.

3.4.3 Experimental results: temperature difference

Figure 3.18(a) and (b) respectively show the temperature difference variation curves

of each channel output (between Ch1 and Ch2) during the reference tracking, including

the increasing and decreasing stages.

In the rising direction of temperature output, compute the response values of the

temperature variations in the proposed control system and in the traditional control sys-

tems with fast and slow response modes, respectively. The absolute peak value of the
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(a) Temperature difference changing curves in the rising stage.

(b) Temperature difference changing curves in the falling stage.

Figure 3.18: Temperature difference in the reference tracking stages.

temperature difference is 0.15◦C(3% of the reference) in the NN-based control system,

0.39◦C(7.8%) in the I-PD (fast mode) control and 0.43◦C(8.6%) in the I-PD (slow mode)

control system, respectively. The corresponding time when the difference decreases to

the steady-state value zero is calculated, and the results are 2,300s (NN-based), 3,900s (I-

PD fast mode) and 3,600s (I-PD slow mode), respectively. By comparison of the shorten

percentage in the time, the NN-based control reaches 41 and 36 percentage reduction

based on the time two modes of I-PD control takes, respectively. Similar to tracking the

reference in the rising direction, the peak value of the absolute temperature difference in

the falling direction is 0.14◦C (2.8% of the reference) in the NN-based control system,

0.24◦C (4.8%) in the I-PD (fast mode) control and 0.25◦C (5%) in the I-PD (slow mode)

control system, respectively. The corresponding time when the difference decreases to

the steady-state value zero is 3,300s (NN-based), 4,400s (I-PD fast mode) and 4,100s (I-

PD slow mode), respectively. The accuracy values during the changed reference tracking

stages are within about ±0.1◦C.

From the experimental results in response characteristics and temperature difference

variation, the proposed method makes the controlled channel outputs follow the refer-

ence model output to obtaining quick and stable response results, and the temperature
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differences can be rapidly reduced to zero for achieving the surface temperature unifor-

mity. The proposed NN-based multi-channel temperature control method can eliminate

the mutual interference and improve the tracking performance of the temperature control

system by comparing the experimental results of transient response and steady response

characteristics.

3.4.4 Application and verification to various plants

As introduced above, time delays exist in different engineering systems. If a process

system with time delay L and the inertial time constant T , the ratio of L/T can indicate

the difficulty in controlling the system with time delay. Because of the delay in the

system, the stability of the system will be reduced. The longer the delay, the more

unstable the system becomes. It is generally considered that the system is a large time-

delay system if the ratio of pure delay time to the system time constant is larger than

0.5. Here, in order to verify whether the proposed control strategy based on neural

network can adapt to the changes of object parameters, the following controlled objects

with different ratios of L/T in Table3.9 are test by the same control situation. The

default controlled plant ① in Table3.9 is the SISO aluminum block introduced in the

previous section. The I-PD parameters corresponding to different controlled objects are

also computed. For different plants with delay time, the initial learning time of the NN

controller needs to consider the length of the delay time to ensure enough sample data

which can cover the open-loop system response characteristics for the input signal as

much as possible. For example, the plant with delay-time L=1198 in Table as below, the

settling time is about 11286s, the learning time of NN controller should be larger than it,

such as 12000s which containing 24000 training data when sampling time is 0.5s.

The simulation results of the same reference tracking (amplitude of 5 degree) are

shown in Figure3.19, where only the positive direction results are plotted and compared,

respectively. The corresponding dynamic response characteristics of the listed plants

are calculated and compared with the traditional I-PD method, as given in Table3.10

below. From the results for the plants with different ratios of L/T , the proposed NN-

based method can control the time-delay plants to track the reference model output, thus

shortening the transient response time and quickly reaching the steady-state.
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Table 3.9: Parameter setting of I-PD controller for plants with different L/T ratios

No L/T Parameters Kp Ti Td

① 0.2 K=2.9, T=2395, L=479 2.07 958 239.5

② 0.5 K=2.9, T=2395, L=1198 0.86 2395 598.8

③ 0.5 K=2.9, T=239, L=120 0.86 240 60

④ 0.8 K=2.9, T=2395, L=1912 0.54 3832 958

⑤ 0.8 K=2.9, T=239, L=192 0.52 384 96

⑥ 2.0 K=2.9, T=239, L=478 0.21 956 239

(a) Reference tracking results of plant ①.

(b) Reference tracking results of plant ②.

(c) Reference tracking results of plant ③.
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(d) Reference tracking results of plant ④.

(e) Reference tracking results of plant ⑤.

(f) Reference tracking results of plant ⑥.

Figure 3.19: Reference tracking performances of varying plant parameters.
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Table 3.10: Reference tracking characteristics of plants with different L/T ratios

I-PD ① ② ③ ④ ⑤ ⑥

Rise Time [s] 1204(100%) 3952(100%) 393(100%) 8349(100%) 837(100%) 4494(100%)

Settling Time [s] 3876(100%) 6770(100%) 675(100%) 15231(100%) 1529(100%) NaN

Overshoot[%] 8.4(100%) 1.5(100%) 1.5(100%) 0.4(100%) 0.1(100%) 0

NN ① ② ③ ④ ⑤ ⑥

Rise Time [s] 652(54.2%) 2164(54.7%) 147(37.4%) 3594(43%) 350(41.8%) 655(100%)

Settling Time [s] 2590(66.8%) 3785(55.9%) 579(85.7%) 6471(42.5%) 667(43.6%) 2329

Overshoot[%] 1.2(14.2%) 0.32(21.3%) 1.8(120%) 0.7(175%) 0.1(100%) 0

3.5 Conclusion

In this chapter, to realize the uniformly distributed temperature on the coupling chan-

nels of the controlled object, a multi-layer neural network controller-based multi-channel

temperature control system is designed, which controls the system output to follow the

desired output response by introducing a pre-designed reference model. To train the NN

controller by minimizing the error between the provided ideal output and the actual out-

put of each channel, the NN controller of each channel can quickly get the optimal result

to control each channel output to be consistent with the ideal output.

By quantitative comparison of the simulation and experimental results in both tem-

perature rising and falling directions, it was found that the proposed NN-based control

method can effectively improve the transient response and steady-state response, such as

the settling time of each channel was reduced by over 40% compared to the conventional

method and the overshoot of each channel was decreased below 2% of the reference in

the changed temperature tracking response. And for temperature differences caused by

the mutual interference, the NN-based control reduced the differences between chan-

nel outputs quickly and smoothly, the time spent is reduced by 41 and 36 percentage

compared to the fast mode and slow mode control in the I-PD control, respectively. Sim-

ulation and experimental analysis results show the NN controller in the proposed method

can rapidly adjust its control output to the corresponding channels without the need of

the controlled system modeling and the coupling channels can reach the uniformity out-

put without design complex coupling links. The proposed control method obtained good

tracking performance in the strong coupling, large time-delay multi-input multi-output

temperature control system.
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Chapter 4

Efficient Model Compression Method
for Temperature Control System

The success of neural networks is due in large part to the larger and larger network

architectures and more and more neurons. Although this allows neural networks to per-

form better in many tasks, it also puts more demands on computer hardware, includ-

ing more computing power and storage space. With the development of the Internet of

Things, the need for enterprises to deploy deep learning models on embedded devices

is also growing rapidly, but the computing power of embedded devices is limited, and

the deployed model is required as small as possible to save costs[71]. Consider our

NN-based temperature control system, even if the network model is not so big, it also

needs plenty of memory and hardware for doing lots of floating point operations and

thus affects the trained network to be further deployed in the embedded devices with

limited memory space and low computational power. On the other hand, many studies

have proved that there are lots of redundant connection in the network model, such an

over-parameterized model can be compressed into a much smaller size by various model

compression techniques[72, 73].

Model compression refers to that use the datasets to simplify the trained model, and

then obtain a lightweight and accurate network[74]. The compressed network has a

smaller structure and fewer parameters, which can effectively reduce the cost of com-

puting and storage, and is easier to be deployed in the resource constrained hardware

environment. Methods can be generally divided into two types: the first is to modify the

model structure to reduce the model storage size, which will lead to sparse weight ma-

trices and an irregular model structure.The second does not produce the irregular model

structure, but it reduces the number of parameters in the original models to reduce model

storage. Based on the two types, this chapter focuses on how to effectively reduce the

number of parameters in our NN-based temperature control model while guaranteeing
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the control performance. Details are introduced in the following sections.

4.1 Related Background

In common with many other machine learning models, deep neural network can be

divided into two stages: training and inferencing stages. In the training stage is to train

the connections in the model according to the data (for the neural network, it is mainly

the weight in the network). In the inferencing stage, the new data are fed into the trained

model and the results are calculated. A model is over-parameterized means that in the

training stage, a large number of parameters participate in the training of the neural

network, so as to capture the tiny information in the data. However, once the training

is completed, in the inferencing stage, many studies have demonstrated that the trained

network actually does not need so many parameters to achieve the same performance. In

other words, there are a large number of redundant connections in a trained network, and

sometimes only a very small portion (below 10%) of them are involved in the inferencing

stage, ensuring the trained model to achieve similar performance to the original network.

The final speed of the model is not only related to the amount of computation, but also

to factors such as memory bandwidth, optimization, CPU pipelining, Cache, and so on.

Commonly, the calculation complexity of neural network models can be roughly mea-

sured by floating-point operations(FLOPs) or multiply–accumulate operations (MACs)

(1MACs ≈ 2FLOPs). These operations which include addition, subtraction, multiplica-

tion, division, etc., are treated as a single FLOP for calculation purposes and computing

in NN focuses on matrix multiplication and dot products. For a fully connected layer

with the number of input units I and the output units O, the connecting weights W are

stored in a matrix of I × O. Therefore, the calculation amount is I × O MACs and

(2I − 1)×O FLOPs. For the nonlinear activation function ReLU (y = max(x, 0)) with

the number of output J , the calculation amount is J FLOPs which performs a signle

operation on the CPU. Too many layers and neurons will bring over billion multiply-add

calculations and keep the system busy.

Therefore, for those devices with limited memory and low computing power, and do

not support large model online computing, it is possible to compress and accelerate the

model to save parameter storage space and reduce the calculation time without losing the

model accuracy[75].
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4.1.1 Objectives of model compression

The objectives of model compression can be divided into two types: 1) Reduce run-

time memory/video memory consumption; 2) Reducing the memory consumption of the

model on disk (without reducing the runtime memory) makes the model smaller and eas-

ier to transfer between devices. The model with smaller storage has many advantages.

For example, small storage space enables many mobile machine translation applications

to use smaller offline download packages to improve user experience, reduce bandwidth

and improve parallelism. The experiments in this chapter mainly aim at the second pur-

pose, which is to compress the model storage space.

4.1.2 Methods of model compression

The method of compression and acceleration of a deep network can be divided into

four categories as:

(1) Quantization: It refers to that use a finite number of values to represent all connec-

tion parameters. For example, use the clustering method to represent similar connections

by a single value. Binary quantization is one of typical methods, which only using 1 and

0 to represent all parameters in the network. But it commonly needs to be realized under

specific hardware conditions[76].

(2) Knowledge distillation: It uses complex but high-performance networks to guide

training of small networks. If the small network can achieve similar performance to the

large network, it is equivalent to realize the network compression indirectly. However,

the selection of the small network structure is still an unsolved problem[77].

(3) Low-rank factorization: It reduces the size of the model by decomposing the large

matrix into small matrix, such as singular value decomposition (SVD) method, full-rank

decomposition method, etc[78].

(4) Network pruning: Its main idea is to reduce model size by reducing redundancy in

model parameter. Initially, pruning was used to improve the generalization performance

of neural networks. For a specific task, it is difficult to determine the number of hidden

layer neurons, so it is usually necessary to train a large network first, and then to improve

the generalization performance of the neural network by pruning to avoid over-fitting

caused by the large network. In some studies, experiment results show that the pruned

model can obtain higher model accuracy[79].

In recent years, network pruning methods have made great achievements in com-

puter vision tasks based on convolutional neural networks(CNN). Some research work

can even drastically reduce the number of the parameters in the model without losing
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the performance of the model. Compared with the previous three technologies for com-

pressing the networks, pruning is simple and effective, so it becomes one of the important

research directions of neural network compression.

4.1.3 Network pruning

Specifically, network pruning can be divided into:

(1) Structured pruning: It commonly directly removes unimportant neurons, channels

or filters in the networks. Therefore, the pruned model can achieve obvious inference

acceleration and storage advantages under existing hardware conditions. It is usually

along with a great accuracy loss of the compressed model.

(2) Unstructured Pruning: The basic unit of it is a single weight, which usually brings

smaller accuracy loss after pruning, but will eventually produce a sparse weight matrix,

which requires extra support from specific hardware and the computing library to achieve

inference acceleration and storage advantages. Weight pruning belongs to the unstruc-

tured pruning, which directly sets unimportant weight connections to 0, so it can reduce

the number of connection parameters to be stored in the network[80].

Actually, network pruning problem can be abstracted into an optimization problem,

that is, to minimize the number of remaining parameters in networks under the constraint

of performance loss, as shown in the following formula:

min ∥W∥0 , s.t.f(W) ≤ δ (4.1)

where W indicates the network weight parameters to be optimized. ∥·∥0 represents L0

norm which calculates the total number of nonzero elements in W matrices. f(·) is

the performance/accuracy loss of a pruned neural network. Obviously, because of the

existence of L0 norm, it is a combinatorial optimization and NP-hard problem[81].

4.1.4 Pruning algorithm

Commonly, pruning algorithms can be divided into one-shot pruning and iterative

pruning: The former first evaluates the importance of parameters like neurons or weights

in the well-trained model. After that, parameters below a threshold determined by the

target pruning/sparsity ratio are directly cut off, and then the pruned model is fine-tuned.

However, if the target sparsity ratio is high, this direct pruning way will seriously endan-

ger the model accuracy.

The latter is similar to the former, but the parameters are gradually pruned from a

low sparsity ratio toward the target sparsity by iterative optimization. The basic iterative
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pruning framework proposed by Han[82] as the following figure:

Figure 4.1: Flow chart of a typical iterative pruning process

It can be summarized as the following steps: First, delete unimportant weight pa-

rameters according to the absolute value of weight or other evaluation indicators, and

then retrain the sparse network to recover the model accuracy. The above two steps are

iterated throughout the process until the sparsity and accuracy loss of the target network

meet the requirements. Here, fine-tuning is just a retraining process of the network with

the retained parameters. A pruned model is generally accompanied by varying degrees

of accuracy loss, so it is necessary to take measures to recover it. The model obtained

in iterative pruning way tends to be more compact and smaller, but its training cost is

higher than that of one-shot method.

One problem needs to be solved in the process is how to evaluate the importance of

a connection. That is, how to effectively remove the model parameter and minimize the

loss of accuracy. One is based on the magnitude of parameter[83], and the other is based

on the loss function. Because the output of a feature input is weighted by multiplying

the input and weight parameters, the smaller the magnitude of the weight, the smaller the

contribution to the output. Therefore, pruning methods based on the magnitude of the

parameter is straightforward, such as calculate the L1/L2 norm of weights. Another is

based on the optimization objective of the network, Optimal Brain Damage (OBD)[84]

method is one of representative technologies proposed in the 1990s. It builds a local

model (Taylor series) of error function to predict how the disturbance of the parameter

vector affect the optimization objective function. It uses the second derivative of the loss
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function w.r.t the weight (Hessian matrix for weight vector) to measure the importance

of the weight in the network. Because this method requires calculating the Hessian

matrix or its approximation, it is time-consuming. Similar to the weight pruning, there

are also some classical pruning methods for neurons or channels. The first is also based

on the importance, to evaluate the effectiveness of a neuron, and then to make the model

structure itself sparse under some constrains for pruning operations[85, 86]. The second

is to measure the sensitivity of the neuron based on its influence on the optimization

objectives. The third is to use reconstruction error to guide pruning operation, which can

measure the effect of a neuron on the output of the network indirectly[87, 88].

In addition, the sparsity ratio of the network which is the proportion of zero value

parameters in the network can be divided into the pre-defined type which specifies the

target pruning rate manually and is required to decide the sparsity of each layer pa-

rameters ahead. Another is the automatic type which removes the network parameters

based on the global information of the layers and the final sparsity is not defined in the

beginning[80]. In order to reduce the accuracy loss of our pre-trained control model

as much as possible, the automatic selection type is adopted to remove the redundant

connections in our control model.

4.2 Pruning in NN-based temperature control model

In this section, the whole framework of the performed layer-wise pruning method

in the a pre-trained NN-based temperature control model is introduced. Inspired by

the linear reconstruction error-based filter pruning method used in convolutional neural

network, the optimization objective of our model pruning is modified to nonlinear re-

construction error and the pruning rate of the layer connections is decided according to

the effect of each connection on the global accuracy loss. This method helps effectively

remove the redundant weights or neurons of our NN-based temperature control models

layer by layer, and as far as possible to ensure the original control performance of the

models.

4.2.1 Layer-wise pruning algorithm

Previous researches have proved the validity of layer-wise pruning method[89]. In

the layer-wise pruning process, the objective function(loss function) of each layer for

optimization has an important influence on the performance of the layer pruning. If

the loss function calculates the error between the output of the pruned model that has

not been activated and the output of the unpruned model that has not been activated, it
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means that the linear reconstruction error (LRE) is taken as the optimization objective

in layer-wise pruning. On the opposite, calculate the error between the outputs that

has been activated, it represents nonlinear reconstruction error(NRE) as the optimization

objective.

For current popular network models, the widely used activation function is ReLU,

which outputs zeros for all negative inputs. Even though the absolute value of the dif-

ference between them are big, it will not affect the output of the activation function.

Furthermore, the output has no effect on the loss calculation. Therefore, calculate the

NRE after pruning each layer and take it as the optimization objective to retrain the net-

work will be reasonable and effective. Therefore, the NRE-based pruning is applied in

our experiments to solve the sparse optimization problem as Equation 4.2, where E(·)
represents the NRE loss function, δ is the number of parameters to be cut off.

min
W∈Rd

E(W ), s.t. ∥W∥0 ≤ δ (4.2)

To prune a multi-layer neural networks as Figure 4.2.1, the first three layers of the

network is separated from the original model, containing the weights W (l)
ji between input

and hidden, and weights W
(l+1)
kj between output and hidden. The number of neuron at

each layer is i, j and k, respectively. z and a are inactive input and activated output, re-

spectively. The output of the current three-layer network is yl+1. The layer-wise pruning

based on the NRE is performed on such a network to minimize the error between the

output yl+1 and the output ŷl+1 after pruning.

Figure 4.2: NRE-based layer-wise pruning

The importance of each neuron j in the hidden layer are determined by Equation 4.3,

where all the connections of the neuron j in hidden layer l to be removed are considered.
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The importance of each neuron k in the second hidden layer l + 1 is also calculated in

this way.

δ
(l)
j ≈

∑
j(W

(l)
ji ) ∗

∑
j(W

(l+1)
kj ) (4.3)

Commonly, a binary mask M (l) ∈ {0, 1}W l is used to prune weights at each layer

in the networks, which has the same size as the corresponding weight matrix. In the

neuron pruning, all of the incoming(a whole row) and outgoing(a whole column) weight

connections of one pruned neuron will be removed as Figure 4.2.1. Here, the increased

percentage of the model accuracy loss E is recorded after pruning each neuron in order

for setting the limit value of the number k of each layer neuron to be removed.

Figure 4.3: Prune the haidden layer neurons in the pre-trained NN model

For our pre-trained neural network model, define the weight matrix between each

layer as W(l), where l ∈ [xh, hh, ho] and xh: input-hidden, hh: hidden-hidden, ho:

hidden-output. The symbol W (l)
i,j represents the weight connection between the l − 1

layer with i neurons and l layer with j neurons. By performing M (l)⊙W (l), the param-

eters to be removed will be equal to zero and the remaining parameters are unchanged,

thus the masked weight matrices are updated as 4.4, where Ŵ (l) is th masked weight

values in layer l and ⊙ denotes the element-wise product operation. The threshold k

indicates how many neurons to be cut off can be obtained according to the calculated

accuracy loss E after removing each neuron in order. Specifically, rank the importance

values δ(l)j of the hidden neurons j in layer l at first, then the accuracy loss after pruning

each neuron in ascending order of importance is recorded. Within the limit value of the

accuracy loss, the maximum number k of the neurons in the current hidden layer can be

removed is computed. Then the incoming and outgoing weights of the less important k

neurons will be set as zero as Equation 4.4.

Ŵ (l) =

{
0, remove

W
(l)
i,j , retain

(4.4)
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4.2.2 Optimization process

The optimization objective of the current three-layer network work is equal to the

least square loss εl+1 after weights W (l) and W (l+1) are pruned can be written as Equa-

tion 4.5. It calculates the nonlinear reconstruction error of the output layer in the sep-

arated network as shown in Figure 4.4, where the left image is the current three-layer

network to be pruned. Here, ŷl+1 represents the output of pruned network model, yl+1 is

the and original model, and ∥·∥2 indicates the L2-norm calculation.

El+1 =
1

2
∥yl+1 − ŷl+1∥22 (4.5)

Figure 4.4: Neuron pruning in each separated three-layer network

From the formula, the optimization objective of the current three-layer network is

minimizing the loss El+1 and satisfying the constrain of pruning number k at the same

time, which means that a fixed number of weight parameters always need to be removed

during the optimization process. And consider the nonlinear activation function used in

the network, the optimization of the nonlinear reconstruction loss is NP-hard. Therefore,

the parameters to be removed/preserved are determined at first under the constrain and

then minimize the loss by the back propagation learning in each iteration loop. And this

process is repeated until the model reaches the convergence or the maximum number of

iterations.

During the feedforward propagation, after the pruning masks M (l−1) and M (l) are

firstly decided, the output of hidden layer a(l) and the output ŷl+1 of pruned network in the

current three-layer network are calculated as Equation 4.6 and 4.7, respectively, where

g(·) and f(·) are the activation function of hidden layer and output layer, respectively.

The used activation function in our NN model is ReLU as introduces above.

a(l) = g(W (l)(a(l−1) ⊙M (l−1))) (4.6)
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ŷl+1 = f(M (l) ⊙W (l+1) · a(l)) (4.7)

During the error back propagation learning, considering the masked weight, the stan-

dard weight adjustment formula based on gradient descent can be modified to the for-

mula 4.8, where η is learning rate. The weight W (l)
j,i is also updated in this way.

W
(l+1)
k,j := W

(l+1)
k,j + η

∂εl+1

∂(M
(l)
k,j ⊙W

(l+1)
k,j )

(4.8)

Specifically, for our pre-trained FNN model, the network with weight parameters

W xh and W hh is separated first, and then rank the importance scores of the hidden layer

neurons in descending order. According to the calculated accuracy loss after removing

the neurons in the order of importance, the maximum number k is determined within

a pre-set limit 2% of accuracy loss. By multiplying the mask matrices, those weight

parameters connected to the neurons will be removed, which are set as zero. Then in

one iteration loop, feedforward propagation and error back propagation are performed in

order.

(1) In the feedforward path, the output of the pruned network which is also the sec-

ond hidden output of the original model will be calculated by Equation 4.6 and 4.7.

According to the Equation 4.5, the NRE loss function of the network can be rewritten as

Equation 4.9.

εh =
1

2
∥yh − ŷh∥22 (4.9)

(2) In the feedback path, the loss εh is back propagated to adjust the weight W hh

between the hidden and hidden layer, and weight W xh between the input and hidden

layer, respectively. The gradient descent algorithm is applied to train the current pruned

model. For the RNN model, the backpropagation is based on the time. Assume that the

RNN model is at t+1 step, the loss ε across all the time steps is back propagated to adjust

the weight W hh between the hidden and hidden layer, and weight W xh between the input

and hidden layer, respectively, written as follows:

∂ε(t+ 1)

∂W hh
=

t+1∑
k=1

∂ε(t+ 1)

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂ht

∂W hh
(4.10)

∂ε(t+ 1)

∂W xh
=

t+1∑
k=1

∂ε(t+ 1)

∂ht+1

∂ht+1

∂hk

∂ht

∂W xh
(4.11)

In each loop iteration, the pruning masks are updated first under the constrain con-

dition(the pruning number k), then the three-layer network containing W hh and W xh

completes one feedforward and one backpropagation calculation. After such iterative
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Figure 4.5: Flow chart of layer-wise iterative pruning algorithm

optimization process, the final optimized weight parameters are preserved for subse-

quent operations on the loss at the next three-layer network, which is as the right image

in Figure 4.4. For our NN model, the next three-layer network refers to the network

containing weights W hh (the first hidden layer → the second hidden layer) and W ho(the

second hidden layer → the output layer). The same iterative pruning and optimization

operations are performed to minimize the least square loss of the output layer. All the

pruned model parameters will be fine tuned. The pruning algorithm process for each

separated three-layer network can be illustrated as Figure 4.5.

4.3 Experiment

In the pruning experiments, a pre-trained feedforward neural network(FNN) and a

recurrent neural network(RNN) are prepared first for verifying the results of the layer-

wise pruning method. In our temperature control system, the executed FNN model is

3-10-10-1 structure and the RNN model is 3-10-1 structure, respectively. Both models

are based on our previous proposed reference-model-based control method. The RNN

controller with memory cells is very effective for sequential data and it can mine the

temporal information in data. Therefore, it has been used to further improve the control

performance in our temperature control system[90]. The improved input signals of the
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two models consist of the target value, the actual model output and the error signal e be-

tween the ideal output yref and actual output y through the proportional plus derivative

actions as Figure 4.7, which can provide real-time output deviation changes for more ef-

fective NN learning. The input signal through the proportional-derivative(PD) controller

G(s), which is given in Equation 4.12. The differential part is added with a low-pass

filter, so that part of the feedback signal is processed and then to reduce the system inter-

ference, the filter coefficient γ = 0.5. The controller parameters involved are determined

by Ziegler–Nichols rules as introduced. The additional input signal can make the NN

controller better learn the control law to adjust its control output to the controlled sys-

tem, especially when the target value signal changes or the interference signal is added.

G(s) = Kp +
Tds

γTds+ 1
(4.12)

Based on the identified transfer function of the controlled object as Equation4.13, the

parameters of the feedback controller C(s) can be derived as Kp = 2.264, Td = 889.48

and η = 1/6. The reference model has the same time delay as the controlled object to

ensure that the reference model generates the output at the same time as the controlled

object. The error signal is the teaching signal or called the optimization objective of

the NN controller, which guides the learning period of the NN controller as introduced

in the MIMO control system design. The learning rate α of the weight optimization

is1.0e-9 and the learning rate β of the bias optimization is 1.0e-6, respectively. In RNN

controller, Adam(Adaptive moment estimation) is used to replace the stochastic gradient

descent to accelerate the speed of convergence by adding the momentum and adaptive

learning rate[91]. The hyperparameters of it are η = 0.001, ρ1 = 0.9, ρ1 = 0.999 and ϵ =

10−8, respectively. The timestep of RNN is set as 10.

P (s) =
2.854

2395s+ 1
e−444.7s (4.13)

R(s) =
1

0.01× 2395s+ 1

1

((444.7/2)s+ 1)2
(4.14)

(1) FNN-based control model pruning

The control performance of the unpruned model is as shown in Figure 4.8, which

illustrates the reference tracking responses of the system output in the up and down di-

rections, respectively. The sum of squared error of each learning cycle is as shown in

Figure 4.9, where the result in the positive reference tracking direction(SV: 100→105)
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Figure 4.6: Architecture of the FNN-based Temperature Control System

Figure 4.7: Proportional-derivative control of the input signal

is about 170 and in the negative reference tracking direction(SV: 105→100) is 267, re-

spectively. It reflects the ability of the control system output to track the output of the

ideal reference model with the gradual learning of the NN controller. As introduced in

the previous chapter, the pre-trained NN controller adjusts its parameters by optimizing

the error function which calculates the error between the actual output and ideal output.

The dynamic characteristic indicators of the controlled system with the well-trained NN

model parameters are calculated in Table 4.1 and will be used to compare with the results

of the control system with the pruned NN model.

Table 4.1: Reference tracking characteristics comparison

SV: 105 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%]

RM 748(100%) 1321(100%) 0.00
I-PD 1101(147%) 3586(271%) 8.96(100%)
Unpruned NN 610(81%) 2343(177%) 0.63(0.07%)

SV: 100 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%]

RM 748(100%) 1321(100%) 0.00
I-PD 1101(147%) 3586(271%) 8.96(100%)
Unpruned NN 599(80%) 2289(173%) 2.42(27%)
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Figure 4.8: Reference tracking response of the control system with the pre-trained NN

Figure 4.9: Sum of squared error of each learning cycle

Then, the first three-layer of the pre-trained model is separated to perform the neu-

ron pruning as described above. The importance of each neuron in the first hidden layer

is calculated as Equation 4.3 and the neurons are removed from the least important to

the most important. The increments of the accuracy losses after removing each neuron

are recorded. The maximum number of the neurons that can be pruned in the first hid-

den layer is constrained within the admissible accuracy range, which is set as 2% in the
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experiment. The calculated threshold value in the first layer is two. The two least im-

portant neuron will be removed by the binary masks which set the corresponding row

and column parameters in the weight matrices to be zero. And then retrain the model

by minimizing the output error between the pruned model and the original model. The

changing curve of the sum of output deviation during the retraining process is plotted

as shown in Figure 4.10. With the repeated iterative optimization in the positive and

negative directions, the loss of the output layer is gradually reduced to zero. The pruned

weights are put into the original model for inference calculation. The sum of squared loss

of one positive direction response and one negative direction response is 170 and 267,

respectively. There is almost no change in both of directions compared to the control

system with the unpruned model.

Figure 4.10: Error changing curve in the output layer

The trained parameters and the masked used to prune the connection weights are pre-

served to perform pruning operations in the next three-layer as shown in Figure 4.4. The

importance of each neuron in the next hidden layer is also calculated first, then the max-

imum number of the neurons that can be pruned within the admissible accuracy range

is computed, here the result is five. The five least important neuron will be removed by

the binary masks which set the corresponding row and column parameters in the weight

matrices to be zero. And then retrain the current network by minimizing the output error

as the same steps as before. The importance of each neuron will be recalculated first in

each iteration loop to ensure the neurons to be removed are always the least important.

Finally, the initial network is pruned from the structure of 3-10-10-1 into the structure

of 3-8-5-1. The ratio of the number of removed parameters to the total number of the

original network parameters is 50.7%. For a large full matric of size m× n, it accounts
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for m × n × 8 bytes of memory because the storage class is double. The full matrices

of the unpruned NN model requires 1120 bytes of memory and the pruned model only

requires 552 bytes which only 49.2% of the former. The FLOPs of the pruned model

reduced about 52.1% compared with unpruned model.

The reference tracking response of the system with the pruned model structure is

compared with the original control model, which are plotted as shown in Figure 4.11.

The dynamic characteristic indicators are calculated and compared in Table 4.2. In Fig-

ure 4.12, the sum squared error of the system with the pruned NN model in the positive

reference tracking direction(100→105) is 165.7 and that in the positive reference track-

ing direction(100→105) is 260.7, respectively. From the results, even more than half

of the parameters of the original model are removed, the pruned model can still retain

almost the same control performance as the original control system.

Figure 4.11: Comparison of the control performances between the unpruned and pruned
models

Table 4.2: Reference tracking characteristics comparison

SV: 105 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%]

Unpruned NN 610(100%) 2343(100%) 0.63(100%)
Pruned NN 613(100.4%) 2394(102%) 0.13(20.6%)

SV: 100 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%]

Unpruned NN 599(100%) 2289(100%) 2.42(100%)
Pruned NN 601(100.3%) 2336(102%) 2.59(107%)
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Figure 4.12: Comparison of the sum of squared error between the unpruned and pruned
models

(b) RNN-based control model pruning

In RNN model pruning, because the weight in the hidden layer is shared at each

time step. The whole network is most sensitive to the reduction of hidden layer neu-

rons compared to other layers. In order to avoid the significant accuracy loss by directly

eliminating the neurons, fine-grained weight pruning is more appropriate. The control

performance of the unpruned model is shown as Figure 4.13, which is also compared

with the I-PD control results. The dynamic characteristics of the pruned model are cal-

culated in the Table 4.3 and compared with the results of the unpruned control model,

which are expressed as a percentage. From the results of tracking responses to different

set points, the well-trained RNN model can fully track the reference model output with

better transient and steady-state performances.

Table 4.3: Reference tracking characteristics comparison

SV: 105 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%]

RM 748(100%) 1321(100%) 0.00
I-PD 1101(147%) 3586(271%) 8.96(100%)
Unpruned NN 598(80%) 1086(82%) 0.68(7.6%)

SV: 100 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%]

RM 748(100%) 1321(100%) 0.00
I-PD 1101(147%) 3586(271%) 8.96(100%)
Unpruned NN 597(80%) 1087(82%) 0.68(7.6%)
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Figure 4.13: Reference tracking response of RNN-based control model

Then the layer-wise weight pruning is performed on the extracted network with input

and hidden layer weights as introduced above. The pruning threshold is determined by

calculating the increment percentage of the accuracy loss after deleting each connection

weight. The acceptable accuracy loss of the network is set as 2% to ensure that the

pruned parameters will not cause irreparable damage to the control performances. The

optimization objective is the error between the nonlinear activation outputs, which is the

same as that in FNN pruning. The pruned parameters of the input-hidden and hidden-

hidden layers are preserved for the next layer pruning, as well as the corresponding

masks used for keeping the pruned parameters zero. With the pruned weight matrices,

the pruning threshold of the hidden-output layer parameters are also determined based

on the increment percentage of the accuracy loss after deleting each connection. After

pruning all the layers, the model with sparse weight matrices is retrained to recover the

lost accuracy as much as possible.

The ratio of the number of removed parameters to the total number of the original

network parameters is 68.5%. The corresponding pruned percentage of each layer weight

is 11.4%, 56.4% and 0.7%, respectively. Since Matlab internally adopts the compressed

sparse column (CSC) format to store the nonzero values in the sparse matrices for saving

CPU memory and improving the computational efficiency. Compare with the full matric

storage, it saves only those nonzero elements and their indices to effectively reduce the
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required data storage. In addition, the sparse matrices will not do low-level calculations

like zero-addition (x + 0) to reduce the time required for performing many addition

and product operations in NN model. In such sparse form, the storage of the pruned

weight matrices is 928 bytes and compared with the unpruned model which is 1120

bytes(100%), the pruned model can roughly save about 17% of memory.

Obviously, there are most redundant parameters in the hidden layer, which can be

removed without affecting the control accuracy. The reference tracking response of the

system with the pruned model structure is compared with the original control model,

which are plotted as shown in Figure 4.14.The dynamic characteristics of the pruned

model are calculated in the Table 4.4 and compared with the results of the unpruned

control model, which are expressed as a percentage. As shown in Figure 4.15, the sum

of square errors in temperature rising and falling directions is about 205, which is almost

the same as that in the unpruned control system. The pruned model can still realize the

ideal control performance as the original model, even if more than half of the parameters

in the original model are pruned.

Figure 4.14: Comparison of the control performances between the unpruned and pruned
models
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Table 4.4: Reference tracking characteristics comparison

SV: 105 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%] Sum of SE

Unpruned NN 598(100%) 1086(100%) 0.68(100%) 205(100%)
Pruned NN 599(100.2%) 1758(162%) 0.40(59%) 208(101%)

SV: 100 Rise Time Tr [s] Settling Time Ts [s] Overshoot [%] Sum of SE

Unpruned NN 597(100%) 1087(100%) 0.68(100%) 205(100%)
Pruned NN 599(100.3%) 1672(154%) 0.38(56%) 208(101%)

Figure 4.15: Comparison of the sum of squared error between the unpruned and pruned
models

4.4 Conclusion

This chapter mainly discusses how to effectively reduce the number of parameter

in our pre-trained control models by pruning technique for saving model storage space.

Inspired by the linear reconstruction error-based pruning method used in CNN models,

a nonlinear reconstruction error-guided layer-wise pruning method is proposed for it-

erative pruning the hidden layer neurons (weight connections) in our pre-trained FNN

temperature control model and the weight parameters in the RNN model, respectively.

The objective loss function is the error between the nonlinear activation outputs, which

guides the pruned model to retrain the remaining parameters in each iteration. Experi-

ments performed on our pre-trained FNN and RNN temperature control model proved

the method can effectively delete about 50% and 68.5% connection parameters of the

original model without obvious accuracy loss, respectively.
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Chapter 5

Conclusion and Future Work

In this thesis, firstly, the current state of temperature control and related methods are

discussed. Focusing on the problems existing in temperature control, neural network-

based temperature control methods are proposed for improving the control performance

and achieving precise and stable temperature control in different control systems. And

based on the well-trained neural network temperature control model, we proposed an

effective model compression method to remove redundant parameters in the model to

save memory storage. In this chapter, we will briefly conclude our work in this thesis

and discuss the deficiencies that still exist in the proposed control methods, and require

more future work to solve them.

Chapter 3 first discussed the temperature control difficulties in multi-input multi-

output control systems and how to solve the coupling effects between different heating

channels in the past studies. Different from conventional control methods relying on pre-

cise mathematical and physical models, extra decoupling links or complex constrained

optimization, we proposed a multi-layer FNN-based temperature control system and in-

troduced an ideal model to provide the tracking target to different channels. The actual

output of the controlled object is compared with the output of the reference model to

provide a training signal (error signal) to the neural network controller, and then the

network parameters are constantly adjusted according to the error signal. At each time

step, by minimizing the optimization objective of an error function, the NN controller of

each channel quickly obtains the optimal control signal to control each channel output

to be consistent with the ideal model output. Furthermore, to ensure the whole control

stability during the training period of the NN controller, a conventional I-PD controller

in the feedback loop is employed. Based on experiments verification, the proposed NN-

based multi-channel temperature control method can eliminate the mutual interference

and improve the tracking performance of the temperature control system by comparing

the experimental results of transient response and steady response characteristics.
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Chapter 4 first discussed the problem of over-parameterization in network models.

A network model with amounts of parameters will result in slow inference speed and

limit the deployment of models to embedded devices with limited resources and low

computational power. Therefore, the network pruning technique is adopted to compress

our NN-based control models by removing unimportant parameters in the model with-

out causing a significant loss of model accuracy. Here, inspired by the reconstruction

error-based pruning method used in CNN models, which is based on minimizing the

linear reconstruction error to optimize the network, a layer-wise pruning method based

on the reconstruction error of the nonlinear activation outputs is proposed to prune our

NN-based temperature control model. It removes the redundant connections based on

the global information of the model loss and minimizes the nonlinear reconstruction er-

ror between the layer outputs of the pruned model and unpruned models. It’s verified

by experiments that the proposed method can eliminate a large number of redundant

parameters of the well-trained NN models without significant loss of accuracy.

There are also some problems to be solved in our research, including (1) In our

MIMO control system, two NN controllers are adopted to control a two-input and two-

output controlled object which is simple and effective. However, if it is further extended

to the systems with more coupling points, multiple NN controllers are needed and this

will lead to the control system redundancy. And lots of parameters are needed to be

trained in each NN model. Hence, it is necessary to further simplify the design of the

control system structure, such as put multiple correlational tasks into one NN controller

for simultaneous optimization learning. Moreover, the designed reference model is sim-

ply based on the controlled object, it can be further improved by adding other control

loop for flexible changes. (2) In the study of model compression, layer-wise pruning

is performed to effectively remove the redundant parameters in our pre-trained control

models. However, pruning is only one of the model compression methods, and it does

not conflict with other methods, such as knowledge meeting, quantization, it is worth fur-

ther studying in combination with other methods to save the storage space of the pruned

model. In addition, more work needs to be done on how to improve the efficiency of de-

termining the pruning threshold while ensuring the minimum loss of control precision.
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