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Abstract 

This dissertation consists of two main parts; the first part consists of a 

high precision ΔΣ digital-to-analog converter (DAC) technique and a fast 

test technique for integral nonlinearity (INL) of a ΔΣ analog-to-digital 

converter (ADC). For ΔΣ DA conversion a limit cycle is generated, which 

can easily cause the accuracy degradation during DA conversion. To address 

this problem, we propose a technique to add a random signal. In the general 

DA converter model, one port of the quantizer is grounded, for our proposed 

method is to change the grounded port of the quantizer to our proposed 

random signal, and use the random signal added to the grounded side of the 

quantizer to suppress the effect of the resulting limit cycle, thus improving 

the DA conversion accuracy. We all also compare the effects of adding 

random signals to the quantizer in different ranges to obtain the best range 

of input random signals. Another one is high-speed INL testing technology 

of the ΔΣ ADC with our proposed FFT method. The ΔΣ ADC is now widely 

used in sensor interface circuits of Internet of Things (IoTs) systems. It is 

high-precision but its sampling speed is very slow so that its direct INL 

testing time takes very long time and then its INL testing is usually omitted 

at mass production shipping. However, due to the demands for low-cost yet 

highly-reliable IoT systems, its short time testing is now needed. We consider 

its INL testing by separating its analog and digital parts: ΔΣ AD modulator 

and digital filter. The digital filter can be tested with the scan-path method. 

We consider a polynomial model of the ΔΣ AD modulator input-output (I/O) 

characteristics and estimate its coefficient values from the fundamental and 

harmonics power by applying a cosine input and obtaining the power 

spectrum of the modulator 1-bit output stream with FFT. 
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The second part describes the study of arithmetic algorithms for 

floating-point numbers using Taylor-series development. In high-speed 

digital signal processing, the need for high accuracy, low latency, and low 

power are often the problems we need to overcome. For these problems, we 

have developed floating-point digital arithmetic algorithms to deal with 

division, inverse square root, logarithm and exponential calculations, using 

Taylor-series expansion. Three methods are proposed for fast calculation 

with high efficiency: (i) mantissa region uniform division, (ii) mantissa 

region non-uniform division and (iii) mantissa region conversion. We have 

clarified the Taylor-series expansion calculation algorithm trade-offs among 

accuracy, numbers of multiplications/additions/ subtractions and LUT sizes. 

The simplest and most efficient algorithm in different arithmetic using the 

three methods is proposed in this paper. 
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Chapter 1 

INTRODUCTION 

1.1 Research Background and Motivation 

With the development of digital signal processing and digital computing 

technology, we are now enjoying life in the "digital" world more and more 

[1, 2]. Compared to analog circuits, using digital circuits is less affected by 

noise and more reliable. The advantage is that it is easier to integrate on a 

chip to realize complex functions. However, the signals touched in the real 

world are analog signals such as sounds and images. Therefore, conversion 

between analog signals and digital circuit signals is important. It is necessary 

to be able to easily convert an analog signal into a digital signal as an 

interface between them. The circuit that realizes this function is an A/D 

Converter (Analog-to-Digital Converter, ADC) [3]. 

ADCs are important modules in the configuration of electronic systems 

and often have a significant impact on the overall performance of the system. 

With the development of ultra-deep submicron CMOS processes, the degree 

of digital circuit integration increases [4, 5]. The price is getting higher and 

the function to realize it is complicated while the high-speed processing of 

signals and the demand for accuracy are getting higher. However, the 

development of ADC design is relatively slow, and the development of 

analog design software is immature. The development of analog interface 

circuits lags behind the development of digital circuits. Especially in digital 

television video systems and digital communication systems, their 

performance (e. g., speed and accuracy) often limits the improvement of 

overall system performance [6,7]. 
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Since the introduction of ADC, we have experienced the development 

of data conversion of discrete semiconductors and integrated circuits, and the 

development strategy of high-speed and high-precision ADC is to increase 

the degree of integration as much as possible and solve the product for the 

final user, assuming that the performance is not affected. It has gone through 

the process of semiconductor, integrated circuit data conversion to provide a 

solution. Nowadays, the demand for ADC is increasing significantly, and the 

performance index is wider in order to adapt to the requirements applied to 

various applications. It is required to be covered. The main fields of 

application of ADCs are constantly expanding, and they are widely applied 

in fields such as sensor, DSP, multimedia, communication, and measurement 

[8,9]. ADCs meet the different demands of various fields. On the other hand, 

at the design stage, not only the process and circuit configuration of the ADC 

itself, but also the signal modulation is supported, and the peripheral circuit 

design of the ADC such as an analog circuit such as an analog filter is also 

performed. These should be taken into consideration. 

1.2 Organization 

In this part, the research background and motivation are introduced and 

dissertation organization in Chapter 1. In Chapter 2, the AD conversion 

principle, the evaluation criteria for ADCs, and the structure and application 

scenarios of different ADCs are introduced. Chapter 3 proposes that random 

signals can improve the ΔΣ AD conversion accuracy. Chapter 4 presents the 

high-speed INL testing method for ΔΣ ADC. Chapter 5 summarizes this part 

and future work. 
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Chapter 2 

A/D CONVERTER MAIN STRUCTURE 

AND PERFORMANCE INDEX 

In today's society, digital signals are developing rapidly, and digital 

signal processing (DSP) algorithms are becoming more and more important 

and relevant to our lives. Real-life signals generally exist in the form of 

analog signals, which are continuous in the time domain and exhibit values 

that can be arbitrary at any moment in time. For example, temperature, sound, 

light, and you name it. However, digital signals are discrete in time and 

discrete in amplitude, manifesting themselves with specific values at specific 

moments.  

Compared with analog circuits, digital circuits have the advantages of 

easy automatic control, easy storage, and high immunity to interference. 

Therefore, many analog signals are converted to digital signals for 

processing to achieve high-speed and high-precision signal processing and 

transmission. As shown in Fig. 2.1, first the A/D converter converts an 

analog signal into a digital signal for transmission to the DSP for processing, 

and then the result of the processing is converted to an analog signal by the 

digital-to-analog converter (DAC). The conversion principle of ADC usually 

needs to go through four processes: sampling, holding, quantization and 

coding, which are represented in Fig. 2.2. 
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Fig. 2.1 Data conversion process. 

 

Fig. 2.2 Basic structure of A/D converter. 

2.1 Sampling 

To ensure that the ADC works properly, it is necessary to understand 

the frequency response characteristics of the ADC, as shown in Fig. 2.3. 

Suppose that the frequency response of the analog input signal is shown in 

Fig. 2.3 (a), and the maximum frequency of the analog input signal is 𝑓𝐵, 

then when the analog input signal is sampled at a frequency of 𝑓𝑆 , its 

frequency response is shown in Fig. 2.3 (b), and the spectrum of the input 

signal is repeated at the sampling frequency as well as at each of its 

harmonics. If the signal bandwidth 𝑓𝐵 is larger than 0.5𝑓𝑆 , the spectrum 

will be mixed, as shown in Fig. 2.3 (c), and there it is impossible to recover 

the original signal; so it must be ensured that the input signal bandwidth is 

less than 0.5𝑓𝑠. 
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(a) Continuous time frequency response of analog input signal 

 

(b) Equivalent frequency response of data sampling 

 

(c) Mixing is caused when 𝑓𝐵 > 0.5𝑓𝑆 

 

(d) Use of an anti-aliasing filter to avoid aliasing 

Fig. 2.3 Frequency response of the ADC 

As described above is the basic law of sampling, called Nyquist’s 

sampling theorem [1], which describes that the sampling frequency must be 

more than twice the bandwidth of the input signal to guarantee the recovery 

of the original signal from the sampled signal, that is what the sampling 

frequency 𝑓𝑆 must satisfy: 
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2𝑓𝐵 < 𝑓𝑆 (2-1) 

Where 𝑓𝐵 is the high frequency component of the input signal. In order 

to maximize the spectrum of the input signal, it is necessary to make 𝑓𝐵 as 

close as possible to 0.5𝑓𝑆, so that a pre-filter with very steep variations is 

required to eliminate the signal outside the 0.5𝑓𝑆  frequency, the specific 

spectrum is shown in Fig. 2.3(d), and it is very difficult and complicated to 

implement such a filter. The sampling frequency is usually taken as: 

𝑓𝑆 ≅ (2~3) 𝑓𝐵 (2-2) 

The Nyquist sampling theorem shows the correlation between sampling 

frequency and signal frequency, and ADCs that work in this way are called 

Nyquist ADCs. There is also another ADC with a sampling frequency much 

higher than two times the signal bandwidth, called an oversampling ADC. 

2.2 Quantization noise 

Fig. 2.4 (a) shows the input-output curve of the quantizer, which 

converts the input sample signal 𝑥(𝑛)  into a discrete digital signal of 

amplitude 00⋯0 to 11⋯1, depending on the input size. Use up to N-bit 

digital signal. It means that the minimum input is −𝐹𝑆 2⁄  (00⋯0) and the 

maximum input is +𝐹𝑆 2⁄  (11⋯1). Here, 𝐹𝑆 is the full-scale input of the 

quantizer. The number of N-bit in the digital signal, represents the resolution 

of the quantizer. The number of N-bit of the digital signal represents the 

resolution of the quantizer. That is, the minimum step size that the quantizer 

can decompose is ∆= 𝐹𝑆 2𝑁⁄  . The quantization error is the difference 

between the input and the output, and the relationship between the input 

signal and the quantization is shown in Fig. 2.4(b), where the quantization 
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error is limited to the range [−𝐹𝑆 2⁄ ~ + 𝐹𝑆 2⁄ ]] when the input signal size 

is limited to the range [−∆ 2⁄ ~ + ∆ 2⁄ ]. Under certain conditions, such as 

random fluctuations of the input signal or limited input range, the 

quantization error can be regarded as uncorrelated random white noise, 

evenly distributed in [−∆ 2⁄ ~ + ∆ 2⁄  ]. The Probability Density Function 

(PDF) is shown in Fig. 2.5(a). The total quantization noise energy can be 

calculated as follows: 

𝜎𝑞
2 = ∫ 𝑃𝐷𝐹(𝑞)𝑑𝑞

∞

−∞

=
1

∆
∫ 𝑞2𝑑𝑞

∆ 2⁄

−∆ 2⁄

=
∆2

12
 (2-3) 

Its Power Spectral Density (PSD) is white noise evenly distributed in 

frequency domain over [−𝑓𝑠 2⁄  , 𝑓𝑠 2⁄ ]  as shown in Fig. 2.5(b), its 

amplitude is ∆ √12𝑓𝑠⁄  , and the total noise energy is also obtained by 

integrating the PSD from [−𝑓𝑠 2⁄  , 𝑓𝑠 2⁄ ]. 

𝜎𝑞
2 = ∫ (

∆

√12𝑓𝑠
)

2

𝑑𝑓

𝑓𝑠 2⁄

−𝑓𝑠 2⁄

=
∆2

12
 (2-4) 

          

(a) Quantized input/output.                  (b) Quantized noise. 

Fig. 2.4 Quantizer. 
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(a) Probability Density Function.         (b) Power Spectral Density. 

Fig. 2.5 Quantization noise. 

2.3 Performance indicators 

2.3.1 Dynamic characteristics of ADC 

The dynamic characteristics of an ADC are generally obtained by Fast 

Fourier Transform (FFT) analysis, which is related to the input frequency, 

input signal amplitude, and sampling frequency, and they are measured by 

Signal-to-Noise Ratio (SNR), Signal-to-Noise and Distortion Ratio (SNDR), 

Effective Number of Bits (ENOB), Spurious-Free Dynamic Range (SFDR), 

and Total Harmonic Distortion (THD), etc. 

(1) SNR: Signal-to-Noise 

It refers to the ratio of the energy of the signal to the energy of the noise 

in the signal band (usually measured with a sinusoidal signal input). 

Assuming that the input is a 𝐹𝑆 (Full Scale) sinusoidal signal (amplitude: 

A = 𝐹𝑠 ⁄ 2 ) and that the noise contains only quantization errors, the 

maximum signal-to-noise ratio is given by the following formula: 
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SNR =
1 2𝐴2⁄

𝜎𝑞
2

= 3 × 22𝑁−1 (2-5) 

Expressed in decibels (dB), it is expressed as follows: 

SNR[dB] = 10𝑙𝑜𝑔10(𝑆𝑁𝑅) = 6.02𝑁 + 1.76 (2-6) 

(2) SNDR: Signal-to-Noise and Distortion Ration 

The signal distortion ratio refers to the ratio of the output signal power 

to the sum of all noise and harmonic power in the band, which is simply the 

ratio of the output signal power to the output non-signal power. It can be 

expressed as follows: 

SNDR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
 (2-7) 

Where, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙   is the signal power, 𝑃𝑛𝑜𝑖𝑠𝑒  is the noise power and 

𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 is the total harmonic power. 

(3) ENOB: Effective Number of Bits 

The number of valid bits refers to the effective number of bits 

corresponding to the SNDR obtained by the ADC output at full scale input 

signal, with the following conversion relationship: 

ENOB =
𝑆𝑁𝐷𝑅[𝑑𝐵] − 1.76

6.02
 (2-8) 

(4) SFDR: Spurious-Free Dynamic Range 

The Spurious-Free Dynamic Range (SFDR) is defined as the ratio of 

the energy of the fundamental component to the maximum spurious 

component in the output signal of the ADC, which reflects the maximum 
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interference to the output signal of the ADC in a certain frequency band. For 

a certain input frequency, the input amplitude and the sampling frequency, 

the SFDR can be expressed as: 

SFDR = 20 log10
As

AHD(max)
[dB] (2-9) 

Where, As  denotes the effective value of the fundamental wave 

component of the ADC output signal under a certain sinusoidal input 

condition, AHD(max) denotes the effective value of the maximum spurious 

signal output of the ADC. 

(5) THD: Total Harmonic Distortion 

Total Harmonic Distortion (THD) is defined as the ratio of the harmonic 

component of the ADC output signal to the energy of the fundamental signal 

and it can be expressed as: 

THD = 20 log10(
√𝐴𝐻𝐷2

2 + 𝐴𝐻𝐷2
2 +⋯+ 𝐴𝐻𝐷2

2

𝐴𝑠
) (2-10) 

Where, 𝐴𝑠 denotes the effective value of the fundamental component 

of the ADC output signal, and 𝐴𝐻𝐷𝑘  denotes the effective value of the kth 

harmonic in the output signal, k = 2, 3, ⋯, m. Since the energy of the higher 

harmonic components is usually smaller, m = 6 is generally taken. 

2.3.2 Static characteristics of ADC 

The static performance index of the ADC is the performance index that 

can be measured at low frequency input or even fixed voltage input, which 

includes Differential Non-linearity (DNL), Integral Non-linearity (INL), 
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Missing Code, Monotonicity, Offset Error, Gain Error, and so on. These 

parameters reflect the deviation of the actual quantization curve of the ADC 

from the ideal curve. The ideal quantization curve of a 3-bit ADC is shown 

in Fig. 2.4.  

One very important parameter for the ADC is the Least-Significant Bit 

(LSB). LSB is the lowest weighted bit of the ADC digital output code, which 

usually corresponds to the analog value it represents. Any ADC is limited in 

its ability to recognize an analog input, and the metric that characterizes this 

ability is the resolution (also called precision), which can be expressed as a 

percentage of the ADC's full scale, or as the number of N bits, when the ADC 

has 2𝑁 possible digital output codes. The LSB, resolution and ADC Full 

Scale Input Range (FSR) are related by the following equation: 

1LSB =
𝐹𝑆𝑅

2𝑁 − 1
≅
𝐹𝑆𝑅

2𝑁
 (2-11) 

Where the 1 in the denominator is not required for differential ADCs. 

Corresponding to the LSB, the Most Significant Bit (MSB) refers to the 

highest bit of the ADC digital output code, which is generally half of the FSR. 
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Fig. 2.4 Ideal 3-bit A/D converter quantifier curve. 

(1) DNL: Differential Non-linearity 

The ideal quantization curve digital code conversion width (the 

difference between two adjacent conversion levels) of the ADC is 1 LSB. 

DNL reflects the deviation of the actual quantization curve digital code 

conversion width of the ADC from the ideal value of 1 LSB, as shown in Fig. 

2.5. 
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Fig. 2.5 DNL and INL. 

(2) INL: Integral Non-linearity 

All the conversion levels of the ideal quantization curve of the ADC are 

located in a straight line, while the actual quantization curve is not. INL 

reflects the deviation between the actual conversion level of the ADC and 

the ideal conversion level. An example is shown in Fig. 2.5. For a certain 

digital output code M, its corresponding INL and DNL have the following 

relationship: 

INL(𝑀) =∑DNL(𝑀)

𝑀

𝑖=0

 (2-12) 

(3) Missing code 

If the ADC always has a certain (or some) digital code that cannot be 

generated regardless of the input voltage, it is said that the ADC has missing 

codes. If there is a missing code, it means that the ADC appears DNL = −1 
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as shown in Fig. 2.6. 

 

Fig. 2.6 Missing code. 

(4) Monotonicity 

Normally, each vertical step of the ADC quantization curve is positive 

(one digital code pitch), which means that the magnitude of the digital output 

code varies in the same direction as the amplitude of the input signal. If the 

quantization curve of the ADC has a negative jump in the vertical direction, 

the ADC has non-monotonic characteristics. This is shown in Fig. 2.7. Non-

monotonicity worsens quantization noise and, if present in a closed-loop 

system, affects system stability [2-4]. 
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Fig. 2.7 Monotonicity. 

(5) Offset error 

The first conversion level of the ideal quantization curve of the ADC 

(the input analog voltage when the digital output code jumps from 00⋯0 

to 00⋯1) is 0.5 LSB, and the offset error of the ADC is defined as the 

deviation of the first conversion level of the actual quantization curve from 

0.5 LSB. The ADC shown in Fig. 2.8 has an offset error of 1.5 LSB. 
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Fig. 2.8 Offset error. 

(6) Gain error 

The gain error reflects the deviation of the slope of the actual 

quantization curve of the ADC from the slope of the ideal curve, and it is 

often expressed in terms of the full-scale gain error, namely shifting the 

actual quantization curve so that its lowest conversion level is aligned with 

the lowest conversion level of the ideal curve, and then comparing the 

deviation of the actual quantization curve with the highest conversion level 

of the ideal curve. An example of the gain error of the ADC is shown in Fig. 

2.9. 
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Fig. 2.9 Gain error. 

2.4 ADC main structure 

Nowadays, ADCs have been widely used in various types of System-

on-Chips (SoCs), and the requirements of ADCs vary from application 

system to application system. In order to adopt to the application 

requirements of different SoCs, various structure types of ADCs have 

emerged during their continuous development, mainly flash ADCs, pipeline 

ADCs and SAR ADCs. This section focuses on the operating principles of 

the above types of ADCs and clarifies their application scope as well as their 

advantages and disadvantages. 

2.4.1 Flash ADC 

ADC as the core part of analog signal circuit, in many applications, high 

conversion speed is required, however, flash ADC (fully parallel ADC) has 

the simplest structure and the fastest conversion rate is often also used. 

For an N-bit flash ADC can be represented as Fig. 2.10, which mainly 
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consists of 2𝑁 matching resistors, (2𝑁 − 1) comparators and an encoder. 

Among then, 2𝑁 matching resistors divide the reference voltage V𝑟𝑒𝑓 into 

2𝑁  equal-step comparison references, and the comparator compares the 

input signal with these reference voltages, the voltage difference between 

each adjacent voltage is 𝑉𝑟𝑒𝑓 2𝑁⁄   (that is, LSB). The other input of the 

comparator is connected to the analog input signal. This gives a 2𝑁  bit 

thermometer code by comparing it with each reference voltage, and the final 

binary code output is completed by a decoder. The flash ADC is a simple 

structure that requires only one comparison cycle to complete the conversion 

of the entire ADC, and if the speed of the comparator is guaranteed, the 

structure can achieve a high conversion rate. However, as the accuracy N 

increases, the input capacitance increases exponentially, resulting in a 

smaller input bandwidth. The numbers of comparators and resistors also 

increase exponentially with N, resulting in this type of ADC requiring a 

larger chip area, larger power consumption, and even larger input 

capacitance. Therefore, flash ADCs are often used in low-resolution systems, 

such as satellite communications, high-speed instrumentation, radar, and 

video [5-9]. 
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Fig. 2.10 Flash ADC structure. 

2.4.2 Two-step ADC 

The two-step ADC separates the quantization process of higher and 

lower bits and consists of two ADCs, as shown in Fig. 2.11. It consists of a 

sample/hold (S/H) circuit, a first-stage ADC, a DAC, a subtractor, and a 

second-stage ADC. The resolution of the first ADC stage is M-bit, the second 

stage is L-bit, and the total resolution is (M+L)-bit. The sampled signal is 

converted to digital by the first stage ADC with high bit (MSBs), and then to 

analog by the DAC with VB, and the subtractor generates the difference 

between VA and VB (called the residual). This residual signal is processed 

by the second ADC stage to obtain a digital output of lower bits (LSBs). 

However, since S/H, quantization, A/D conversion, D/A conversion, 

subtraction operations and other operations are performed sequentially, the 

sampling rate is somewhat limited. 
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By separating the quantization process of MSBs and LSBs, the two-step 

structure reduces the number of comparators from (2𝑁 − 1) in the original 

Flash structure to (2𝑀 + 2𝑁 − 2) and the number of resistors from 2𝑁 to 

(2𝑀 + 2𝑁). Compared with the flash ADC, the two-step ADC has a reduced 

operating speed, but has reduced power consumption and chip area, and is 

often used in video signal acquisition, mobile communication, high-speed 

portable systems, and so on [10-12]. 

 

Fig. 2.11 Two-step ADC structure block diagram. 

2.4.3 Pipeline Converter 

The pipeline ADC is based on the two-step ADC principle and consists 

of several stages cascaded with sub-circuits of similar structure and function. 

To avoid sampling rate limitation, a sample-hold circuit is added to each 

stage. Fig. 2.12 shows a block diagram of a K-stage pipeline ADC structure, 

where each stage 1 to (K-1) contains an S/H, m-bit ADC, m-bit DAC 

converter, subtractor and amplifier, and the last stage usually uses a flash 

ADC. 

First, the sampled signal from the analog input is converted into an m-

bit digital quantity by the first ADC stage, and then this digital quantity is 

converted into an analog quantity by the DAC, and the residual is obtained 
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using a subtractor, which is amplified and passed to the next stage for 

processing. 

Since each stage can implement S/H, all stages can work simultaneously. 

The speed of the pipeline ADC is limited by the conversion speed of each 

stage and the setup time of the sampling circuit of the next stage. Pipeline 

ADCs offer conversion rates comparable to flash ADCs with less power and 

chip area. The main applications are high-speed digital instrumentation, 

video signal processing, medical imaging, and wireless LAN systems [13,14]. 

 

Fig. 2.12 Pipeline ADC structure block diagram. 

2.4.4 SAR converter 

The Successive Approximation Register (SAR) ADC is a common 

ADC structure with a sampling rate below 5MS/s with medium to high 

accuracy, and also it belongs to the Nyquist ADC type. Fig. 2.13 shows the 
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block diagram of the SAR ADC structure [15,16], which mainly includes a 

S/H circuit, a comparator, a DAC and logic control circuit. The SAR ADC 

works based on the binary search method by comparing the sampled value 

𝑉𝑆/𝐻 of the input signal with the reference voltage value generated by the 

D/A conversion network, the logic output from the high bit to the low bit is 

successively generated. 

 

Fig. 2.13 SAR ADC structure block diagram. 

Fig. 2.14 shows the workflow diagram of SAR ADC. The SAR ADC 

first samples and holds the analog signal, compares the magnitude of the 

input signal 𝑉𝑖𝑛  and the output reference voltage 𝑉𝑑𝑎𝑐  of the capacitor 

array, and then uses the comparison result to control the switch flip connected 

to the capacitor array of the DAC to increase or decrease the corresponding 

voltage value, repeats this operation until the DAC completes the N-bit 

conversion, and the N-bit digital code stored in the successive approximation 

register is the final output code, which is complete for the A/D conversion. 
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Fig. 2.14 SAR ADC working process diagram. 

2.5 ΔΣ Converter 

ΔΣ ADC is one of the directions of high-speed ADC development in 

recent years, which can achieve extremely high resolution conversion 

[17,18]. Traditional ADCs basically follow the Nyquist ADC, according to 

the Nyquist sampling theorem, where the sampling frequency is higher than 
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twice the signal bandwidth, and the quantization noise is uniformly 

distributed in the frequency band of 0~𝑓𝑠 2⁄ . If the sampling frequency is 

further increased, then the quantization noise will be uniformly distributed 

over a larger frequency domain. In other words, if the noise in the high 

frequency part is filtered out, the signal-to-noise ratio of the ADC can be 

improved without increasing the accuracy. The noise shaping technique is to 

move the noise from the low-frequency part to the high-frequency part, and 

then pass through a low-pass filter to reduce the noise very well. The analog 

circuit part of the ΔΣ ADC is very simple, but the digital signal processing 

part is very complex. 

2.5.1 Oversampling  

ADCs applying the oversampling technique show a significant 

improvement in signal-to-noise ratio compared to Nyquist ADCs. We 

consider the quantization noise introduced by the oversampling ADC as 

white noise. After the system has sampled the input signal, part of the noise 

is distributed outside the signal bandwidth, while the total noise power of the 

system does not change, which means that the in-band noise power is 

effectively reduced, which contributes significantly to the improvement of 

the modulator accuracy. Therefore, the accuracy in the oversampling ADC 

increases with the sampling rate, but the Nyquist ADC noise is all distributed 

within the signal band, and the oversampling ADC has its own unique 

advantage in terms of accuracy. The definition of oversampling rate is as 

follows: 

OSR =
𝑓𝑠
2𝑓𝑏

 (2-13) 
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The effect of oversampling rate on the power spectral density of the 

ADC is shown in Fig. 2.15. 

 

(a) OSR=1                             (b) OSR > 1 

Fig. 2.15 Influence of OSR on DSP of ADC. 

We know that the power spectral density PSD of the quantization noise 

of the ADC using the oversampling technique, can be expressed as follows: 

𝑆𝑒(𝑓) =
∆2 12⁄

𝑓𝑠
 (2-14) 

Where, ∆2 12⁄  is quantized noise power in ADC. 

To obtain the quantized noise power, the above equation is integrated 

for [−𝑓𝑏, 𝑓𝑏]: 

𝑃𝑒 = ∫ 𝑠𝑒(𝑓)𝑑𝑓
𝑓𝑏

−𝑓𝑏

= 2𝑓𝑏 .
∆2 12⁄

𝑓𝑠
=

1

𝑂𝑆𝑅
.
∆2

12
 (2-15) 

The signal-to-noise ratio (SNR) of an oversampling ADC can be written 

as follows: 
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SNR = 10𝑙𝑜𝑔10 (
3

2
22𝑁𝑂𝑆𝑅) = 10𝑙𝑜𝑔10(𝑂𝑆𝑅) + 6.02 + 1.76 (2-16) 

The SNR of the Nyquist ADC is: 

SNR = 10𝑙𝑜𝑔10 (
𝑃𝑠
𝑃𝑒
) = 6.02N + 1.76 (2-17) 

We see that the signal-to-noise ratio is proportional to the oversampling 

rate in a positive logarithmic relationship of 4 to 1, and this proportional 

relationship creates a bottleneck that relies on increasing the oversampling 

rate for accuracy improvement. 

The relationship among SNR, N and OSR can be clearly seen in Fig. 

2.16. The improvement of SNR can be achieved by increasing N and OSR. 

The higher-order ΔΣ modulator requires much less OSR to achieve the same 

resolution with the same accuracy. 

 

Fig. 2.16 Relationship among SNR, OSR and N. 
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2.5.2 Noise shaping 

Noise shaping refers to the shaping of noise through the loop in the 

process of sampling and quantization of the signal, and does not reduce the 

introduced noise substantially, but changes the noise distribution on the 

spectrum by filtering it to separate the in-band quantization noise to the high-

frequency band outside the band, from improving the system signal-to-noise 

ratio and accuracy. The separated out-of-band noise can be filtered out by the 

digital filter in the successor circuit. 

Fig. 2.17 shows a basic modulator structure model with a first-order 

structure. Where X(z)  is the analog signal to be measured at the system 

input, 𝐸𝑞(𝑧) is the quantization noise introduced by the system, H(z) is 

the transfer function of the integrator and it has a noise shaping function, and 

Y(z) is the system output signal. 

When quantization noise is not considered, the output signal Y(z) can 

be expressed as: 

Y(z) = H(z)(X(z) − Y(z)) (2-17) 

 

Fig. 2.17 First-order ΔΣ modulator. 
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The signaling transfer function STF(z) can be expressed as: 

STF(z) =
𝑌(𝑧)

𝑋(𝑧)
=

𝐻(𝑧)

1 + 𝐻(𝑧)
 (2-18) 

Set the input signal to zero, and the expression of the noise transfer 

function NTF(z) can be obtained as: 

NTF(z) =
𝑌(𝑧)

𝐸𝑞(𝑧)
=

1

1 + 𝐻(𝑧)
 (2-19) 

The transfer function of the entire system can be expressed as: 

Y(z) = STF(z)𝑋(𝑧) + 𝑁𝑇𝐹(𝑧)𝐸𝑞(𝑧) =
𝐻(𝑧)𝑋(𝑧) + 𝐸𝑞(𝑧)

1 + 𝐻(𝑧)
 (2-19) 

When the transfer function H(z) of the integrator has a low-pass 

characteristic and a large DC gain, the above equation shows that STF(z) is 

approximately 1 and NTF(z) is approximately infinitesimal, which shows 

that it has good transmission characteristics in the low frequency range. 

2.5.3 ΔΣ modulator structures 

The basic idea of ΔΣ modulator is oversampling and noise shaping, and 

the basic structure can be divided into two categories: single loop and 

cascade (MASH). Different structures of ΔΣ modulators have different 

characteristics, which are described in the following order: 

(1) Single-loop structure 

The general structure of a single-loop ΔΣ modulator is shown in Fig. 

2.18. The loop filter consists of 𝐿0 and 𝐿1, which process two inputs, the 

input signal u and the feedback signal v. The output y of the loop filter is 
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used as the input of the quantizer, and v is the output of the quantizer. The 

transfer function from the input signal u to y is 𝐿0(𝑧) , and the transfer 

function from the feedback signal v to y is 𝐿1(𝑧) , and the transmission 

process of the system is represented by the z transformation as shown in 

following equation: 

{
𝑌(𝑧) = 𝐿0(𝑧)𝑈(𝑧) − 𝐿1(𝑧)𝑉(𝑧)

𝑉(𝑧) = 𝑌(𝑧) + 𝐸(𝑧)         
 (2-20) 

V(z) can generally be expressed as follows: 

V(z) = STF(z)U(z) − NTF(z)E(z) (2-21) 

Then, STF(z) and NTF(z) can be expressed as follows: 

STF(z) =
𝐿0(𝑧)

1 + 𝐿1(𝑧)
 (2-22) 

NTF(z) =
1

1 + 𝐿1(𝑧)
 (2-23) 

The z domain of the integrator can be expressed as: 

H(z) =
𝑧−1

1 − 𝑧−1
 (2-24) 

We take the example of a first-order single loop ΔΣ modulator. Let, 

𝐿0(𝑧) = 𝐿1(𝑧) = 𝐻(𝑧), the following equation can be obtained: 

STF(z) = 𝑧−1 (2-25) 

NTF(z) = 1 − 𝑧−1 (2-26) 

Then the output responses of u and v are superimposed to obtain the 
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input of the quantizer as: 

Y(z) = 𝑧−1𝑋(𝑧) + (1 − 𝑧−1)𝐸(𝑧) (2-27) 

This type of modulator is called a first-order modulator, and the order 

refers to the order of noise shaping, as shown in Fig. 2.19. 

 

Fig. 2.18 General structure of single-loop ΔΣ modulator. 

 

(a) Linearized z-domain model. 

 

(b) First-order ΔΣ modulator structure. 

Fig. 2.19 First-order ΔΣ modulator. 

(2) Cascade (Mash) structure 
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For higher-order single-loop ΔΣ modulators, the system stability 

problems are easily encountered due to the influence of factors such as non-

linearity, and the performance of actually designed modulator can be 

significantly degraded compared to the ideal modulator. In order to solve the 

problems that arise in higher-order ΔΣ modulators, one approach is to use a 

cascaded ΔΣ modulator structure [19, 20], as shown in Fig. 2.20. A cascaded 

ΔΣ modulator is made up of a number of low order single loop ΔΣ 

modulators cascaded together. As can be seen from the diagram, all the 

feedback loops are only at each level of the ΔΣ structure, there is no feedback 

from stage to stage, and only noise is transmitted from stage to stage. So if 

the ΔΣ modulator of each low order single loop is stable, then the ΔΣ 

modulator of the whole cascade structure is also stable. That is, the stability 

of the higher stages of the cascade is directly based on the stability of the 

lower single-loop stages, and the high-order ΔΣ modulator is easier to design 

and implement.  

For the entire output of the cascade modulator, the output of each 

modulator stage is logically summed by the transfer function 𝐻1(𝑧)  and 

𝐻2(𝑧)  for noise cancellation, so that only the noise of the last stage is 

transferred to the output, but there is a certain mismatch between the analog 

part of the modulator circuit and the digital circuit of 𝐻1(𝑧)  and 𝐻2(𝑧) , 

which affects the performance. Therefore, the cascade structure has high 

requirements for the matching of the device and is not as easy to implement 

without a single-loop structure. 
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Fig. 2.20 MASH ΔΣ structure. 

2.6 Summary 

This chapter first introduces the static and dynamic characteristics of 

ADCs, and briefly explains the definitions of these characteristics, then 

introduces each of the five common types of ADCs, briefly describes their 

respective structures, including the circuit modules and the functions of each 

module, and briefly describes their operating principles. It also analyzes the 

advantages of oversampling and noise shaping of the ΔΣ ADC itself. Table 

2.1 summarizes the performance of the previously described ADCs. 
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Table 2.1 Typical Architecture ADC Performance Summary 

ADC 

structure type 

Sampling 

rate 

Resolution 

(accuracy) 
Power Application 

Flash GS/s 6-8 bit High 
High-speed system, 

etc. 

Two-step MS/s 8-12 bit Medium 

Wireless 

communication, 

medical imaging 

Pipeline MS/s 10-14 bit Lower 
High-speed video 

equipment 

SAR KS/s 8-16 bit Low 
Industrial equipment, 

data survey 

ΔΣ KS/s 16-24 bit Medium 
Audio, precision 

measurement 
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Chapter 3 

LIMIT CYCLE SUPPRESSION 

TECHNIQUE USING RANDOM SIGNAL IN ΔΣ 

D/A MODULATOR 

3.1 Abstract 

The ΔΣ digital-to-analog converter (ΔΣDAC) generates a DC/low 

frequency analog signal with high resolution and high linearity, whereas 

there is a limit cycle problem where spurious components are periodically 

generated in the output signal for the small amplitude input, due to the 

nonlinear operation of the modulator. This paper studies a limit cycle 

suppression technique in the ΔΣ DA modulator. It is shown in simulations 

that the investigated method can reduce the limit cycle, while keeping the 

overall linearity, thanks to the fact that the random noise is noise-shaped. We 

show that these are valid for various types of the modulators: low-pass (LP), 

high-pass (HP), band-pass (BP) and multi-BP types. 

3.2 Introduction 

A DAC is widely used to generate an analog signal from a digital signal 

by sampling and quantization (Fig. 3.1). The ΔΣ DAC is commonly used in 

audio applications, cellular phone technology and high-end stereo systems, 

because it has properties of low cost, limited bandwidth, low power and high 

resolution/high linearity. However, the ΔΣ DA modulator suffers from a limit 

cycle problem when its input amplitude is very small [1]. 
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In order to overcome the problem mentioned above, we investigate a 

limit cycle suppression method, which adds a digital random noise to one of 

the comparator inputs for various types of modulators [5]: the loop filter H(z) 

in Fig. 3.1 is defined according to the modulator type as follows:  

(1) For low-pass (LP) type: 
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The SNDR is not degraded even though the random noise is added, 

because it is added at the end of the feedforward path in the modulator and 

hence the added noise is so-called noise shaped. 

Our MATLAB simulation results confirm that the limit cycles are 

suppressed in 10,14,16,18-bit cases, for low-pass (LP), band-pass (BP) and 
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multi-BP type modulators, while their good linearity is kept. 

 

Fig. 3.1 Block diagram of the first-order ΔΣ DA converter. 

3.3 ΔΣ Modulator 

3.3.1 ΔΣ Modulator configuration and operation 

The ΔΣ DA modulator consists of all digital circuits with feedback 

configuration with the digital input (𝐷𝐼𝑁) and the digital output (𝐷𝑂𝑈𝑇), using 

a loop filter H(z) (e. g., an integrator for LP type) and a comparator (Fig. 3.1). 

The error signal is accumulated at the integrator, and its output is compared 

with zero by the comparator. The integrator then adds the output of this 

summing node to a value stored from the previous integration step. The 

comparator outputs a logic 1 if the integrator output is greater than or equal 

to zero, and a logic 0 otherwise. The 1-bit DAC feeds the output of the 

comparator back to the summing node: + MSB for logic 1 and - MSB for 

logic 0. This feedback tries to keep the integrator output at zero by making 

the ones and zeros output of the comparator to be equal to the digital input. 

It is known in [4] that the output power spectrum is noise-shaped; the 

quantization noise is reduced at low frequency region while increased at high 

frequency. 
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3.3.2 Quantization noise 

The quantization error is a difference between the digital integrator 

output and its quantized output. For most input signals, power of the 

quantization noise is calculated as δ2/12 (δ is quantization step) in the 

frequency range between zero to Nyquist frequency fs/2 (fs: sampling 

frequency) [4]. 

3.3.3 Random signal (Dither signal) 

For the original dither signal added to the delta sigma DA conversion is 

shown in Fig. 3.2. However, this method sacrifices the input range; 

components of the dither signal enter the signal band, thus reducing the SNR 

of ΔΣ DA modulator. 

 

Fig. 3.2 Original dithering method, where the dither signal is added to ΔΣ DA 

modulator input  

Our proposed technique applies a digital random signal to one of the 

comparator inputs (Fig. 3.3). The proposed method can change the demerits 

of the original method. Commonly the dither signal can be generated by 

oscillator, or PRNG (pseudo random number generator) such as LCG (linear 



42 

 

congruential generator) or Mersenne Twister. 

 

Fig. 3.3 Investigated ΔΣ DA modulator with random signal. 

Dithering, or adding random offsets to the comparator input, represents 

a special case of limit cycle disturbance, since it does not directly influence 

the integrator output. The only way in which dither can break up a limit cycle 

is by changing the sign of the input to the comparator, causing it to create a 

bit-flip in the limit cycle output. As its result, a limit cycle is broken up [3]. 

3.4 MATLAB simulation results 

3.4.1 Limit cycle suppression (10 Bit case) 

We consider the case that the range of the random signal is within -2 ~ 

+2 (its discussion is included in Section. 3.2). We have checked the limit 

cycle reduction with simulation. In addition, we have also checked the 

number of 1’s at the modulator output, for DC signal generation is the same 

in both cases with and without a random signal The linearity is confirmed 

with this simulation result (Fig. 3.4). 

Fig. 3.6 shows simulation results for the DC input (Din) of 0.1. We see 

that the limit cycle with random signal (Fig. 3.5(b)) is lower than that without 

random signal (Fig. 3.5(a)), and also that Spurious Free Dynamic Range 
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(SFDR) [6] with random signal (22.1dB) is much higher than that without 

random signal (5.39dB). We have used the same simulation method to 

compare SFDRs with and without random signal and we see in Fig. 3.6 that 

it is improved for all range of the DC input (Din). 

 

Fig. 3.4 Number of 1’s for modulator output with 210data. 

(The two graphs match exactly because number of 1’s is the same.) 

 

(a) Without random signal 
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(b) With random signal 

Fig. 3.5 Power spectrum of ΔΣ DA modulator output in the case that the DC 

input (Din) is 0.1 

 

Fig. 3.6 SFDR comparison with and without random signal 

3.4.2 Random signal range with finite word length 

Here we consider the first-order ΔΣ DA modulator. Random signals 

between -1~+1, -2~+2, and -3~+3 are considered. The comparison results of 

the SFDR simulation are shown in Fig. 3.7. The ideal result can be obtained 
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at -2~+2 of random signal. 

When the random signal is within -2~+2, we consider its word length. 

Suppose that a fractional number 1.7824531023... is given. In Fig. 3.8, 

“precision is 3” means that 1.782 is considered, “precision is 4” means 

1.7824 and “precision is 5” means 1.78245. Our simulation results show that 

changing the precision or the word length does not affect the SFDR at all 

(Fig. 3.8). 

 

Fig. 3.7 Random signal range and SFDR 

 

Fig. 3.8 Random signal precision and SFDR. 
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3.4.3 Study on reduced circuit of the limit cycle for BP modulator (14, 

16, 18-bit cases) 

Sections 3.1 and 3.2 describe the validation of the investigated 

algorithm for the first-order LP ΔΣ modulator. Here we consider the case of 

the second-order BP ΔΣ modulator. 

We have simulated the in 14, 16, 18-bit cases for 2-band, 4-band band-

pass (BP) modulators, and their results are shown in Figs. 3.9, 3.10 and 3.11. 

We see in Figs. 3.9 (d), 3.10 and 3.11 that the SFDR is improved for the DC 

input of full scale between -1 and +1. Fig. 3.9 (d) shows the difference of the 

modulator output 1’s numbers with and without the random signal in 14-bit 

case. We see that the proposed circuit maintains the good DC linearity 

because the difference number of 1’s is within a ±1 range. We also see in 

Figs. 3.10 and 3.11 that the linearity is maintained in 16-bit and 18-bit cases. 

Fig. 3.12 show a second-order multi-BP ΔΣ modulator case (14-bit case). Fig. 

3.13 shows the results of the SFDR simulation with different resolutions for 

the same dithered signal. The comparison of the results shows that as the 

resolution increases, the linearity follows. 

 

(a) Without random signal 
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(b) With random signal. 

 

(c) SFDR comparison. 

 

(d) Linearity 

Fig. 3.9 Simulation results in 14-bit case. 
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Fig. 3.10 SFDR simulation results in 16-bit case. 

 

Fig. 3.11 SFDR simulation results in 18-bit case. 

 

(a) 2-band BP modulator. 
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(b) 4-band BP modulator. 

Fig. 3.12 Modulator output power spectrum comparison of without (black) and 

with random signal (red) for second-order complex BP ΔΣ modulators. 

 

Fig. 3.13 SFDR with different resolutions for the same dithered signal. 

3.5 Summary 

We have investigated a limit cycle suppression technique using a 
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random signal in the ΔΣ DA modulator. It uses the random signal to added 

to one input of the comparator in the ΔΣ DA modulator. We have used 

extensive MATLAB simulation and observed the following: 

(a) Limit cycles are reduced and the SFDR is improved. 

(b) The overall linearity of the ΔΣ DA modulator is maintained; this is 

because the added random noise is at the end of the feedforward path and 

it is noise-shaped. 

(c) The above statements are valid for all LP, HP, BP and multi-BP type 

modulators. 

(d) Simple circuit implementation equivalent to Fig. 1 is next challenge. 

Also this technique can be applied for the ΔΣ AD modulator.  
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Chapter 4 

SHORT-TIME INL TESTING 

METHODOLOGY FOR HIGH-RESOLUTION 

ΔΣ ADC 

4.1 Abstract 

This chapter describes a mass production testing methodology for 

integral nonlinearity (INL) of a high precision ΔΣ analog-to-digital converter 

(ADC) in short time. We consider its INL testing by separating its analog and 

digital parts: ΔΣ AD modulator and digital filter. The digital filter can be 

tested with the scan-path method. For the AD modulator part, its nonlinear 

curve of the DC input-output characteristics can be obtained using a DC 

input varying with a fine step, but it takes an enormously long time; it is not 

practical for mass production testing. So we consider a polynomial model of 

the ΔΣ AD modulator input-output characteristics and estimate its coefficient 

values from the fundamental and harmonics power by applying a cosine 

input and obtaining the modulator 1-bit output power spectrum with FFT. Its 

INL can be estimated from the coefficients accurately when the modulator 

I/O characteristics is continuous. Our simulation and experimental results 

show that significant testing time reduction can be achieved with the 

proposed method. 

4.2 Introduction 

In recent years, Internet of Things (IoTs) has attracted much attention, 

and the testing of IoT-related devices in short time with high quality has 
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become more important at mass production shipping for the IoT system 

reliability [1-3]. This chapter focuses on high-resolution low-sampling-rate 

ΔΣ ADCs, which are widely used with sensor interface circuits, such as air 

flow, temperature, pressure and strain gauge sensors as well as 

communication circuits [4-9]. However, its integral nonlinearity (INL) 

testing takes extraordinary long time; for example, let us consider the case 

of a 7 sample-per-second (sps) 24-bit ΔΣ ADC and 4 samples for each code 

used in its INL testing. Then its testing takes 111 days, which is not 

acceptable at all because the reasonable testing time is 1 second for 1 US 

dollar chip.  

Therefore, in most cases, the INL testing for the ΔΣ ADC is omitted at 

mass production shipping. However, recently high quality and high reliable 

systems are demanded. Then we have developed its INL testing algorithm 

with drastically reduced testing time as well as keeping good testing accuracy, 

and here we present its algorithm as well as simulation and experimental 

verifications. 

4.3 ΔΣ ADC 

The ΔΣ ADC is composed of a ΔΣ AD modulator in the analog section 

and a digital filter (decimator) in the subsequent stage [4-9]. The ΔΣ AD 

modulator performs ΔΣ modulation for the analog input with oversampling, 

so that noise shaping for the quantization noise is realized. Then 1-bit digital 

data stream is provided as the modulator output, which is fed to the following 

digital filter for low-pass filtering and decimation; its output is the entire 

ADC digital output (Fig. 4.1). 
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Fig. 4.1 Configuration of a ΔΣ ADC. 

4.4 Proposed ΔΣ ADC linearity test method 

We consider a 7-sps 24-bit discrete-time ΔΣADC for the target 

application. Notice that only 7 digital output data can be obtained in 1 second, 

and hence the direct INL testing is not acceptable at all (Fig. 4.2). Hence, we 

consider here to observe the 32-ksps 1-bit data stream of the ΔΣAD 

modulator for the INL testing. Notice also that the INL of the overall ΔΣADC 

is determined only by the ΔΣAD modulator, and the digital filter does not 

affect the overall ADC INL if it is well-designed and functional (i.e., without 

any catastrophic faults). Then we propose the following INL testing method 

(Fig. 4.3): 

(1) Separate the AD modulator and the digital filter parts, and test them 

individually. 

(2) The digital filter part is tested by the scan path method whether there are 

fatal faults. Notice that the digital filter part does not cause the overall ΔΣAD 

linearity deterioration unless it is faulty. 

(3) The 1-bit output data stream of the ΔΣAD modulator is externally 

outputted through a test pin in test mode (Fig. 4.3), and it is observed during 

the test. Its output rate is 32ksps, which is much faster than the digital filter 
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(decimator) output rate (7sps). 

(4) Since the ΔΣ AD modulator contains an analog circuit, then even if there 

is not a fatal fault, its linearity may be degraded by parametric faults such as 

parasitic circuit components, which should be checked by the testing. It is 

assumed here that the input/output characteristics of the ΔΣ AD modulator 

do not have jumps (discontinuities), which is different from pipelined ADCs 

and SAR ADCs (Fig. 4.4). 

(5) We model the input/output characteristics of the ΔΣ AD modulator 

including nonlinearity characteristics model with polynomials.  

Let 𝑥(𝑡)  be an input of the modulator and 𝑦(𝑡)  be its output data 

stream, and then we model its input/output characteristics with the following 

n-th order polynomial model: 

𝑦(𝑡) = 𝑎0 + 𝑎1𝑥(𝑡) + 𝑎2𝑥(𝑡) 
2 +⋯+𝑎n𝑥(𝑡) 

n
 (4-1) 

(6) We apply a cosine wave input to the modulator as follows: 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡) (4-2) 

Here, the amplitude of A is known, and the input signal frequency ω as 

well as the sampling clock frequency ωs are low so that the modulator does 

not show high-frequency performance degradation. Then substituting Eq. (4-

2) into Eq. (4-5), the modulator 1-bit output data stream is modeled by: 

𝑦(𝑡) = 𝑏0 + 𝑏1cos(𝜔𝑡) + 𝑏2cos(2𝜔𝑡) +⋯+ 𝑏𝑛cos(𝑛𝜔𝑡) (4-3) 

Using the coefficients 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 , the coefficients 

𝑏0, 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 can be expressed as follows [10, 11]: 
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𝑏0 = 𝑎0 +
1

2
𝑎2𝐴

2 +
3

23
𝑎4𝐴

4 +⋯

    𝑏1 = 𝑎1𝐴 +
3

22
𝑎3𝐴

3 +
5

23
𝑎5𝐴

5 +⋯

       𝑏2 =
1

2
𝑎2𝐴

2 +
1

2
𝑎4𝐴

4 +
15

25
𝑎6𝐴

6 +⋯

          

𝑏3 =
1

22
𝑎3𝐴

3 +
5

24
𝑎5𝐴

5 +
21

26
𝑎7𝐴

7 +⋯

𝑏4 =
1

23
𝑎4𝐴

4 +
1

24
𝑎6𝐴

6 +
7

25
𝑎8𝐴

8 +⋯

𝑏5 =
1

24
𝑎5𝐴

5 +
7

26
𝑎7𝐴

7 +
9

26
𝑎9𝐴

9 +⋯

⋮

𝑏𝑛−1 =
𝑎𝑛−1
2𝑛−2

𝐴𝑛−1

𝑏𝑛 =
𝑎𝑛
2𝑛−1

𝐴𝑛 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (4-4) 

(7) We perform FFT to the1-bit output data stream of the modulator and 

obtain 𝑏0, 𝑏1, 𝑏2, ⋯ , 𝑏𝑛; then we derive 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 from the relation 

in Eq. (4-4). Now we have the following DC input/output characteristics: 

𝑦(𝑡) = 𝑎0 + 𝑎1 + 𝑎2𝑥
2 +⋯+𝑎n𝑥 n (4-5) 

 (8) Finally, we calculate the INL of the modulator from Eq. (4-5) using the 

end-point method or the best-straight-line method [1]. 

Remark: Here, we use the end-point method for obtain INL. 

Example: Consider the case that the 3rd-order nonlinearity is the dominant 

distortion for the modulator. Then we model its input/output characteristics 

as follows: 

𝑦(𝑡) = 𝑎1𝑥(𝑡) + 𝑎3𝑥(𝑡) 
3
 (4-6) 
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Provide to the modulator a cosine wave input 𝑥(𝑡) whose amplitude A is 

known. 

𝑥(𝑡) =  𝐴cos (𝜔𝑡) 

Then the modulator output 𝑦(𝑡)  modeled in Eq. (4-6) is given as 

follows: 

     𝑦(𝑡) =  𝑎1𝑥(𝑡) + 𝑎3𝑥(𝑡) 
3
 

= (𝑎1 ∙ 𝐴 +
3

4
𝑎3 ∙ 𝐴

3) cos (𝜔𝑡) +
1

4
𝑎3 ∙ 𝐴

3 cos(3𝜔𝑡) 

(4-7) 

We perform FFT to 𝑦(𝑡)  and obtain its power spectrum. Then its 

fundamental spectrum power is given as follows: 

𝑏1 = 𝑎1 ∙ 𝐴 +
3

4
𝑎3 ∙ 𝐴

3 (4-8) 

Its third harmonic spectrum power is expressed as follows: 

𝑏1 =
1

4
𝑎3 ∙ 𝐴

3 (4-9) 

We can estimate the polynomial coefficients 𝑎1, 𝑎3 in Eq. (4-6) from 

𝑏1, 𝑏3, and 𝐴, using the relationship among 𝑎1, 𝑎3, 𝑏1, 𝑏3, and 𝐴 in Eqs. 

(4-8), (4-9). Now we can estimate the AD ΔΣ modulator characteristic given 

by Eq. (4-6) and then calculate the overall ADC INL with the end-point 

method. 
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Fig. 4.2 All code testing for INL testing. 

 

Fig. 4.3 Proposed FFT-based INL prediction method. 
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Fig. 4.4 Input/output characteristics of the ΔΣAD modulator without jumps. 

4.5 Simulation verification of proposed integral linearity test for ΔΣ 

ADC modulator 

4.5.1 Simulation condition 

Section 4.5 shows simulation verifications of the proposed method in 

Section 4.3, in the following cases: 

(i) Discrete-time 1st-order and 2nd-order modulators. 

(ii) 3rd-order and 5th-oder nonlinearities. 

(iii) Several nonlinearity strength variations. 

(iv) Several input cosine wave amplitudes. 

(v) Several cases for the number of acquired 1-bit data stream of the 

modulator output. 

Fig. 4.5 shows our simulation model of the 1st-order ΔΣ AD modulator 

with nonlinearities.  
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Fig. 4.5 Simulation model of the 1st - order ΔΣAD modulator with nonlinearity. 

Here 

E(n) = Vin(n) − Vf(n) 

Vo(n) = Vo(n − 1) + Vm(n) 

If   Vo(n) ≥ 0, then 

Dout(n + 1) = 1;  Vf(n + 1) = 1 

Else Dout(n + 1) = 0;  Vf(n + 1) = −1 

The block M models the modulator nonlinearity and its nonlinearity 

strength can be controlled by the parameter 𝑘. Also notice that the block 

diagram in Fig. 4.5 is for system level simulation with MATLAB; in the 

actual circuit, the DAC output (Vf) is Vref for Dout =1, or – Vref for Dout = 0, 

and the range of the ADC input (Vin) is from -Vref to Vref. 

In case that 3rd-order nonlinearity is dominant, we use 

Vm(n) = E(n) − 𝑘 ∗ E(n)3  (𝑘 > 0) (4-10) 

   In case that 5th-order nonlinearity is dominant, we use 

Vm(n) = E(n) − 𝑘 ∗ E(n)5  (𝑘 > 0) (4-11) 
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M
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In subsections 4.5.2 - 4.5.6, we consider the 3rd - order harmonics is 

dominant and use Eq. (4-10), whereas in subsection 4.5.6 we consider also 

5th-order harmonics is dominant and use Eq. (4-11). 

4.5.2 DC input-output characteristic with cure fitting 

In our first simulation, we apply a DC input to the 1st-order modulator 

input Vin in Fig. 4.5, from -1 to 1 with 0.05 step and obtain its input/output 

characteristics as a reference, even though it takes quite a large number of 

AD modulator sampling points. The number of 1’s (𝐷𝑜𝑢𝑡 = 1) for each DC 

value is obtained using 220 data for a given DC input: the input DC value 

is changed with 0.05 step so that the total sampling number to obtain the 

whole input/output is enormous. The value of k representing the strength of 

the nonlinearity is varied as 0.0000, 0.0001, 0.0005, 0.0010, 0.0050, 0.0100, 

and the number of 1's at 𝐷𝑜𝑢𝑡  is plotted in Fig. 4.6, which is the DC 

input/output characteristics and the INL of the modulator in Fig. 4.5. 

The input/output characteristics in Fig. 4.5 are polynomial 

approximated by the following formula: 

𝑦 =  𝑎0 + 𝑎1 ∙ 𝑥 + 𝑎2 ∙ 𝑥
2 + 𝑎3 ∙ 𝑥

3 (4-12) 

 

(a) Modulator output number of 1’s 
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(b) Difference between the ideal and actual modulator output numbers of 1’s. 

Fig. 4.6 Simulation results of the DC input/output characteristics and the INL of 

the ΔΣAD modulator in Fig. 4.5 when the number of the modulator output is 220. 

Table 4.1 shows the values 𝑎1 , 𝑎3  obtained from the simulation 

results in Fig. 4.6 using the curve fitting for each 𝑘 , 𝑎0 , and 𝑎2 , are 

relatively very small due to the nonlinearity model usage of Eq. (4-10). So 

they can be ignored and are not written in Table 4.1. We see the followings 

from Table 4.1:  

(1) As the value of 𝑘 increases, the values of a1 slightly decreases. 

(2) As the value of 𝑘 increases, the value of a3 increases. 
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Table 4.1 Estimated coefficient values in the polynomial model of the ΔΣ AD 

modulator DC input/input characteristics. 

k 𝑎1 𝑎3 

0.0001 524180 104.84 

0.0005 523760 524.48 

0.0010 523240 1050.50 

0.0050 519000 5282.50 

0.0100 513610 10643.00 

 

 

(a) 𝑎1 estimation error (input: 0.1 ~ 1.0) 
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(b) 𝑎3 estimation error (input: 0.1 ~ 1.0) 

 

(c) 𝑎1 estimation error (input: 0.5 ~ 0.9) 
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(d) 𝑎3 estimation error (Input: 0.5 ~ 0.9) 

Fig. 4.7 Estimation errors of the polynomial coefficients obtained from the 1st-

order modulator output power spectrum. 

4.5.3 Cosine wave input and output power spectrum 

 Next, we consider to provide a cosine wave to the AD modulator as 

Vin (Eq. (4-2), Fig. 4.3), and obtain its 1-bit output stream of 220 data. Then 

we perform FFT for the 1-bit output data stream and obtain its power 

spectrum; the fundamental wave power P1 and the third harmonic power P3 

(Fig. 4.7). Here ωin/ωs = 1/220, ωin is an input angular frequency and ωs is a 

sampling angular frequency. 

As the number of the acquired modulator output data is large, the 

estimation accuracy for 𝑎1 , 𝑎3  improves; we found that 220  is a 

reasonable compromise between testing time and accuracy for both the1st-

order and 2nd-order modulators. 
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Polynomial modeling is performed for the DC input/output 

characteristics of the ΔΣ AD modulator, based on Eq. (4-6). Then we 

estimate the values of 𝑎1, 𝑎3 from P1 and P3 obtained in Fig. 8, using Eqs. 

(4-8) and (4-9). Fig. 4.7 shows the errors of 𝑎1, 𝑎3 between these estimates 

and the ones in Table 4.1. 

 

Fig. 4.8 Simulation result of the ΔΣ modulator output power spectrum obtained 

by FFT for a cosine wave input. 

4.5.5 2nd-order Modulator Case 

A 2nd-order modulator in Fig. 4.9 with 220 samples is also simulated with 

the same method. Fig. 4.10 shows the estimation errors of the fundamental 

and 3rd harmonics for the input with the amplitude of 0.5 to 0.9 from the 2nd-

order modulator output power spectrum. We see the following from Figs. 4.8 

and 4.10: 

(1) Estimation error for a1 is small for all the input amplitude A. 

(2) When the input amplitude A increases to 0.9, then the estimation error for 
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estimation error becomes larger than the one as shown in Figs. 4.6 and 4.7. 

(4) By comparing the 1st-order modulator with the 2nd-order modulator, the 

estimation errors of the both models are small. So we expect that this method 

is applicable for testing also high-order modulators. 

 

Fig. 4.9 Simulation model of the 2nd -order ΔΣAD modulator with nonlinearity. 

Here: 

E(n) = Vin(n) − Vf(n) 

𝑉1(𝑛) =  𝑉1(𝑛 − 1) + 𝑉𝑚(𝑛) 

𝑉2(𝑛) =  𝑉1(𝑛) − 𝑉f(𝑛) 

Vo(n) = Vo(n − 1) + V2(n) 

If   Vo(n) ≥ 0, then 

Dout(n + 1) = 1;  Vf(n + 1) = 1 

Else  Dout(n + 1) = 0;  Vf(n + 1) = −1. 

The block M models the modulator nonlinearity and its nonlinearity 

strength can be controlled by the parameter k. In case that 3rd-order or 5th-

order nonlinearity is dominant, we use Eq. (4-10) or Eq. (4-11) respectively. 
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(a) 𝑎1 estimation error (Input: 0.5 ~ 0.9) 

 

(b) 𝑎3 estimation error (input: 0.5 ~ 0.9) 

Fig. 4.10 Estimation errors of the polynomial coefficients obtained from the 2nd - 

order modulator output power spectrum. 
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In this subsection, the INL is estimated based on our prosed FFT method 

and compared with the reference INL obtained by the curve fitting method 

using simulations. We found that the amplitude 0.9 is the best value for the 

accurate INL estimation, and notice that during test, the input to the ΔΣADC 

under test can be controlled so that the input of 0.9 cos(ωt) can be provided. 

Table 4.2 shows the 3rd-order and 5th-order harmonics comparison. Fig. 4.11 

shows their comparison for the amplitude of 0.9 when the 3rd-order 

harmonics is dominant (Eq. (4-10) is used), while Fig. 4.12 is the one when 

the 5th-order harmonics is dominant (Eq. (4-11) is used). The vertical axes in 

Figs. 4.11 (a), (b) and 4.12 (a), (b) show errors of the modulator output 1’s 

number for 220 data when 1LB is considered as 1/220. We see in Figs. 4.11 

(c) and 4.12 (c) that estimated INL errors with our proposed method are 

sufficiently small.  

Fig. 4.13 shows INL errors as a function of the number of the modulator 

output data for the amplitude of 0.9 and k=0.0005; 214 , 216 , 218 , 

220 and 222. We see that the number of the data is larger, the error is smaller. 

Table 4.2 3rd and 5th harmonics estimation maximum error. 

k 
3rd harmonic estimation error 

[%] 

5th harmonic estimation error 

[%] 

0.0001 0.0187 0.1421 

0.0005 0.0213 0.1037 

0.0010 0.0784 0.0142 

0.0050 0.2342 0.0092 

0.0100 0.4516 0.0276 
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4.6 Experimental Verification 

Our research collaborators of ROHM Semiconductor Ltd. have 

performed experiments with a real ΔΣ ADC chip using the proposed 

algorithm. Our target INL test accuracy is within ±  1ppm, so that 

requirements for the input signal source are that THD < -120dB and SN > 

130dB and synchronization between the signal source and the DUT (Device 

Under Test) of the ΔΣADC in Fig. 4.14. Then we have developed a precise 

arbitrary waveform generator (AWG) whose performance is shown in Fig. 

4.15. and the NI PXI system in Fig. 4.16. is used and test environment in Fig. 

4.17. The modulator output FFT results are obtained in Fig. 4.18, and the 

INL prediction is shown in Fig. 19. These results show that our proposed 

method can estimate the INL at ppm level. 

 

(a) INL obtained by our proposed FFT method 
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(b) INL obtained by the curve fitting method 

 

(c) INL error between the FFT and curve fitting methods 

Fig. 4.11 INL comparison between the FFT and curve fitting methods when the 

3rd-order harmonics is dominant. 
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(a) INL obtained by our proposed FFT method 

 

(b) INL obtained by the curve fitting method 
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(c) INL error between the FFT and curve fitting methods 

Fig. 4.12 INL comparison between the FFT and curve fitting methods when the 

5th - order harmonics is dominant. 

 

(a) 𝑎1 estimation error 

 

(b) 𝑎3 estimation error 
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(c) 𝑎5 estimation error 

Fig. 4.13 Number of the modulator output data and estimation errors for a1, a3, a5 

with the proposed FFT method. 

 

Output: 1kHz 44.1ksps 

THD: 122dB (~5th-order harmonics) 

SN: 131dB (Filter:20kHz LPF) 

Fig. 4.14 Signal from our developed AWG. 
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(a) PXI compatible module           (b) ROHM 32bit audio DAC 

Fig. 4.15 Development of precise signal generation AWG. 

 

Fig. 4.16 Use of NI PXI system for experiment. 

      

(a)  PXI setup                             (b) DUT board 

Fig. 4.17 Test environment. 
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Input amplitude A= 2.252Vpp (differential) 

Fig. 4.18 Experimental result of the modulator output FFT. 

 

Fig. 4.19 Obtained INL prediction with the proposed method. 

4.7 Discussions 

(i) Integral nonlinearity test time estimation: 

Suppose that the ΔΣAD modulator operates with 32ksps and the 

required number of data for INL test is 220.  Then the required testing time 

is 32 seconds. If 32 chips are tested in parallel, the equivalent test time per 

chip is 1 second; this test time may be acceptable for industry applications.  

The following are calculation equations: 
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a) The INL testing time with the direct method for a 7-sps 24-bit ΔΣADC is 

calculated by 

Test Time = 224 ∗
1

7
∗ 𝑛 [sec] = 666[h] ∗ 𝑛  Here, 𝑛 =

Samples

Code
 

In case n=4, its testing time is 111 days.  

b) On the other hand, when the proposed method is used, the testing time is 

given by 

Test Time = 220 ∗
1

32,000
= 32[sec]  

(ii) One might claim that if the gain of the operational amplifier inside the 

modulator is not high enough, the input/output characteristics of the ΔΣ AD 

modulator can have jumps and it is not continuous [4]. However, our target 

ΔΣ ADC does not have the jumps with some circuit techniques. 

(iii) For the direct INL method, a precise DC signal generator with more than 

24-bit resolution is required for the modulator input. However, for the 

proposed method, a low distortion signal generator and a low-pass filter such 

as [12] are enough. Recently 32-bit ΔΣ ADCs are commercially announced 

and there would not be a DC signal generator for their INL testing with the 

direct method; an ultra-high-precision DC signal source is difficult to realize.  

(iv) The proposed method can be applied for high-order modulators, 

continuous-time modulators and multi-bit modulators; this is under 

investigation. 

(v) The proposed method can be considered as solving so-called an inverse 

problem. The modulator nonlinearity is modeled as a polynomial and its 

coefficients are estimated by the FFT method; the modulator INL is 

indirectly measured by its output power spectrum. 
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4.8 Summary 

We have proposed a short-time high-accuracy integral linearity test 

method/algorithm of the high-resolution low-sampling-rate ΔΣADC for 

mass production. We have conducted its modeling and simulation as well as 

experimental verification. For the next step, we will take higher-order 

distortions into account, and apply the proposed method to higher-order 

modulators. We will also perform further experiments with real ΔΣADC 

chips and verify the test time in the ATE environment. 
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This part starts with a brief introduction to the concept of ADCs and the 

evaluation criteria for ADCs, giving the reader a preliminary understanding 

of ADCs and the criteria for judging them. This is followed by a brief 

comparison of the advantages and disadvantages of different ADC types in 

terms of structure, conversion principle, adoption speed, accuracy, power 

and application scenarios. In today's rapidly developing electronics industry, 

there are certain application areas where traditional naive ADCs are no 

longer adequate, but ΔΣ ADCs have their own unique performance 

advantages. For example, they play an important role in applications where 

high precision AD conversion is required. 

For ΔΣ ADCs in high-precision conversion, the quantizer requirements 

are very high. In analog circuits, it is still difficult to improve the quantizer, 

but in digital circuits this can be easily implemented. Based on the 

advantages and disadvantages of both analog and digital, we decided to start 

with the design of the circuit from the digital side of the signal. Various 

factors in the AD conversion process have an impact on the accuracy of the 

conversion due to the quantizer. Therefore, we proposed a method to control 

the output of the signal by replacing the grounded port in the quantizer 

section with access to a random signal, which effectively suppresses the 

generation of limit loops, thus effectively improving the performance of the 

conversion. The spectrograms shown in the dissertation can clearly show that 
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by comparing the spectrograms before and after the addition of the random 

signal, the addition of the random signal can effectively reduce the noise. A 

comparison of the size of the added random signal was also made, and the 

best SFDR values were obtained for random signals in the range of -2 ~ +2. 

Similarly, ΔΣ ADCs can be well used in the field of sensor interface 

circuits. In this paper, a test method for high precision INL using FFT has 

been developed using ΔΣ ADCs. The method starts by obtaining the DC 

output curve from the input DC signal and then approximating the curve 

equation to obtain the fundamental and harmonic coefficients. The input 

signal is then changed to a cosine signal to obtain an output FFT spectrum, 

from which the fundamental and harmonic values are obtained. Finally, we 

have compared the third and fifth harmonic simulations by calculating the 

obtained inferred values and the values obtained from the FFT, as well as 

combining the results of the hardware tests by our research collaborators at 

ROHM Semiconductor Ltd., proving that our proposed test method is valid 

and can also significantly reduce the test time. 

5.2 Future work 

There are still areas of deficiency in this design that need further 

refinement and improvement for subsequent improvements. 

What is the limit value of the input random signal that can be reached 

during a high precision AD conversion? Whether the method has the same 

effect on multi-bit ΔΣ ADCs. 

Whether the method can be applied in embedded ΔΣ ADC structures 

such as ΔΣ-pipeline, SAR-ΔΣ structures in test applications. In these 

structures, it is possible to increase the AD conversion rate and thus save test 
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time. 
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Chapter 1 

INTRODUCTION 

1.1 Research Background and Motivation 

With the advancement of semiconductor process technology and the 

development of floating-point processor design technology, floating-point 

processors have gone through different stages such as digital co-processors, 

single floating-point processing unit integrated in microprocessors and 

multiple floating-point processing units integrated [1-3]. To meet the needs 

of everyday life, integrated circuit (IC) chips such as high-performance 

microprocessors based on integrated circuit technology are increasingly 

becoming a catalyst for social development. At the same time, the demand 

for performance in various electronic products has led to the development of 

integrated circuit manufacturing technologies to meet design requirements 

[4,5]. It is the continuous development of IC manufacturing processes that 

has led to effective improvements in the speed, power consumption and chip 

area of microprocessors, which are at the heart of information processing. In 

microprocessors, floating-point numbers, with their own particular ability to 

perform accurately and over a wide range of data, have been widely studied 

as a fundamental requirement. 

However, the structure design of the floating-point operator units is 

more complicated than that of the fixed-point operator units, and it consumes 

more hardware resources, so at the early stage of IC development, many ICs 

did not contain special floating-point units, so for floating-point operations 

most computers use fixed-point units through software to achieve, although 
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this method makes the structure design of the IC simpler and reduces the 

consumption of hardware resources. Although this approach simplifies the 

design of the IC structure and reduces the consumption of hardware 

resources, the speed of the floating-point calculation is significantly reduced, 

so it is not feasible to use software to calculate floating-point numbers where 

speed is required. In addition to this, there are also manufacturing process 

barriers. Previous processes made it difficult to implement floating-point 

units in hardware, but now we know that IC process features are getting 

smaller and smaller, and that System-on-Chip (SoCs) can be implemented 

[6,7], so it is now possible to embed a separate floating-point unit inside the 

hardware [8]. 

In the field of digital signal processing, a Digital Signal Processor (DSP) 

is a microprocessor dedicated to digital signal processing. With more 

arithmetic power than general purpose microprocessors, DSPs are used in a 

wide range of applications including radar, sonar, communications, 

multimedia, biomedicine, sensing networks, automotive and aircraft control, 

and precision-guided weapons, and have profoundly influenced the 

development of modern society [9-11]. Current digital signal processing 

systems have been changing from fixed-point arithmetic to floating-point 

arithmetic. 

In summary, the difficulty with floating-point calculations lies in the 

calculation of the mantissa. The aim of this paper is to improve the 

performance of basic floating-point arithmetic calculations by using Taylor-

series expansions, so as to use the least number of Taylor-series expansions 

to achieve high-precision design of floating-point mantissa. 
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1.2 Organization 

The first chapter presents a brief description of the technical difficulties 

encountered in the design of IC chips and DSPs for floating-point 

calculations. Finally, the purpose of this dissertation research is explained. 

In Chapter 2, the format of floating-point representation, the different 

floating-point precision, and the different approaches to floating-point 

calculations are introduced. In Chapters 3, 4, 5 and 6, we investigated the use 

of the proposed Taylor-series expansion to compute floating-point mantissa. 

In the proposed Taylor-series expansion calculations region uniform division, 

region non-uniform division, and region conversion division are used in the 

calculation of different floating-point number mantissa, respectively. In 

Chapter 7, we summarize this part and future work. 
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Chapter 2 

INTRODUCTION TO FLOATING-POINT 

REPRESENTATION AND BASIC 

OPERATIONS 

2.1 Floating-point representation format and classification 

In the process of computer numerical calculations, fixed-point numbers 

represent a limited range of positive and negative integers centered on 0. As 

the decimal point position of fixed-point numbers is relatively fixed, it is not 

suitable for representing numbers with a large dynamic range, and equally 

unsuitable for representing numbers with a small range, so it has a major 

drawback in terms of numerical accuracy. In contrast to the fixed-point 

format, the order of a floating-point number can be varied within a certain 

range, while the position of the decimal point varies according to the specific 

calculated value. This allows a wider range of values to be expressed more 

flexibly, and so the floating-point representation is widely used. The Institute 

of Electrical and Electronics Engineers (IEEE) developed the IEEE-754 

standard for floating-point numbers in 1985, and this standard is now widely 

used [1,2]. The IEEE-754 standard covers the following main areas: 

(1) Basic and extended floating-point formats. 

(2) Operations such as addition, subtraction, multiplication and division. 

(3) Conversions between integer and floating-point formats. 

(4) Conversions between different floating-point formats. 

(5) Conversions between floating-point formats and decimal numbers. 
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(6) Floating-point exceptions and how they are handled. 

Floating-point operations are more widely used than fixed-point 

operations, but most FPGA synthesis tools do not support floating-point 

operations due to the more complex circuitry of floating-point devices, 

which requires the design of floating-point devices to implement basic 

floating-point operations. Here we introduce the basic concepts and 

international standards of floating-point arithmetic, and then describe the 

basic theory of floating-point arithmetic, including the IEEE-754 binary 

floating-point standard, the floating-point memory format standard, and 

normalized shifts. 

In general, IEEE-754 standard floating-point numbers consist of sign 

bit, exponent part and mantissa part. The data in a floating-point number 

consists of two numbers, 0 and 1, with the base implied as 2. The format is 

shown in Fig. 2.1.  

 

Fig. 2.1 Format of floating-point number 

The sign bit (S) represents whether the floating-point number is positive 

or negative and occupies only 1 bit, with 0 representing a positive number 

and 1 representing a negative number. The exponent (E) part is represented 

as an integer, that is to satisfy the valid data part of the exponent, and to 

represent the positive or negative exponent. The IEEE-754 standard for this 

type of exponent specifies that the exponent part is the sum of the two 

numbers using the actual exponent plus an offset for the actual storage, that 
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is e = E - Bias, where E is called the exponent bit, and bias represents the 

offset. The mantissa (M) part is a positive number and is expressed as a fixed-

point decimal, the first bit before the mantissa decimal of a specific floating-

point number is always "1"; therefore, when storing the valid mantissa part, 

it is perfectly possible not to store this 1 before the decimal point, "1. " is 

also known as the hidden bit, so that the trailing part has an extra bit, thus 

improving the precision of the floating-point number, which in the IEEE-754 

standard format is the data after the decimal point. For half-precision 

floating-point numbers, single-precision floating-point numbers and double-

precision floating-point numbers are represented as shown in Table 2.1 [3-

6]. 

In the IEEE-754 standard, for normalized floating-point numbers, its 

real value is represented as follows: 

X = (−1)𝑆 ×𝑀 × 2𝐸−𝛼 (2-1) 

Where, S is sign bit, M is mantissa part, E is exponent part and 𝛼 is offset 

value. 

Table 2.1 Floating-point parameters 

Format 
Half-

precision 

Single-

precision 

Double-

precision 

Sign 1 1 1 

Exponential width 5 8 11 

Mantissa width 10 23 52 
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Exponential offset 15 127 1023 

Floating-point format 

width 
16 32 64 

2.2 Basic algorithm operation 

In this subsection, I briefly introduce the steps for using Newton-

Raphson, CORDIC and Taylor-series expansion algorithms in arithmetic to 

give us some initial insight into these algorithms. 

2.2.1 Newton-Raphson 

The idea behind Newton Raphson's algorithm is to find the reciprocal 

of the divisor, then multiply it by the divisor, and finally find the final 

quotient [7, 8]. The multiplication operation can be calculated directly by 

calling the multiplier, so the difficulty of Newton-Raphson's algorithm 

becomes how to find the reciprocal of the divisor, as in the following 

equation: 

y =
𝑏

𝑐
= 𝑏 

1

𝑐
 (2-2) 

For the reciprocal of a divisor, Newton Raphson's algorithm is found by 

multiple iterations. First given a function 𝑓(𝑥) =
1

𝑥
− 𝑑, it is easy to see that 

when the function has function value of 0, the independent variable is the 

reciprocal of the divisor 𝑑. Starting from the image of the function, which is 

the intersection of the image of the function with the 𝑥-axis, is shown in Fig. 

2.2. 



94 

 

 

Fig. 2.2 Schematic diagram of the Newton Raphson algorithm iteration 

As shown in Fig. 2.4, the objective is to determine the transverse 

coordinate X of the point where the image of the function intersects the 𝑥-

axis. X is obtained by a number of 𝑥 iterations. The initial value of 𝑥0 is 

determined, then the point on the image of the function with horizontal 

coordinate 𝑥0 (𝑥0, 𝑓(𝑥0)) is found, and the tangent to the function is made 

at that point, and the intersection of the tangent and the 𝑥-axis is 𝑥1. Then, 

with 𝑥1 as the new initial value, the above iterative process is repeated to 

obtain 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ⋯ in order to keep approximating X. By iterating 

several times, we can obtain the relationship between 𝑥0 and 𝑥1 as: 𝑥1 =

𝑥0 −
𝑓(𝑥0)

𝑓(𝑥0)́ . Then we continue to iterate, which can get the Newton Raphson 

algorithm iterative formula as: 

𝑥𝑖 = 𝑥𝑖−1 −
𝑓(𝑥𝑖−1)

𝑓(𝑥𝑖−1)́
 (2-3) 

Because the derivative of the function 𝑓(𝑥𝑖−1)́ = −
1

𝑥𝑖−1
2
, taking into 
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the above equation, we can obtain the following: 

𝑥𝑖 = 𝑥𝑖−1 −

1
𝑥𝑖
− 𝑋

−
1

𝑥𝑖−1
2

= 𝑥𝑖−1(2 − 𝑥𝑖−1𝑋) (2-4) 

In numerical analysis, Newton Raphson's algorithm usually converges 

quickly, especially when the iterations start very close to the desired value. 

The closer the initial value is to the desired value the fewer iterations there 

are. The initial value is usually determined using a look-up table (LUT), 

based on which the initial value of the iteration is determined and then 

iterated. 

2.2.2 CORDIC 

The CORDIC algorithm is a well-known iterative technique for 

computing elementary functions that has been extensively studied and which 

uses only primitive arithmetic operations (addition, subtraction, shifting and 

lookup of stored functions), which is a great advantage in terms of hardware 

characteristics, especially when complex circuits are involved [9,10]. The 

basic idea of CORDIC is to perform two-dimensional vector processing 

using a series of micro-rotations (rotations at a predetermined angle). 

Therefore, The CORDIC algorithm belongs to the class of bit-by-bit 

algorithms with linear convergence, and the approximation requires 

approximately n iterations to obtain n bits of accuracy. A schematic of the 

CORIC algorithm rotation is shown in Fig. 2.3. 

The CORDIC iterative equation is derived from the two-dimensional 

vector rotation mechanism. First, any rotation angle A is decomposed into a 

set of angles {𝐴𝑖 , 𝑖 =  0, 1, 2,⋯  n ,, that is θ = ∑ 𝜃𝑖
𝑛
𝑖=0   , where the 
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rotation direction parameter 𝜃𝑖{−1, 1}, and then the vector rotated by A is 

represented using the triangular equation as shown in following: 

[
𝑥𝑛
𝑦𝑛
] = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] ∙ [
𝑥0
𝑦0
] 

=∏ 𝑐𝑜𝑠𝜃𝑖 [
1 −𝜎𝑖𝑡𝑎𝑛𝜎𝑖

𝜎𝑖𝑡𝑎𝑛𝜎𝑖 1
]

𝑛

𝑖
∙ [
𝑥0
𝑦0
] 

(2-5) 

In order to use simple arithmetic operations to implement each matrix 

multiplication, the angle set is defined as the arctangent base, {𝜃𝑖 = 𝑡𝑎𝑛−1,

𝑖 =  0, 1, 2,⋯𝑛}, thus the above formula is obtained. 

[
𝑥𝑛
𝑦𝑛
] =∏ 𝑐𝑜𝑠𝜃𝑖 [

1 −𝜎𝑖𝑡𝑎𝑛𝜎𝑖
𝜎𝑖𝑡𝑎𝑛𝜎𝑖 1

]
𝑛

𝑖
∙ [
𝑥0
𝑦0
] (2-6) 

Based on the above equation, the CORDIC iterative equation for 

performing the vector rotation can be derived as follows: 

{
𝑥𝑖+1 = 𝑥𝑖 − 𝜎𝑖𝑦𝑖2

−𝑖

𝑦𝑖+1 = 𝑦𝑖 + 𝜎𝑖𝑥𝑖2
−𝑖

 (2-7) 

The CORDIC algorithm can be extended to evaluate various functions 

by using different modes of operation (rotational and vector) and coordinate 

systems (circular, linear and hyperbolic). In the rotation mode, the CORDIC 

processor performs a two-dimensional vector rotation. The processor 

produces a vector (𝑥𝑛, 𝑦𝑛) that converges to 0 with the angle (𝑧𝑛) output, 

obtained by rotating the angle input (𝑧0). On the other hand, the vector mode 

processor calculates the magnitude (𝑥𝑛) and the angle of the initial vector 

(𝑥0, 𝑦0) converges to 0 with 𝑦𝑛. Considering the two modes of operation 

with the three coordinate systems acting together, the unified CORDIC 

iterative equation for step i is expressed as the following equation: 
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{
𝑥𝑖+1 = 𝑥𝑖 −𝑚𝜎𝑖𝑦𝑖2

−𝑖

𝑦𝑖+1 = 𝑦𝑖 + 𝜎𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 − 𝜎𝑖𝛼𝑖

 (2-8) 

 

Fig. 2.3 schematic of the CORIC algorithm rotation 

Here 𝑚 is equal to 1, 0 and -1 in the circular, linear and hyperbolic 

coordinate systems, respectively, and 𝜎𝑖 is defined as 𝑠𝑖𝑔𝑛(𝑧𝑖), which is 

defined in the rotational or vector model as sign(𝑥𝑖 , 𝑦𝑖) and the angle of 

rotation is 𝛼𝑖 = 𝑚−
1

2𝑡𝑎𝑛−1(𝑚
1

22−𝑖). Iterations start from i =0 when m=1 and 

from i ≥1 when m=0 or -1. In order to satisfy CORDIC convergence, we 

need to satisfy the following equation: 

∀i,∝𝑖≤ ∑ ∝𝑗

∞

𝑗=𝑖+1

 (2-9) 
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When m = -1, the iteration needs to be repeated twice at 𝑖 =

4, 13,⋯ , 𝑗, 3𝑗 + 1 in order to satisfy the condition upper equation. At the 

same time, the norm of the vector is amplified by the scale factor 𝐾𝑚 =

∏ √1 +𝑚 ∙ 2−2𝑖𝑛−1
𝑖=0   during the CORDIC rotation. Proportionality factor 

compensation is usually accomplished by post-multiplication and this 

proportionality factor can be effectively removed. The final result is that 

when the appropriate initial vectors (𝑥0, 𝑦0) are input and the correct mode 

of operation and coordinate system are chosen, the CORDIC algorithm can 

be used to evaluate trigonometric and transcendental primitive functions. 

2.2.3 Taylor-series expansion 

The Taylor-series expansion algorithm is similar to the aforementioned 

Newton Raphson algorithm in that it converts the division of the divisor and 

the divisor into the multiplication of the reciprocal of the divisor and the 

reciprocal of the divisor [11,12]. The difference is that in the process of 

finding the reciprocal of the divisor, the Taylor-series expansion algorithm 

uses a Taylor-series expansion to approximate the reciprocal value. The 

following section provides a brief introduction to Taylor-series expansions. 

In mathematics, a Taylor-series is a representation of a function that is 

the sum of an infinite number of terms calculated from the value of the 

derivative at a point. Let 𝑓(𝑥) be a differentiable function corresponding to 

an algebraic expression, then the Taylor-series of 𝑓(𝑥) is defined as: 

𝑓(𝑥) = ∑
1

𝑛!
(𝑥 − 𝑥0)

𝑛𝑓𝑛(𝑥0)

∞

𝑛=0

 (2-10) 

Another format we can express is as follows: 
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𝑓(𝑥) = 𝑓(𝑥0) + 𝑥𝑓 , (𝑥0) +
𝑥2

2!
(𝑓),,(𝑥0) + ⋯

+
(𝑥 − 𝑥0)

𝑛!
(𝑓)𝑛(𝑥0) + 𝑅𝑛(𝑥) 

(2-11) 

where 𝑓 , (𝑥0) , 𝑓′′(𝑥0) , etc. are the first, second and higher order 

derivatives of 𝑓(𝑥) and 𝑅𝑛(𝑥) is the Lagrangian remainder. The error R is 

bounded as follows: 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥0)

𝑛+1 (2-12) 

If the value of a function and all its derivatives at a point are known, the 

Taylor-series can be used to calculate the value of the entire function at each 

point. The partial sum (Taylor polynomial) of the series can be used as an 

approximation for the whole function. 

2.3 Summary 

This chapter mainly introduces the floating-point number 

representation method and format, and introduces the more commonly used 

algorithms, including Newton's iteration method, CORDIC algorithm and 

Taylor-series expansion method. Various algorithms can complete arithmetic 

operations. Where should we consider choosing the best algorithm? This 

needs to take into account the hardware area occupied by the algorithm, the 

time delay caused by the algorithm, the speed of operation and the accuracy 

of the algorithm. For researchers to work on this series of issues, the 

hardware resource occupancy rate is lower and the speed is faster; this design 

is also developed around these issues. 
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Chapter 3  

REVISIT TO FLOATING-POINT 

DIVISION ALGORITHM BASED ON 

TAYLOR-SERIES EXPANSION 

3.1 Abstract 

This paper investigates floating-point division algorithms based on 

Taylor-series expansion. Taylor-series expansions of 1/x are examined for 

several center points with their convergence ranges, and we show the Taylor-

series expansion division algorithm trade-offs among division accuracy, 

numbers of multiplications/additions/subtractions and LUT sizes; the 

designer can choose the optimal algorithm for his digital division, and build 

its conceptual architecture design with the contents described here. 

Keywords—Floating-point Division Algorithm, Digital Divider, 

Taylor-series Expansion, Digital Arithmetic 

3.2 Introduction 

Due to constant advances in VLSI technology, binary floating-point 

representation becomes more important and high precision and high-speed 

floating-point calculation in embedded systems and mobile applications 

becomes possible. There calculations of addition, subtraction, multiplication 

and division are involved: addition and subtraction are relatively easy to 

implement, and multiplication is complicated to implement, whereas 

division is very complex to implement. 
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 In this paper, we focus a simple-yet-accurate floating-point division 

algorithm using Taylor-series expansion of 𝑓(𝑥) = 1/𝑥. There are many 

division algorithms including: table lookup, functional iteration, variable 

latency, high radix, and digit recurrence. More detailed concepts about 

division can be found in [1]. The floating-point division calculation is of very 

importance role in the range of signal processing of hardware 

implementation.  It is mentioned in [1, 2, 3] that the hardware complexity 

can be controlled and the calculation delay (latency) is small, but the details 

such as the accuracy of Taylor-series expansion seem not to be disclosed. 

Here we use the convergence of Taylor-series expansion of 𝑓(𝑥) = 1/𝑥 to 

show trade-offs among division accuracy, numbers of 

multiplications/additions/subtractions and LUT sizes so that the designer can 

choose the optimal algorithm for his digital division.  

 Compared with the Newton-Raphson method and digit recurrence 

method, our investigating method can improve the calculation efficiency and 

low latency of division in LUT (look up table), and can also control the 

numbers of multiplications/additions/subtractions and the LUT size, 

according to the requirements of the designer. We show some numerical 

simulation results and its hardware implementation considerations. 

3.3 Taylor-series Expansion 

Consider an infinitely differentiable function f(x). Its Taylor-series 

expansion at x = a is given by: 



104 

 

𝑓(𝑥) = f(a) + 𝑓 , (𝑎)(𝑥 − 𝑎) +
(f),,(𝑎)

2!
(𝑥 − 𝑎)2 +⋯

+
(f)𝑛(𝑎)

n!
(𝑥 − 𝑎)n +⋯ 

(3-1) 

Notice that many functions used in engineering design have relatively 

wide convergence radius; as n increases, the Taylor-series expansion reaches 

𝑓(𝑥) for wide range of x. For examples, Taylor-series expansions (with a = 

0) of sine and cosine functions converge to sine and cosine for -∞ < x < ∞, 

respectively, as n increases (Fig. 3.1). 

 

(a) sin(x) 

 

(b) cos(x) 

Fig. 3.1 Waveforms of Taylor-series expansion of sin(x) and cos(x) at a=0 up-to 

25 terms. 
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However, as far as we know, there are very few algorithms in the 

engineering field that positively utilize the fact that Taylor-series expansion 

of some 𝑓(𝑥)  converges to 𝑓(𝑥)  over a wide range of x. Then we 

investigate here a digital arithmetic algorithm for the reciprocal calculation 

of x by approximating 𝑓(𝑥) = 1/𝑥 by Taylor-series expansion. 

3.4 Investigated Division Algorithm 

3.4.1 Problem Formulation 

Consider floating-point representation in binary. 

Mantissa : M 

Exponent : E 

Binary representation : M x 2E 

Mantissa M = 1. αβγ⋯  (Here α, β, γ… is 0 or 1) 

Notice that the binary point is put so that 1≤ M <2. For example, 

M=1.011001(binary) = 1.390625 (decimal).  

Now let us consider a division algorithm that calculates A=N/D for two 

numbers N and D in binary floating-point representation, where A, N and D 

are expressed as follows: 

A = 𝑀𝐴 ×  2𝐸𝐴  

𝑁 = 𝑀𝑁 ×  2𝐸𝑁 

𝐷 = 𝑀𝐷 ×  2𝐸𝐷 

(3-2) 

If 1/D is calculated, A=N/D can be calculated using a conventional 

digital multiplication algorithm. Since 1/D is equal to  1/MD  ×  2
−𝐸, the 
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mantissa reciprocal calculation (1/MD) is the important point to obtain 1/D. 

Then we study an algorithm that performs Taylor-series expansion of 

𝑓(𝑥) = 1/𝑥 and its approximated calculation with the desired accuracy. 

3.4.2 Reciprocal calculation by Taylor-series expansion 

Let us consider the calculation of 1/MD (1 ≤ MD < 2) using Taylor-series 

expansion of 𝑓(𝑥) = 1/𝑥  with x=a (1 ≤ a <2) satisfying the desired 

accuracy. Taylor-series expansion of 𝑓(𝑥) = 1/𝑥 with x = a is as follows: 

𝑓(𝑥) =
1

𝑎
− (𝑥 − 𝑎) + (𝑥 − 𝑎)2 − (𝑥 − 𝑎)3 + (𝑥 − 𝑎)4 +⋯

+ (−1)𝑛(𝑥 − 𝑎)𝑛 +⋯ 

(3-3) 

Notice that the coefficient of each term is +1 or -1, which simplifies the 

calculation by reducing the number of multiplications. 

Fig. 3.2 shows the convergence range of Taylor-series expansion of 

𝑓(𝑥) = 1/𝑥 with different a > 0. We can conjecture that the convergence 

range for a > 0 is 0 < x < 2a. 

 

Fig. 3.2 Convergence range of Taylor-series expansion with different a at 

𝑓(𝑥) = 1/𝑥 (number of terms: 25). 
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3.5 Simulation Results 

In this section, we use simulation to obtain the number of terms n 

expanded by Taylor-series of 𝑓(𝑥) = 1/𝑥  in different cases of given 

accuracies and given regions, which satisfies the following: 

| {𝑓(𝑥) – [Taylor-series expansion of 𝑓(𝑥) with n terms]}/ 𝑓(𝑥) | < 

given accuracy for all x in given region. 

3.5.1 Binary point position of mantissa  𝑴 =1.𝜶𝜷𝜸⋯ (1≤ 𝑴 <2) 

(1) One Region of 1≤ 𝑀𝐷<2  

Table1 shows the required number of the terms n for Taylor-series 

expansion to meet the desired accuracy.   

A-1-a) Taylor-series expansion of 𝑓(𝑥) = 1/𝑥 at a = 1.5 (1≤x<2) 

For example, when the given accuracy is 1/216, we obtain n=11 from 

numerical simulation which satisfied the following: 

| {𝑓(𝑥) – [Taylor-series expansion of 𝑓(𝑥)  with n terms]}/ 𝑓(𝑥)  | 

< 1/216 for all x (1≤ x <2) 

Table 3.1 shows the numerical calculation results. 

Table 3.1. Number of Taylor-series expansion terms that meets specified 

accuracy for one region of 1≤ x <2. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-1-a) 6 11 13 16 21 

(2) Division by 2 of region 1≤ x <2. 
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Divide the region 1≤ x <2 by 2 and choose the region, based on MD. 

Then perform the Taylor-series expansion at the point a of the center of each 

divided region. 

A-2-a) For MD = 1.0xxxxx⋯  (1≤MD<1.5), a=1.25. 

A-2-b) For MD = 1.1xxxxx⋯  (1.5≦MD <2), a=1.75. 

Table 3.2 shows the numerical simulation results. 

Table 3.2 Number of Taylor-series expansion terms that meets specified accuracy 

when the region of 1≤ x <2 is divided by 2. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-2-a) 4 7 9 11 14 

A-2-b) 3 6 8 9 12 

(3) Division by 4 of region 1≤ x <2. 

Divide the region 1≤ x <2 by 4 and choose the region, based on MD. 

Then perform the Taylor-series expansion at the point a of the center of each 

divided region. 

A-3-a) For MD = 1.00xxxxx⋯   (1≤MD<1.25), a =1.125. 

A-3-b) For MD = 1.01xxxxx⋯   (1.25≤MD<1.5), a =1.375. 

A-3-c) For MD = 1.10xxxxx⋯   (1.5≤MD<1.75), a =1.625. 

A-3-d) For MD = 1.11xxxxx⋯   (1.75≤MD<2), a =1.875. 

Table 3.3 shows the numerical simulation results. 
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Table 3.3 Number of Taylor-series expansion terms that meets specified accuracy 

when the region of 1≤ x <2 is divided by 4. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-3-a) 3 6 7 8 11 

A-3-b) 3 5 6 7 10 

A-3-c) 3 5 6 7 9 

A-3-d) 3 5 6 7 9 

(4) Division by 8 of region 1≤ x <2. 

Divide the region 1≤ x <2 by 8 and choose the region, based on MD. 

Then perform the Taylor-series expansion at the point a of the center of each 

divided region. 

A-4-a) For MD = 1.000xxxx⋯  (1≦MD <1.125), a =1.0625. 

A-4-b) For MD = 1.001xxxx⋯  (1.125≤MD<1.25), a =1.1875. 

A-4-c) For MD = 1.010xxxx⋯  (1.25≦MD <1.375), a =1.3125. 

A-4-d) For MD = 1.011xxxx⋯  (1.375≤MD<1.5), a =1.4375. 

A-4-e) For MD = 1.100xxxx⋯  (1.5≤MD<1.625), a =1.5625. 

A-4-f) For MD = 1.101xxxx⋯  (1.625≤MD<1.75), a =1.6875. 

A-4-g) For MD = 1.110xxxx⋯  (1.75≤MD<1.875), a =1.8125. 

A-4-h) For MD = 1.111xxxx⋯  (1.875≤MD<2), a =1.9375. 

Table 3.4 shows the numerical simulation results. 



110 

 

Table 3.4 Number of Taylor-series expansion terms that meets specified accuracy 

when the region of 1≤ x <2 is divided by 8. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-4-a) 2 4 5 6 8 

A-4-b) 2 4 5 6 8 

A-4-c) 2 4 5 6 8 

A-4-d) 2 4 5 6 8 

A-4-e) 2 4 5 6 7 

A-4-f) 2 4 5 6 7 

A-4-g) 2 4 5 5 7 

A-4-h) 2 4 5 5 7 

3.5.2 Binary point position of mantissa  𝐌  =0.1𝛂𝛃𝛄... (1/2≤ 𝐌 <1) 

(1) One Region of 1/2 ≤ MD <1  

 Let us consider the case that the mantissa part MD of the denominator 

D is expressed as 0.1𝛼𝛽𝛾⋯ (1/2 ≤MD<1). Table 3.5 shows the numerical 

simulation result of the required number n of Taylor-series expansion terms. 

B-1-a) For MD = 0.1xxxx⋯  (0.5≦MD <1), a=0.75. 

Table 3.5 Number of Taylor-series expansion terms that meets specified accuracy 

for one region of 1/2≤ x <1. 

Precision 1

28
 

1

216
 

1

220
 

1

224
 

1

232
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Taylor-series expansion 

B-1-a) 6 11 13 16 21 

(2) Division by 2 of region 1/2 ≤ x <1. 

B-2-a) For MD = 0.10xxxxx⋯  (0.5≤MD<0.75), a =0.625. 

B-2-b) For MD = 0.11xxxxx⋯  0.7.5≦MD <1), a =0.875. 

Table 3.6 shows the numerical simulation results. 

Table 3.6 Number of Taylor-series expansion terms that meets specified accuracy 

when the region of 1/2≤ x <1 is divided by 2. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

B-2-a) 4 7 9 11 14 

B-2-b) 3 6 8 9 12 

(3) Division by 4 of region 1/2 ≤ x <1. 

B-3-a) For MD = 0.100xxxxx⋯    (0.5≤MD<0.625), a=0.5625. 

B-3-b) For MD = 0.101xxxxx⋯    (0.625≤MD<0.75), a=0.7125. 

B-3-c) For MD = 0.110xxxxx⋯    (0.75≤MD<0.875), a=0.8125. 

B-3-d) For MD = 0.111xxxxx⋯    (0.875≤MD<1), a=0.9375. 

Table 3.7 shows the numerical simulation results. 
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Table 3.7 Number of Taylor-series expansion terms that meets specified accuracy 

when the region of 1/2≤ x <1 is divided by 4. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

B-3-a) 3 6 7 8 11 

B-3-b) 3 5 6 7 10 

B-3-c) 3 5 6 7 9 

B-3-d) 3 5 6 7 9 

(4) Division by 8 of region 1/2 ≤ x <1. 

B-4-a) For MD = 0.1000xxxx⋯  (0.5≦MD <0.5625), a=0.5313. 

B-4-b) For MD = 0.1001xxxx⋯  (0.5625≤MD<0.625), a=0.5938. 

B-4-c) For MD = 0.1010xxxx⋯  (0.625≦MD <0.6875), a=0.6563. 

B-4-d) For MD = 0.1011xxxx⋯  (0.6875≤MD<0.75), a=0.7188. 

B-4-e) For MD = 0.1100xxxx⋯  (0.75≤MD<0.8125), a=0.7813. 

B-4-f) For MD = 0.1101xxxx⋯  (0.8125≤MD<0.875), a=0.8438. 

B-4-g) For MD = 0.1110xxxx⋯  (08.75≤MD<0.9375), a=0.9063. 

B-4-h) For MD = 0.1111xxxx⋯  (0.9375≤MD<1), a=0.9688. 

Table 3.8 shows the numerical simulation results. 
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Table 3.8 Number of Taylor-series expansion terms that meets specified accuracy 

when the region of 1/2≤ x <1 is divided by 8. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

B-4-a) 2 4 5 6 8 

B-4-b) 2 4 5 6 8 

B-4-c) 2 4 5 6 8 

B-4-d) 2 4 5 6 8 

B-4-e) 2 4 5 6 7 

B-4-f) 2 4 5 6 7 

B-4-g) 2 4 5 5 7 

B-4-h) 2 4 5 5 7 

We see from Tables 3.4 and 3.8 that the number of Taylor-series 

expansion terms required to obtain the desired precision is the same whether 

the mantissa MD is 1.αβγ⋯  (1≤ MD <2) or 0.1αβγ⋯  (1/2≤MD<1). For 

example, when the Taylor-series expansion precision is 24-bit, in both 

MDcases, the required number n of terms is 6 for the region division by 8, 

and it is 5 for the division by 16 while it is 4 for the division of 32. 

3.6 Hardware Implementation Consideration 

Let us consider the hardware implementation complexity for 

performing the reciprocal calculation of 𝑓(𝑥) = 1/𝑥 with the investigated 

algorithm. Notice that each term coefficient of the Taylor-series expansion 

of 𝑓(𝑥) = 1/𝑥  is +1 or -1 which appears alternately, and then we can 

reduce the number of multiplications for the Taylor-series calculation. 
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3.6.1 Required numbers of multiplications/additions/subtractions for 

Taylor-series expansion 

Example 1: Five terms of Taylor-series expansion case 

Let us consider to calculate the following with multiplier/ 

additions/subtracter and LUT. 

𝑓5 = (1/𝑎) − (𝑥 − 𝑎) + (𝑥 − 𝑎)2 − (𝑥 − 𝑎)3 + (𝑥 − 𝑎)4 (3-4) 

Where a is a constant and x is a variable. 1/a is calculated in advance 

and stored in LUT memory, which is read for the calculation. Then we 

calculate y = x - a and z = 𝑦2. Next, we calculate the followings: 

𝑓5 = (
1

𝑎
) − 𝑦 + 𝑦2 − 𝑦3 + 𝑦4 

= (1/𝑎) − (𝑦 − 𝑧)(1 + 𝑧) 

(3-5) 

We see that 𝑓5  can be obtained with 2 multiplications and 4 

additions/subtractions. 

We see from Tables 3.4 and 3.8 that by dividing the region by 8, the 

reciprocal of the mantissa can be calculated with 20-bit accuracy by 2 

multiplications and 4 additions/subtractions. 

Example 2: Seven terms of Taylor-series expansion case 

Next, let us consider the following: 

𝑓7 = (1/𝑎) − (𝑥 − 𝑎) + (𝑥 − 𝑎)2 − (𝑥 − 𝑎)3 + (𝑥 − 𝑎)4

− (𝑥 − 𝑎)5 + (𝑥 − 𝑎)6 
(3-6) 

Similarly, (1/a) is read from LUT and we calculate y=x-a and z=𝑦2. 
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Then we calculate the following: 

𝑓7
 = (1/𝑎) − 𝑦 + 𝑦2 − 𝑦3 + 𝑦4 − 𝑦5 + 𝑦6 

       = (1/𝑎) − (𝑦 − 𝑧)(1 + 𝑧 + 𝑧2) 
(3-7) 

We see that 𝑓7  can be obtained with 3 multiplications and 5 

additions/subtractions. 

Table 3.9 shows the required numbers of multiplications and 

additions/subtractions for the number of Taylor-series terms for 𝑓(𝑥) = 1/𝑥.  

3.6.2 LUT contents and size 

(1/a) is calculated in advance stored in memory. It is then read at Taylor-

series calculation time.  In case that the region is divided by 4, 4-word LUT 

is required as shown in Table 3.10, and the data at the address αβ is read 

for M=1.αβ⋯. 

3.6.3 Comparison of original and investigated methods  

The original Taylor-series expansion division method is described in [1, 

2, 3], but its design details seem not to be disclosed. Our investigated method 

directly calculates the reciprocal of the divider mantissa MD using Taylor-

series expansion, which may be one of different points. At least, we estimate 

that the number of multiplications is not larger and the LUT size is not bigger 

for our investigated method; the detailed comparison is left for the future 

work. Also, we would like to just claim that the designer can build his/her 

conceptual divider architecture design with the contents described in this 

paper. 
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3.7 Summary 

We have studied floating-point division algorithms with Taylor-series 

expansion of 𝑓(𝑥) = 1/𝑥, and show their hardware implementation trade-

offs among division accuracy, numbers of multiplications/additions 

/subtractions and LUT sizes to meet various digital division specifications 

flexibly. The designer can implement his/her floating-point division with 

these contents described in this paper. 

Table 3.9 Required numbers of multiplications and additions/subtractions for n-

term Taylor-series expansion. 

# of Taylor-series 

expansion terms 
# of multiplications 

# of additions and 

subtractions 

3 1 3 

4 2 4 

5 2 4 

6 3 5 

7 3 5 

8 4 6 

 

 

Table 3.10 LUT memory for region division by 4. 

Address (αβ) LUT data 

00 Reciprocal of a = 1.125 

01 Reciprocal of a = 1.357 
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10 Reciprocal of a = 1.625 

11 Reciprocal of a = 1.875 
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Chapter 4 

FLOATING-POINT SQUARE ROOT 

CALCULATION ALGORITHM BASED ON 

TAYLOR-SERIES EXPANSION AND REGION 

DIVISION 

4.1 Abstract 

This paper describes details of floating-point square root calculation 

algorithms using Taylor-series expansion and mantissa region division for 

the efficient dedicated hardware design. Taylor-series expansions of the 

square root are examined at the center points of divided mantissa regions, 

and based on these, square root calculation hardware design balances among 

accuracy, numbers of basic floating-point arithmetic operations 

(multiplications and additions/ subtractions) as well as the required look-up 

table size are clarified quantitatively. These results lead to obtaining the 

suitable algorithm for floating-point square root calculation, and building its 

corresponding hardware architecture for the digital processor designer. 

Keywords — Floating-point, Square Root, Taylor-series Expansion, 

Digital Arithmetic, Region Division 

4.2 Introduction 

The rapid advancement of Internet-of-Things (IoTs) service confirms 
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that it is one of the most important avenues to future technologies and it gains 

vast attention from a wide range of industries [1]. Floating-point arithmetic 

plays a crucial role in IoT service, and it prevails in lots of applications such 

as high precision signal processing and scientific computing calculations [2]-

[4]. In addition to fundamental arithmetic operations such as addition, 

subtraction and multiplication as well as division, the square root 

determination (SRD) is often required for realizing complicated signal 

processing and scientific computing algorithms. Unfortunately, SRD creates 

many constraints in terms of hardware resources and power efficiency [5]. 

We have discussed division and inverse square root algorithms using 

Taylor-series expansion (TSE) [6], [7]. This chapter focuses on square root 

calculation algorithms in binary floating-point format using TSE with 

mantissa region division; these are simple yet accurate algorithms due to the 

mantissa region division method. There are plenty of algorithms for SRD 

such as table lookup, functional iteration, variable latency and high radix as 

well as digit recurrence methods in [8]-[10]. It is described in [11], [12] that 

complexity of arithmetic algorithm calculation hardware can be flexible with 

the minimized calculation latency, but the design details such as the TSE 

calculation errors remain to be determined. For high-speed and low-power, 

a shared partition SRD architecture is proposed in [13], where GST 

(generalized Svoboda and Tung) and SRT (Sweeney, Robertson and Tocher) 

are used to achieve high speed and low power. Table-look algorithms are 

introduced in [14] for calculating elementary functions; their analytical 

studies have shown that they provide higher speed and accuracy, compared 
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to the original methods. Many other papers have presented results in this area 

[15]-[17]. 

In this chapter we base SRD on the convergence characteristics of TSE 

with mantissa region division and clarify the design balance among 

arithmetic accuracy, numbers of basic arithmetic operations (multiply, add, 

subtract) and look-up table (LUT) size. Our work here helps the digital 

processor designer to select the suitable algorithm for his/her digital SRD 

design target flexibly and realize it as dedicated hardware as well as FPGA. 

Our proposed method can offer improved calculation efficiency, and also 

flexible control over amount of the required hardware. We present 

implementation hardware complexity considerations supported by some 

simulation results. 

4.3 Taylor-series Expansion 

Let us consider a function 𝑓(𝑥), which is infinitely differentiable. 

Then its Taylor-series expansion (TSE) at the center of 𝑎 is expressed by: 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 , (𝑎)(𝑥 − 𝑎) +
(𝑓),,(𝑎)

2!
(𝑥 − 𝑎)2 +⋯

+
(𝑓)𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

(4-1) 

In general, as the number of terms n increases, the TSE approaches the exact 

value 𝑓(𝑥) for x in the convergence radius. 
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4.4 Square Root Calculation Algorithm 

4.4.1 Problem Formulation 

In general, the mantissa and the exponent as well as the sign bit can be 

used to form a floating-point number. Here, a positive number 𝑋 in the 

binary floating-point format is considered, and hence the sign-bit is always 

“positive”, which is ignored. Let 𝑋 be the floating-point representation, 

while let  𝑀 and 𝐸 be its mantissa part, and the exponent part in binary 

representation, respectively. Then we have the following relationships: 

𝑋 = 𝑀 × 2𝐸 (4-2) 

Here, the mantissa is expressed by 𝑀 = 1. 𝐴𝐵𝐶𝐷⋯  (𝐴, 𝐵, 𝐶, 𝐷,⋯ is 

0 or 1). For the binary floating-point number, the range of the mantissa M is 

in [1, 2); in other words 1 ≤ 𝑀 < 2, such as, 𝑀=1.101101 (binary) , 

which is equal to 1.703125 (decimal).  

For the square root calculation with the binary floating-point number, 

we can use the following expression: 

𝑆 =  √𝑋 = √𝑀 ×√2𝐸 (4-3) 

4.4.2 Square Root Calculation of Exponent Part 

Here, the exponent part calculation is discussed in two cases that the 

exponent part 𝐸 is even or odd.  

1) In case that 𝐸 is even:  Let 𝐸 = 2𝑘, and we have the following: 
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√2𝐸 = 2𝑘 (4-4) 

𝑆 = √𝑀 × 2𝑘 (4-5) 

We have the mantissa part √𝑀  and the exponent part k of 𝑆  . Then 

normalize the floating-point expression of √𝑀, and obtain the following: 

√𝑀 = 𝑀1 × 2𝑘1 (4-6) 

Since 1 ≤ 𝑀 < 2, then 1 ≤ 𝑀1 < √2  and hence 𝑘1 = 0. We have the 

following: 

𝑆 = 𝑀1 × 2𝑘 (4-7) 

We have the mantissa part 𝑀1  and the exponent part 𝑘  of the final 

expansion 𝑆. 

2) In case that E is odd:  Let 𝐸 = 2𝑘 + 1, and we have the following: 

√2𝐸 = √2 × 2𝑘 (4-8) 

Normalize the floating-point expression of √2 × √𝑀 , and obtain the 

following expression: 

√2 × √𝑀 = 𝑀2 × 2𝑘2 (4-9) 

Since 1 ≤ 𝑀 < 2 , then √2 ≤ √2 × √𝑀 < 2,  which leads to √2 ≤ 
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 𝑀2 < 2 and 𝑘2 = 0, and we have the following: 

𝑆 = 𝑀2 × 2𝑘 (4-10) 

We have the mantissa part 𝑀2  and the exponent part 𝑘  of the final 

expansion 𝑆. 

4.4.3 Square Root Calculation of Mantissa Part 

Here, we focus on the mantissa field and propose an accurate 

calculation algorithm utilizing TSE to satisfy the specified accuracy. 

Let us calculate 𝑀 in [1, 2) using TSE of the square root, for 𝑥  in [1, 

2) to satisfy the given accuracy. TSE of 𝑓(𝑥) = √𝑥   at center of 𝑎  is 

expressed by: 

𝑓(𝑥) = √𝑎 × {1 +
𝑥 −  𝑎

2
−
(𝑥 −  𝑎)2

8 × 𝑎
+
(𝑥 −  𝑎)3

16 × 𝑎2
 

−
5 × (𝑥 −  𝑎)4

128 × 𝑎3
+
7 × (𝑥 −  𝑎)5

256 × 𝑎4
−⋯} 

(4-11) 

Fig. 4.1 (a) shows graphs of 𝑓(𝑥) = √𝑥 and its TSE centered at 𝑎 = 1 

where up to 3rd, 4th and 5th terms are taken into account for 1 ≤ 𝑥 < 2. 

Their approximation errors are shown in Fig. 4.1 (b). We see from these that 

the output value accuracy improves, as the number of TSE terms increases.   

The approximation error of TSE is defined as follows: 
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Approximation Error = |
𝑓(𝑥) − 𝑇𝑛(𝑥)

𝑓(𝑥)
| (4-12) 

Here, 𝑓(𝑥) and 𝑇𝑛(𝑥) are represented by the original function value and 

the n-term TSE value, respectively. 

Similarly, Fig. 4.2 shows the result of 𝑓(𝑥) = √𝑥  utilizing TSE 

centered at 𝑎 = 1.5. 

We see from comparison of Figs. 4.1 and 4.2 that the TSE calculation 

value can be more accurate at the vicinity of the center value of a. Thus we 

use the center point value in the specified range (such as, setting the TSE 

center point to 1.5 for the range of [1, 2)) as the center value a of the TSE 

for better accuracy with good balance. According to this observation, we 

propose a division technique of the mantissa region in [1, 2) for TSE usage. 

Fig. 4.3 shows 𝑓(𝑥) = √𝑥 for 20-bit accuracy and the convergence 

range of 𝑓(𝑥) TSE with various  𝑎 > 0. 

We have conducted simulations to obtain the required number of TSE 

terms 𝑛  of 𝑓(𝑥) = √𝑥  for various cases of required accuracies and 

specified regions, so as to satisfy the following inequality: 

𝑚𝑎𝑥 |
𝑓(𝑥) − 𝑇(𝑛)

𝑓(𝑥)
| ≤ 𝑟 . (4-13) 

𝑓(𝑥) is the original function value, 𝑇(𝑛) is the n-term TSE approximated 

value, and 𝑟 is the required accuracy for all 𝑥 in the specified region. 
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(a) Exact value and TSE value for TSE algorithm of 𝑓(𝑥) = √𝑥. 

 

(b)  Approximation errors. 

Fig. 4.1 TSE with center of 𝑎 = 1. 
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(a) Exact value and TSE value for TSE algorithm of 𝑓(𝑥) = √𝑥. 

 

(b)  Approximation errors. 

Fig. 4.2 TSE with center of 𝑎=1.5. 
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Fig. 4.3 Convergence radius of TSE with various values of 𝑎 (=1, 1.5, 2, 3) for 

𝑓(𝑥) = √𝑥. Number of TSE terms is 200. 

4.4.4 Numerical Simulation Results 

We have performed numerical simulations to obtain the required 

number of TSE terms 𝑛  for 𝑓(𝑥) = √𝑥  in various cases of required 

accuracies and specified regions. 

(1) One Region of [1, 2) 

Table 4.1 explains the required number n of the TSE terms to meet the 

specified accuracy or tolerable error, as the simulation result. 

D-1-1 TSE of 𝑓(𝑥) = √𝑥 at 𝑎 = 1.5 for 𝑥 in [1, 2) 

When the specified tolerable error r in Eq. (4-13) is 1/ 216 for 

all 𝑥 in [1, 2) , we obtain 𝑛 = 7 from simulations. 
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Table 4.1 Required number of TSE terms for specified accuracy with one region 

of [1, 2). 

Tolerable error 

Region 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

D-1-1 3 7 9 12 15 

(2) Two regions of [1, 2). 

We separate the mantissa region of [1, 2) by 2 equally and select the 

region, according to 𝑀 (Table 4.2). Then conduct the TSE at the center 

point 𝑎 for each region.  

Table 4.3 provides simulation results. 

Table 4.2 Mantissa regions divided by 2 

 Mantissa Region Center value a 

D-2-1 1 ≤ 𝑀 < 1.5 1.25. 

D-2-2 1.5 ≤ 𝑀 < 2 1.75 

Table 4.3 Required number of TSE terms for specified accuracy with region of 

[1, 2) divided by 2. 

Tolerable error 

Region 

𝟏

𝟐𝟖
 

𝟏

𝟐𝟏𝟔
 

𝟏

𝟐𝟐 
 

𝟏

𝟐𝟐𝟒
 

𝟏

𝟐𝟑𝟐
 

D-2-1 3 5 7 8 11 

D-2-2 2 5 6 7 10 
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(3) Four Regions of [1, 2). 

Separate the mantissa region of  [1, 2) by 4 equally and select the 

region, according to M. Then conduct TSE at the center point a of each 

divided region (Table 4.4). 

Table 4.5 provides our simulation results. 

Table 4.4 Mantissa regions divided by 4 

 Mantissa Region Center value a 

D-4-1 1 ≤ 𝑀 < 1.25 1.125. 

D-4-2 1.25 ≤ 𝑀 < 1.5 1.375 

D-4-3 1.5 ≤ 𝑀 < 1.75 1.625 

D-4-4 1.75 ≤ 𝑀 < 2 1.875 

Table 4.5 Required number of TSE terms for specified accuracy with region of 

[1, 2) divided by 4. 

Tolerable error 

Region 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

D-4-1 2 4 5 6 9 

D-4-2 2 4 5 6 8 

D-4-3 2 4 5 6 8 

D-4-4 2 4 5 5 7 

(4) Eight Regions of [1, 2) 
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Separate the mantissa region of  [1, 2) by 8 equally and select the 

region, based on 𝑀 . Then conduct TSE at the center point  𝑎  of each 

divided region (Table 4.6). 

Table 4.7 provides our simulation results. 

Table 4.6 Mantissa regions divided by 8 

 Mantissa Region Center value a 

D-8-1 1 ≤ 𝑀 < 1.125 1.0625. 

D-8-2 1.125 ≤ 𝑀 < 1.25 1.1875 

D-8-3 1.25 ≤ 𝑀 < 1.375 1.3125 

D-8-4 1.375 ≤ 𝑀 < 1.5 1.4375 

D-8-5 1.5 ≤ 𝑀 < 1.625 1.5625 

D-8-6 1.625 ≤ 𝑀 < 1.75 1.6875 

D-8-7 1.75 ≤ 𝑀 < 1.875 1.8125 

D-8-8 1.875 ≤ 𝑀 < 2 1.9375 
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Table 4.7 Required number of TSE terms for specified accuracy with region of 

[1, 2) divided by 8. 

Tolerable error 

Region 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

D-8-1 2 3 4 5 7 

D-8-2 2 3 4 5 7 

D-8-3 2 3 4 5 7 

D-8-4 2 3 4 5 6 

D-8-5 2 3 4 5 6 

D-8-6 2 3 4 5 6 

D-8-7 2 3 4 4 6 

D-8-8 2 3 4 4 6 

4.4.5 Region Division for High-Speed SRD Calculation 

We investigated to calculate the SRD to meet the specified accuracy 

with 2 terms of its TSE as follows: 

𝑓2(𝑥) = √𝑎 × {1 +
𝑥 − 𝑎

2
} =  

√𝑎

2
× {𝑥 + (2 − 𝑎)} (4-14) 

Here, √𝑎 /2 and (2 − 𝑎) for each divided region are stored in LUT 

as discussed later. Table 4.8 explains the required number of the mantissa 

region division for the specified accuracy. The calculation of 2-term TSE 

requires only 1 multiplication and 1 addition, and hence its calculation can 
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be done at high speed though the LUT size becomes relatively large. 

Table 4.8 Required number of mantissa region division that meets specified 

accuracy with 2-term TSE. 

Tolerable error 
1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

Number of Mantissa 

Region Division 
4 64 256 1024 8192 

4.4.6 Verification with Some Examples 

Here, we introduce some examples for comparison between the direct 

calculation by a digital computer and TSE calculation results for the square 

root function. 

In case of the decimal expression of √𝑋 = √1.71875 × √28, we see 

that 𝐸 is an even number, and the following is obtained: 

𝑆 = √𝑋 = 1.01001111100111100110(2) × 24 

After the direct calculation of √1.71875  and its conversion to the 

normalized floating-point format, the following 20-bit mantissa 

representation is obtained: 

√𝑀 = √1.71875  =  1.01001111100111100110(2) × 20. 

Here, the proposed TSE method for calculation of √𝑀 is used. For 

instance, in the case of 20-bit accuracy (γ=1/220  in Eq. (4-13)) and 𝑀 =
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1.71875  with eight region division, the corresponding region for M is 

shown in D-8-6, and the TSE with 4 terms at a = 1.6875 obtained from Eq. 

(4-11) is given by: 

𝑡(𝑥) = √1.6875 × {1 +
(𝑥 − 1.6875)

2
−
(𝑥 − 1.6875)2

8 × 1.6875
 

+ 
(𝑥 − 1.6875)3

16 × 1.68752
} 

(4-15) 

When 𝑥 = 1.71875, Eq. (4-13) is used and the following is obtained: 

Taylor =  1.01001111100111100110(2) × 20 

Their comparison shows that their mantissa parts 

1.01001111100111100110(2), and the exponent parts (which are 0) of the 

direct and TSE calculations are the same. 

Taking √𝑀 = 1.01001111100111100110(2) × 20  into the odd 

number of the exponential position, we have the following: 

𝑆 = 1.01001111100111100110(2) × 24 

Therefore, we find that the mantissa part and the exponent part of 𝑆  is 

1.01001111100111100110(2) and 4(10) (= 100(2))), respectively. 

Using the calculation method for E being an even number, we can 

obtain a similar method for E being an odd number. 
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4.5 Hardware Design Consideration 

Let us consider the hardware implementation complexity for our 

algorithm to calculate 𝑓(𝑥) =  √𝑥 in various cases. 

We investigate the required numbers of multiplications and  

additions/subtractions using TSE to calculate 𝑆 = √𝑋 = √𝑀 × √2𝐸 . For 

instance, for the 5-term TSE 𝑓5(𝑥) for 𝑓(𝑥) = √𝑥 at 𝑥 = 𝑎, we have the 

following:  

𝑓5(𝑥) = √𝑎 × {1 +
𝑥 −  𝑎

2
−
(𝑥 −  𝑎)2

8 × 𝑎
+
(𝑥 −  𝑎)3

16 × 𝑎2

−
5 × (𝑥 −  𝑎)4

128 × 𝑎3
}  

= 𝛼0[2 + (𝑥 − 𝑎)] − 𝛼2(𝑥 −  𝑎)2 + 𝛼3(𝑥 −  𝑎)3

− 𝛼4(𝑥 −  𝑎)4 

(4-16) 

Here: 

  𝛼0 =
√𝑎

2
, 𝛼2 =

√𝑎

8 × 𝑎
, 𝛼3 =

√𝑎

16 × 𝑎2
, 𝛼4 =

5√𝑎

128 × 𝑎3
. 

We also define as follows: 

𝑔5(𝑥) = √2 × 𝑓5(𝑥) 

= 𝛽0[2 + (𝑥 − 𝑎)] − 𝛽2(𝑥 −  𝑎)2 + 𝛽3(𝑥 −  𝑎)3

− 𝛽4(𝑥 −  𝑎)4 

(4-17) 

Here, 𝛽0 = √2𝛼0, 𝛽2 = √2𝛼2, 𝛽3 = √2𝛼3, 𝛽4 = √2𝛼4. 
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(1) In case that 𝐸 is even (𝐸 = 2𝑘): 

𝑆 = 𝑀1 × 2𝑘 and 𝑀1 = 𝑓5(𝑀). 

(2) In case that E is odd (𝐸 = 2𝑘 + 1): 

𝑆 = 𝑀2 × 2𝑘 and 𝑀2 = √2 ×  𝑓5(𝑀) = 𝑔5(𝑀). 

Here, a is a constant, whereas 𝑥  is a variable. 𝛼0, 𝛼2, 𝛼3, 𝛼4,

𝛽0, 𝛽2, 𝛽3, 𝛽4 are calculated in advance and written in LUT memory; these 

are read at calculation time according to on-demand. Then calculate 𝑦 =

𝑥 − 𝑎, 𝑧 = 𝑦2, which yields: 

𝑓5(𝑥) = 𝛼0(2 + 𝑦) − 𝑧(𝛼2 − 𝛼3𝑦 + 𝛼4𝑧) (4-18) 

We see that 𝑓5 can be calculated by 5 times of floating multiplications 

and 5 times of additions or subtractions. Table 4.9 explains the necessary 

numbers of multiplications and additions/subtractions for various numbers 

of TSE terms for 𝑓(𝑥) = √𝑥. 

Tables 4.10 and 4.9 show that by dividing the mantissa region by 8, the 

square root of the mantissa can be calculated with 24-bit accuracy by 8 times 

of multiplications and 8 times of additions or subtractions. 

The required LUT size for N–divided regions is 𝑁 × 8 words, and its 

MSB and 2nd MSB addresses αβ can be obtained directly from M=1. αβ. 

For instance, in the case of the region division of 4 (N = 4), the necessary 

LUT size is 32 words, as shown in Table 4.10. 
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Table 4.9 Required Amount of Basic Arithmetic Operations for n-term TSE. 

Number of 

TSE terms 

Required number of 

floating multiplications 

Required number of floating 

additions/subtractions 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 8 

Table 4.10 LUT Contents for 4-Region Division Case 

LUT Address (𝛼𝛽 ∗∗∗) LUT Data 

00 ∗∗∗ 
𝛼0, 𝛼2, 𝛼3, 𝛼4, 𝛽0, 𝛽2, 𝛽3, 𝛽4 

for a = 1.125 

01 ∗∗∗ 
𝛼0, 𝛼2, 𝛼3, 𝛼4, 𝛽0, 𝛽2, 𝛽3, 𝛽4 

for a = 1.357 

10 ∗∗∗ 
𝛼0, 𝛼2, 𝛼3, 𝛼4, 𝛽0, 𝛽2, 𝛽3, 𝛽4 

for a = 1.625 

11∗∗∗ 
𝛼0, 𝛼2, 𝛼3, 𝛼4, 𝛽0, 𝛽2, 𝛽3, 𝛽4 

for a = 1.875 

4.6 Summary 

We have exploited the utilization of Taylor-series expansion (TSE) with 
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uniform mantissa region division to calculate the floating-point square root 

and clarified quantitatively their implementation hardware design balance 

among tolerable calculation error, numbers of basic arithmetic operations 

(multiply, add, subtract) and memory size to satisfy various square root 

calculation requirements flexibly. The TSE square root calculation method 

was first mentioned in [11]-[12], but its algorithm design details were not 

well addressed. Our results allow the designer to build dedicated hardware 

architectures that suit his/her specific square root calculation requirements. 
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Chapter 5 

FLOATING-POINT INVERSE SQUARE 

ROOT ALGORITHM BASED ON TAYLOR-

SERIES EXPANSION 

5.1 Abstract 

This chapter describes a segmented structure to deal with inverse square 

root in floating-point digital calculation arithmetic, based on Taylor-series 

expansion; it uses only the small number of their expansion terms to achieve 

a fast evaluation of these functions in high precision. Taylor-series 

expansions of the inverse square root are examined for several center points 

with their convergence ranges, and the inverse square root calculation 

algorithm trade-offs among accuracy, numbers of 

multiplications/additions/subtractions and LUT sizes are shown; the 

designer can choose the optimal algorithm for his digital inverse square root 

calculation, and build its conceptual dedicated hardware architecture design 

with the contents described here. 

Index Terms—Floating-point, division, inverse squares root, Taylor-

series expansion 

5.2 Introduction 

With the popularity and rapid development of IoT (internet of things), 
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our lives have undergone tremendous change. The intelligence level of IoT 

in industry and life is constantly improving [1]. There the binary floating-

point arithmetic plays an important role, and it is widely used in many 

applications such as signal processing, image processing and scientific 

computer [2]-[4]. We can understand the floating-point type arithmetic in 

details from [5]. 

The inverse square root can be used to improve the accuracy of the 

second-degree minimax polynomial approximation and Goldschmidt 

iteration [6]. They proposed an algorithm for elementary function 

approximation in single-precision floating-point format, which is based on 

minimax piecewise cubic polynomial approximation and Remes algorithm 

is used to perform the successive optimization [7], so as to reduce the chip 

area of LUT and circuit. Digit recurrence algorithm [8] requires less area 

than other methods, but it has linear convergence and often requires a large 

number of iterations. In [9], a method is proposed using a table lookup, 

operand modification, multiplication and Newton-Raphson iteration to 

reduce delay and chip area. In [10], based on Newton-Raphson method and 

utilizing fast parallel multipliers, the high performance design can be 

achieved. But there are also a lot of inverse square root and square root 

algorithms, which typically either have long latencies or high memory 

requirements [11]. In many calculations, Cholesky decomposition/Givens 

rotations/least square lattice filters [12]-[14] and other methods are used to 

calculate the inverse square root. 

There are many operations such as division, multiplication and inverse 
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square root, using Taylor-series expansion: there the square root or inverse 

square root algorithm is developed based on the Taylor-series expansion 

[15]-[16], but there is not much description on the accuracy and convergence 

range. 

The division algorithm based on Taylor-series expansion has been 

analyzed in [17]. In this chapter, we describe a class of floating-point inverse 

square root algorithms of our proposed segmented region method for Taylor-

series expansion and show their trade-offs among arithmetic accuracy, 

numbers of multiplications/additions/subtractions and LUT sizes so that the 

designer can choose the optimal algorithm for his digital inverse square root 

calculation and dedicated hardware architecture design; its efficient 

hardware implementation depends on the design target as well as available 

device technology. We show some numerical calculation results and their 

hardware implementation considerations, though no specific hardware 

implementation is not shown.  

5.3 Inverse Square Root Algorithm 

5.3.1 Representation of Floating-point Number 

A floating-point number consists of three parts, namely the sign bit, the 

exponent, and the mantissa. Here, we consider a positive number 𝑋  and 

ignore the sign bit. Let 𝑋,𝑀, 𝐸, denote the floating-point representation, the 

mantissa field, the exponent field in binary representation, respectively. So, 

the binary floating number 𝑋 can be expressed as: 
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𝑋 = 𝑀 × 2𝐸 (5-1) 

Here, the mantissa 𝑀 = 1. 𝛼𝛽𝛾⋯  (Here α, β, γ⋯ is 0 or 1). Notice 

that the binary point is put so that 1 ≤ 𝑀 < 2. For example, 𝑀=1.011001 

(binary) = 1.390625 (decimal).  

Now let us consider the floating-point algorithm, which calculates the 

inverse square root of the binary floating-point representation, expressed as 

𝐼𝑆: 

𝐼𝑆 =
1

√𝑋
=

1

√𝑀
×

1

√2𝐸
 (5-2) 

5.3.2 Exponent Part for Square Root Calculation 

Here, we discuss the exponent part by separating the cases that the 

exponent 𝐸 is even or odd.  

1) When 𝐸 is even, let 𝐸 = 2𝑘, and the following can be obtained:  

1

√2𝐸
= 2−𝑘 (5-3) 

1

√𝑋
=

1

√𝑀
× 2−𝑘 (5-4) 

We obtain the exponent part −   and the mantissa part 
1

√𝑀
  of 𝐼𝑆  . 

After further normalizing the floating-point type of 
1

√𝑀
 , the following is 

obtained: 
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1

√𝑀
= 𝑀1 × 2𝑘1 (5-5) 

Since 1 ≤ 𝑀 < 2 , then 
1

√2
< 𝑀1 ≤ 1   and hence  𝑘1 = 0 . We have the 

following: 

𝐼𝑆 =
1

√𝑋
= 𝑀1 × 2−𝑘 (5-6) 

Where, 𝑀1  and −𝑘  are the mantissa part and the exponent part of 𝐼𝑆 , 

respectively. 

2) When E is odd, let 𝐸 = 2𝑘 + 1, and the following is obtained:  

1

√2𝐸
=

1

√2
× 2−𝑘 (5-7) 

After normalizing the floating-point type of 
1

√2
×

1

√M
 , the following is 

obtained: 

1

√2
×

1

√𝑀
= 𝑀2 × 2𝑘2 (5-8) 

Since 1 ≤ 𝑀 < 2 , then 
1

2
<

1

√2
×

1

√𝑀
≤

1

√2
 , which leads to 

1

2
<   𝑀2 ≤

1

√2
 and 𝑘2 = 0, we have the following: 

𝐼𝑆 =
1

√𝑋
= 𝑀2 × 2−𝑘 (5-9) 

Where, 𝑀2  and −𝑘  are the mantissa part and the exponent part of 𝐼𝑆 , 

respectively. 
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5.4 Taylor-series expansion 

Consider an infinitely differentiable function f(x). Its Taylor-series 

expansion at the center value a to obtain the following equation:  

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 , (𝑎)(𝑥 − 𝑎) +
(𝑓),,(𝑎)

2!
(𝑥 − 𝑎)2 +⋯ 

+
(𝑓)𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 +⋯ 

(5-10) 

Notice that many functions used in engineering design have relatively wide 

convergence radius; as n increases, the Taylor-series expansion 

reaches 𝑓(𝑥) for wide range of x. 

When 𝑓(𝑥) = 1/√𝑥  and the center value is a, we can obtain the 

following equation: 

𝑓(𝑥) =
1

√𝑎
× {1 −

𝑥 − 𝑎

2 × 𝑎
+
3 × (𝑥 − 𝑎)2

8 × 𝑎2
− 

5 × (𝑥 − 𝑎)3

16 × 𝑎3
+
35 × (𝑥 −  𝑎)4

128 × 𝑎4
+⋯} 

(5-11) 

5.4.1 Taylor-series Expansion Centered at a=1 

Taylor-series expansion at a = 1 can be written as follows: 
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1

√𝑥
= 1 −

𝑥 − 1

2
+
3 × (𝑥 −  1)2

8
−
5 × (𝑥 −  1)3

16
 

+
35 × (𝑥 −  1)4

128
+⋯ 

(5-12) 

Figs. 5.1 (a) shows 𝑓(𝑥) = 1 √𝑥⁄   using Taylor-series expansion 

centered 𝑎 = 1 when taking 3rd, 4th and 5th terms produce approximated 

value for ideal inverse square root for 1 ≤ 𝑥 < 2, noting that the accuracy 

of the output value increases as number of terms increases.  

The inverse square root approximate error in this case of algorithm (𝑎 =

1) can be expressed in Fig. 5.1(b). The approximate error can be expressed 

as the following: 

Approximate Error =  |
𝑓(𝑥) − 𝑡(𝑛)

𝑓(𝑥)
| (5-13) 

Here, 𝑓(𝑥)  is the ideal value and 𝑡(𝑛)  is Taylor-series expansion value 

with n terms. 

5.4.2 Taylor-series Expansion Centered at 𝒂 = 𝟏. 𝟓 

Taylor-series expansion at a = 1.5 can be written as follows: 

1

√𝑥
=

1

√1.5
× {1 −

𝑥 − 1.5

2 × 1.5
+
3 × (𝑥 −  1.5)2

8 × 1.52
 

−
5 × (𝑥 −  1.5)3

16 × 1.53
+
35 × (𝑥 −  1.5)4

128 × 1.54
+⋯} 

(5-14) 
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Fig. 5.2(a) shows 𝑓(𝑥) = 1 √𝑥⁄   using Taylor-series expansion 

centered 𝑎 = 1.5 when taking 3rd, 4th and 5th terms produce approximated 

value for ideal inverse square root and Fig. 5.2(b) shows approximate error 

when 1 ≤ 𝑥 < 2. 

By comparing Figs. 5.1 and 5.2, we see that accurate results can be 

obtained near the center value a. So, we use the center point value in the 

specified range (such as, the center point of 1.5 in the range of 1 ≤ 𝑥 < 2) 

as the center value a of the Taylor-series expansion for more accuracy. Based 

on this finding, we propose a segmentation technique of Taylor-series 

expansion usage. 

 

(a) Ideal and Taylor-series expansion values for Taylor-series algorithm of 

𝑓(𝑥) = 1 √𝑥⁄  



149 

 

 

(b) Approximate error of the inverse square root 

Fig. 5.1 Taylor-series expansion centered at a =1. 

 

(a) Ideal and Taylor-series expansion values for Taylor-series algorithm of 

𝑓(𝑥) = 1 √𝑥⁄ . 
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(b)  Approximate error of the inverse square root. 

Fig. 5.2 Taylor-series expansion centered at 𝑎 = 1.5. 

5.5 Taylor-series Expansion Based Segment Structure Method 

In this section, we discuss the method of the segmented structure based 

on Taylor-series expansion to calculate the floating-point mantissa of the 

inverse square root. 

We have performed simulation to obtain the number of terms 𝑛 

expanded by Taylor-series of 𝑓(𝑥)  in different cases of given accuracies 

and given regions, which satisfies the following: 

|
𝑓(𝑥) − 𝑡(𝑛)

𝑓(𝑥)
| ≤ 𝑝 (5-15) 

Where, 𝑓(𝑥) is the ideal value, 𝑡(𝑛) is Taylor-series expansion value with 

n terms and 𝑝(𝑥) is given accuracy for all 𝑥 in given region. 
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Fig. 3 show that 𝑓(𝑥) = 1/√𝑥  in the accuracy p of 1/220  and the 

convergence range of its Taylor-series expansion with different a (𝑎 > 0). 

As a increases, the converging range also increases, and more accurate value 

is obtained near the center value. Also we can conjecture the convergence 

range for various values of 𝑎. We use the proposed segmentation technique 

to show the approximate error of 2 and 4 divided regions in Figs. 5.4 and 5.5 

respectively; we see that as the number of segments increases, the accuracy 

also increases. 

 

Fig. 5.3 Accuracies and convergence ranges of Taylor-series expansion with 

various values of 𝑎 at 𝑓(𝑥) = 1/√𝑥. Number of terms is 210. 
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(a) 1 ≤ 𝑥 < 1.5, a = 1.25 

 

(b) 1.5 ≤ 𝑥 < 2, a = 1.75. 

Fig. 5.4 Approximate errors of the proposed segmentation technique in 2 divided 

regions. 
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(a) 1 ≤ 𝑥 < 1.25,  a = 1.125 

 

(b) 1.25 ≤ 𝑥 < 1.5, a = 1.375. 
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(c) 1.5 ≤ 𝑥 < 1.625, a = 1.625. 

 

(d) 1.75 ≤ 𝑥 < 2, a = 1.875. 

Fig. 5.5 Approximate errors of the proposed segmentation technique in 4 divided 

regions. 

5.5.1 Numerical Simulation Results 

1) One Region of 1 ≤ 𝑥 < 2  
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Table 5.1 shows the required number of the terms n for Taylor-series 

expansion to meet the desired accuracy, obtained by numerical simulation. 

A-1-a) Taylor-series expansion of 𝑓(𝑥) = 1/√𝑥  at 𝑎 = 1.5 (1 ≤

𝑥 < 2) 

When the given accuracy p in Eq. (5-15) is 1/216, for all 𝑥 (1 ≤ 𝑥 <

2), we obtain 𝑛 = 9 from the numerical simulation. 

Table 5.1 Number of Taylor-series expansion terms that meets specified accuracy 

for one region of 1 ≤ 𝑥 < 2. 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-1-a) 5 9 12 14 19 

2) Two regions of 1 ≤ 𝑥 < 2. 

We divide the region of 1 ≤ 𝑥 < 2 by 2 and choose the region, based 

on 𝑀, and perform the Taylor-series expansion at the point 𝑎 of the center 

for each region. 

A-2-a) For M = 1.0∗∗∗∗ ⋯  (1 ≤ M < 1.5), a=1.25. 

A-2-b) For M = 1.1∗∗∗∗ ⋯  (1.5 ≤ M < 2), a=1.75. 

Table 5.2 shows the numerical simulation results. 
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Table 5.2 Number of Taylor-series expansion terms that meets specified accuracy 

when region of 1 ≤ x < 2 is divided by 2 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-2-a) 3 7 8 10 13 

A-2-b) 3 6 7 8 9 

3) Divided by 4 of region 1 ≤ 𝑥 < 2. 

Divide the region of 1 ≤ 𝑥 < 2 by 4 and choose the region, based on 

M. Then perform the Taylor-series expansion at the point a of the center of 

each divided region. 

A-3-a) For M  = 1.00∗∗∗∗ ⋯  (1 ≤ 𝑀 < 1.25), a = 1.125. 

A-3-b) For M = 1.01∗∗∗∗ ⋯  (1.25 ≤ 𝑀 < 1.5), a=1.375. 

A-3-c) For M = 1.10∗∗∗∗ ⋯  (1.5 ≤ 𝑀 < 1.75), a=1.625. 

A-3-d) For M = 1.11∗∗∗∗ ⋯  (1.75 ≤ 𝑀 < 2), a=1.875. 

Table 5.3 shows the numerical simulation results. 
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Table 5.3 Number of Taylor-series expansion terms that meets specified accuracy 

when region of 1 ≤ x < 2 is divided by 4 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-3-a) 3 5 6 7 10 

A-3-b) 2 5 6 7 9 

A-3-c) 2 4 5 6 8 

A-3-d) 2 4 5 6 8 

4) Divided by 8 of region 1 ≤ 𝑥 < 2. 

Divide the region of 1 ≤ 𝑥 < 2 by 8 and choose the region, based on 

𝑀. Then perform the Taylor-series expansion at the point 𝑎 of the center of 

each divided region. 

A-4-a) For M=1.000∗∗∗∗ ⋯ (1 ≤ 𝑀 < 1.125), a =1.0625. 

A-4-b) For M=1.001∗∗∗∗ ⋯(1.125≤ M <1.25), a =1.1875. 

A-4-c) For M=1.010∗∗∗∗ ⋯ (1.25 ≤ 𝑀 < 1.375), a =1.3125. 

A-4-d) For M=1.011∗∗∗∗ ⋯ (1.375 ≤ 𝑀 < 1.5), a =1.4375. 

A-4-e) For M=1.100∗∗∗∗ ⋯ (1.5 ≤ 𝑀 < 1.625), a =1.5625. 

A-4-f) For M=1.101∗∗∗∗ ⋯  (1.625 ≤ 𝑀 < 1.75), a =1.6875. 

A-4-g) For M=1.110∗∗∗∗ ⋯ (1.75 ≤ 𝑀 < 1.875), a =1.8125. 

A-4-h) For M=1.110∗∗∗∗ ⋯ (1.875 ≤ 𝑀 < 2), a =1.9375. 

Table 5.4 shows the numerical simulation results. 
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Table 5.4 Number of Taylor-series expansion terms that meets specified accuracy 

when region of 1 ≤ x < 2 is divided by 8 

Precision 

Taylor-series expansion 

1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

A-4-a) 2 4 5 6 8 

A-4-b) 2 4 5 6 7 

A-4-c) 2 4 5 6 7 

A-4-d) 2 4 5 5 7 

A-4-e) 2 4 4 5 7 

A-4-f) 2 4 4 5 7 

A-4-g) 2 3 4 5 7 

A-4-h) 2 3 4 5 7 

5.5.2 Verification with Some Examples 

Here, we compare the direct calculation result and the Taylor-series 

expansion simulation result of the inverse square root calculation with some 

examples, to verify the proposed method. 

In case of the decimal expression 
1

√𝑋
=

1

√1.71875
×

1

√28
 , we see that 𝐸 

is an even number, and the following is obtained: 

𝐼𝑆 = 1/√𝑋 = 0.11000011010001001110(2) × 2−4 

After the direct calculation of 
1

√1.71875
 with a digital processor, and its 
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normalization to the floating-point type, the following 20-bit representation 

is obtained: 

1

√𝑀
=

1

√1.71875
 =  0.11000011010001001110(2) × 20 

Here, we use the proposed Taylor-series expansion method to calculate 

1/√M. For example, in the case of 20-bit accuracy and 𝑀 = 1.71875 using 

8 divided regions, the corresponding case of M is in A-4-f, and the Taylor-

series with 4 terms at a = 1.6875 (mean: substitute a = 1.6875 into the 4 

terms Taylor-series expansion of Eq. (5-11)) is expanded as follows: 

1

√𝑥
=

1

√1.6875
× {1 −

𝑥 − 1.6875

2 × 1.6875
+
3 × (𝑥 −  1.6875)2

8 × 1.68752
 

 −
5 × (𝑥 −  1.6875)3

16 × 1.68753
} 

(5-16) 

For 𝑥 = 1.71875, the following is obtained: 

𝐼𝑆 =  0.11000011010001001110(2) × 20 

We see by their comparison that their mantissa parts 

0.11000011010001001110(2) , and exponent parts 0 of the direct and 

Taylor-series expansion calculations are the same; an error from the ideal 

value of √1.6875 is 3.1922 × 10−8 (which is less than 1/220)  using Eq. 

(5-13). 

Taking 1/√𝑀 = 0.11000011010001001110(2) × 20  into the odd 
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number of the exponential position, we obtain the following in binary 

representation: 

𝐼𝑆 = 1/√𝑋 = 0.11000011010001001110(2) × 2−4 

Therefore, we obtain that the mantissa part and the exponent part of 𝐼𝑆 

is 0.11000011010001001110(2)  and -4 in binary representation, 

respectively. 

The similar argument holds for odd-number E case. 

5.6 Hardware Implementation Consideration 

Let us consider the hardware implementation complexity of using the 

algorithm under study to perform 𝑓(𝑥) =  1/√𝑥  calculation in different 

cases. We consider the required numbers of 

multiplications/additions/subtractions for Taylor-series expansion to 

calculate 𝐼𝑆 =
1

√𝑋
=

1

√𝑀
×

1

√2𝐸
. For example, in case of 5-term Taylor-series 

expansion 𝑓5(𝑥)  for 𝑓(𝑥) = 1/√𝑥  at the center value a. We have the 

following:  

(1) In case that 𝐸 is an even number (𝐸 = 2𝑘): 

𝐼𝑆 = 𝑀1 × 2−𝑘 and 𝑀1 = 𝑓5(𝑀) = 𝑓5(𝑥). 
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𝑓5(𝑥) =
1

√𝑎
× {1 +

𝑥 −  𝑎

2 × 𝑎
−
3 × (𝑥 −  𝑎)2

8 × 𝑎2
 

+
5 × (𝑥 −  𝑎)3

16 × 𝑎3
 −

35 × (𝑥 −  𝑎)4

128 × 𝑎4
} 

= 𝛼0 + 𝛼1(𝑥 − 𝑎) − 𝛼2(𝑥 −  𝑎)2 + 𝛼3(𝑥 −  𝑎)3 − 𝛼4(𝑥 −  𝑎)4 

(5-17) 

Here, 𝛼0 =
1

√𝑎
, 𝛼1 =

1

√𝑎3
, 𝛼2 =

3

8×√𝑎5
, 𝛼3 =

5

16×√𝑎7
, 𝛼4 =

35

128×√𝑎9
. 

(2) In case that E is an odd number (𝐸 = 2𝑘 + 1): 

𝐼𝑆 = 𝑀2 × 2−𝑘 and 𝑀2 =
1

√2
 ×  𝑓5(𝑀) = 𝑔5(𝑀) = 𝑔5(𝑥). 

We also define Eq. (5-18). Here, 𝛽𝑘 =
1

√2×𝛼𝑘
, for k = 0, 1, 2, 3, 4. Also 

a is a constant and 𝑥 is a variable. α0, α1, α2, α3, α4, β0, β1, β2, β3, β4 are 

calculated in advance and stored in LUT memory, which are read at 

calculation time. 

𝑔5(𝑥) =
1

√2
× 𝑓5(𝑥) 

= 𝛽0 + 𝛽1(𝑥 − 𝑎) − 𝛽2(𝑥 −  𝑎)2 + 𝛽3(𝑥 −  𝑎)3 − 𝛽4(𝑥 −  𝑎)4 

(5-18) 

Then we calculate 𝑦 = 𝑥 − 𝑎 and 𝑧 = 𝑦2, we have the following: 

𝑓5(𝑥) = 𝛼0 + 𝛼1𝑦 − 𝑧(𝛼2 − 𝛼3𝑦 + 𝛼4𝑧) (5-19) 

We see that 𝑓5  can be obtained with 5 multiplications and 5 

additions/subtractions. Table 5.5 shows the required numbers of 
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multiplications and additions/subtractions for the number of Taylor-series 

terms for 𝑓(𝑥) = 1/√𝑥 . We see from Tables 5.4 and 5.5 that by inverse 

square root the region by 8, the reciprocal of the mantissa can be calculated 

with 24-bit accuracy by 5 multiplications and 5 additions/subtractions. 

The required LUT size for N regions is 𝑁 × 10 words, and its MSB 

and 2nd MSB addresses αβ is read for M=1. αβ.. Table 5.6 shows the case 

for N = 4 and the LUT size is 40 words. 

Table 5.5 Required numbers of multiplications and additions/subtractions for N-

term Taylor-series expansion 

# of Taylor-series 

expansion terms 

# of 

multiplications 

# of additions/ 

subtractions 

# of LUT words 

for N regions 

3 3 3 8 N 

4 4 4 10 N 

5 5 5 12 N 

6 6 6 14 N 

7 7 7 16 N 

8 8 8 18 N 

5.7 Summary 

We have studied floating-point inverse square root algorithms based on 

Taylor-series expansion using the segmented regions, and shown their 

hardware implementation trade-offs among simulation accuracy, numbers of 
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multiplications /additions/subtractions and LUT sizes to meet various digital 

division specifications flexibly. The original Taylor-series expansion inverse 

square root calculation method is described in [11], but its design details 

seem not to be disclosed. We would like to claim that the designer can build 

his/her conceptual dedicated hardware architecture design for square root 

calculation with the contents described in this chapter. 

Table 5.6 LUT memory for 4 regions (10 × 4 = 40 words) 

Address (𝛼𝛽 ∗∗∗) LUT data 

00 ∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4, 𝛽0, 𝛽1, 𝛽2, 𝛽3 , 𝛽4 

for a = 1.125 

01 ∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4, 𝛽0, 𝛽1, 𝛽2, 𝛽3 , 𝛽4 

for a = 1.357 

10 ∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4, 𝛽0, 𝛽1, 𝛽2, 𝛽3 , 𝛽4 

for a = 1.625 

11∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4, 𝛽0, 𝛽1, 𝛽2, 𝛽3 , 𝛽4 

for a = 1.875 
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Chapter 6 

DIVIDE AND CONQUER:  FLOATING-

POINT EXPONENTIAL CALCULATION 

BASED ON TAYLOR-SERIES EXPANSION 

6.1 Abstract 

This paper presents an algorithm to compute the exponential 𝑒𝑥𝑝(𝑥) 

floating-point tails based on Taylor-series expansion with mantissa region 

division. 𝑒𝑥𝑝(𝑥)  is expanded in different regions with corresponding 

central values using Taylor-series and the best result is selected from among 

the different convergence ranges obtained. We show the cases of x>0 as well 

as x<0, and then show the tradeoff among LUT size and the required 

numbers of additions, subtractions and multiplications, and also computing 

accuracy of 𝑒𝑥𝑝(𝑥) by Taylor-series expansion through simulation results. 

The designer can choose the best algorithm to build a reasonable hardware 

system by the method described in this chapter. 

Keywords - Floating-point, Exponential, Taylor-series Expansion, 

Digital Arithmetic, Divide and Conquer. 

6.2 Introduction 

As VLSI integration continues to advance and technical requirements 

become more demanding, binary floating-point computing becomes more 
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important, and we must satisfy the need for high precision and real-time 

floating-point calculations in a wider range of applications. There has been 

a lot of research on basic operations (division) and inverse squares root [1-

2]. Here, this chapter focuses on floating-point index calculation. 

The exponential function has a very broad application area including 

data analytics, simulation of neural networks, web search, and Fourier 

transform. A report released by Microsoft research group showed that 

commonly used operations include division, logarithm and exponential, with 

wide variety of scientific applications, for which latency, accuracy, chip area 

and power are important requirements [3]. There are various solutions to 

these problems and also many studies have addressed exponential function 

calculation algorithms. It is described in [4] how exponentiation can be 

approximated by manipulating the components of the standard (IEEE-754 in 

Fig. 1) floating-point representation. In reference [5], a generalized 

hyperbolic coordinate rotating digital computer (GH CORDIC) is proposed 

that allows direct computation of numbers and indices. Reference [6] uses 

Newton's method to solve the numerical instability caused by the singularity 

generated by using exponential integrators in transient circuit simulations.  

Taylor-series expansion is used for exponential calculation in [7]. There 

are many operations that use Taylor-series expansion for floating-point  

calculations. However, there is not much discussion on the degree of 

convergence range and accuracy of Taylor-series expansion. As an adjunct 

to previous work [7], this paper describes an algorithm for computing 

floating-point mantissa region division using Taylor-series expansion. We 
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show that as the number of the divided regions for the mantissa increases, 

the required numbers of multiplications/additions/ subtractions are reduced; 

a specified accuracy can be achieved at the cost of an increase in LUT size. 

We investigate the cases of x<0 and x>0 and find that their calculation 

complexities are almost the same. 

In this chapter, we also elucidate trade-offs between LUT size, 

arithmetic precision and usage of basic arithmetic operations: addition, 

subtraction and multiplication. A designer can build efficient hardware 

devices by the method proposed in this chapter. Hardware design as 

implemented depends on the design criteria and available hardware elements. 

6.3 Investigated exponential algorithm 

6.3.1 Representation of floating-point number 

The IEEE-754 format is a floating-point number that generally consists 

of the sign bit part S, the exponent part E, and the mantissa part M as shown 

in Fig. 6.1. 

31    30                23 22                        0 

S E (Exponent) M (Mantissa) 

Fig. 6.1 IEEE-754 single-precision floating-point format. 

The general IEEE-754 standard can consist of double-precision 64-bit, 

single-precision 32-bit and half-precision 16-bit; precision can be selected 

by the designer. 
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The discussion here is mainly based on the sign bit being positive. The 

binary floating-point number X consists of an exponential part and a mantissa 

part, denoted as E and M, respectively, as shown by: 

X = M × 2E (6-1) 

Here, the floating-point mantissa is 𝑀 = 1. ABC⋯  (Here, A, B, C⋯ 

is 1 or 0), and its range is  1 ≤ 𝑀 < 2 . For example, 𝑀  = 1.01111 

(binary) = 1.46875 (decimal). 

Now let us consider the floating-point algorithm that calculates the 

exponential of the binary floating-point representation, expressed as 𝐸𝑋𝑃: 

𝐸𝑋𝑃 = 𝑒𝑥𝑝 (𝑀 × 2𝐸) = (𝑒𝑥𝑝 (𝑀))2
𝐸
 (6-2) 

In the following sections, we discuss how to calculate the mantissa of  

𝑒𝑥𝑝(𝑀). 

6.3.2 Exponential Calculation by Taylor-series Expansion 

Taylor-series expansion can be expressed by the expansion of a function 

f(x) infinitely differentiable at x = a, which can be written as the following 

expression: 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 , (𝑎)(𝑥 − 𝑎) +
(𝑓),,(𝑎)

2!
(𝑥 − 𝑎)2 +⋯

+
(𝑓)𝑛(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 +⋯ 

(6-3) 

Consider the calculation of the exponential 𝑒𝑥𝑝(𝑀) of the floating-
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point mantissa M (1 ≤ 𝑀 < 2). Let the central value x = a (1 ≤ 𝑎 < 2), 

𝑓(𝑥) = 𝑒𝑥𝑝(𝑥)  be computed using Taylor-series expansion expressed as 

follows: 

𝑓(𝑥) = 𝑒𝑥𝑝(𝑎) [1 + 𝑞 +
𝑞2

2
+
𝑞3

6
+
𝑞4

24
+

𝑞5

120
+

𝑞6

720
] 

= 𝑒𝑥𝑝(𝑎)[1 + 𝑞(1 + 𝑞(
1

2
+ 𝑞(

1

6
+

𝑞

24
+ 𝑞(

1

120
+

𝑞

720
))))] 

(6-4) 

Taylor-series expansion of the exponential approximation up-to the 6th 

term is shown in Eq. (6-4), where 𝑞 = 𝑥 − 𝑎. This is a well-known method 

to reduce the number of multiplications in Taylor-series [7]. 

Fig. 6.2 (a) shows the approximate results of 𝑓(𝑥) = 𝑒𝑥𝑝 (𝑥)  by 

Taylor-series expansion with 3rd, 4th and 5th terms at the central value 𝑎 = 1; 

it also shows the ideal value of 𝑓(𝑥) = 𝑒𝑥𝑝 (𝑥) (range: 1 ≤ 𝑥 < 2). We see 

in Fig. 6.2 that as the number of terms increases, the approximation 

approaches the ideal value.  

Fig. 6.2 shows the approximation error (AE) between the ideal and 

Taylor-series expansion, the approximation error is defined as follows: 

AE = |
𝑓(𝑥) − 𝑡𝑛(𝑥)

𝑓(𝑥)
| (6-5) 

𝑡𝑛(𝑥) and 𝑓(𝑥) represent the Taylor-series expansion approximation 

value with n-term and ideal value, respectively. 

Similarly, Fig. 6.3(a) and 6.3(b) show the approximation results of the 

Taylor-series expansion of 𝑓(𝑥) = 𝑒𝑥𝑝 (𝑥) when the center value 𝑎 = 1.5. 
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With the same number of Taylor-series expansion terms and the same 

interval (1 ≤ 𝑥 < 2), all the results shown in Fig. 6.3 are close to the ideal 

values of Fig. 6.2. That is, the values around the central value a are close to 

the ideal values. Therefore, it can be concluded that between the specified 

range 1 ≤ 𝑥 < 2, taking the center point of the range as the central value 𝑎 

of Taylor-series expansion can yield accurate results. With this finding, a 

technique of region division for the exponential calculation of the mantissa 

using Taylor-series expansion is proposed. 

6.4 Simulation results 

In this section, our mantissa region division method for the region of 

1 ≤ 𝑥 < 2  based on Taylor-series expansion is used to calculate the 

mantissa of the exponential calculation. Based on the method proposed in 

this paper, with the specified region and accuracy p, 𝑓(𝑥) = 𝑒𝑥𝑝 (𝑥) using 

the minimum number of the terms n needed for Taylor-series expansion, the 

following equation can be derived: 

𝑚𝑎𝑥 |
𝑓(𝑥) − 𝑡𝑛(𝑥)

𝑓(𝑥)
| ≤ 𝑝 (6-6) 
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(a) Approximation value and ideal value. 

 

(b) Taylor-series expansion AE. 

Fig. 6.2 At the central value 𝑎 = 1, the result of f(x) = exp (x) using Taylor-

series expansion. 
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(a) Approximation value and ideal value 

 

(b)  Taylor-series expansion AE. 

Fig. 6.3 At the central value 𝑎 = 1.5, the result of 𝑓(𝑥) = 𝑒𝑥𝑝 (𝑥) using the 

Taylor-series expansion. 

Fig. 6.4 shows the convergence range of different cases under 20-bit 

and 32-bit precision using Taylor-series expansion 𝑓(𝑥) = 𝑒𝑥𝑝(𝑥). The left 
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sides of Figs. 6.4 (a) and 6.4 (b) show 20-bit precision, and their right sides 

show 32-bit precision. Comparative analysis shows that the convergence 

range lies around the center point, and as the accuracy improves, the 

convergence range narrows. Also, as the number of Taylor-series expansion 

items increases, the convergence range also increases. 

   

(a) The number of Taylor-series expansion terms is 10, with different central 

values. 

   

(b) The number of Taylor-series expansion terms is 20, with different central 

values. 

Fig. 6.4 𝑓(𝑥) = 𝑒𝑥𝑝(𝑥) Taylor-series expansion in different cases. 
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6.4.1 Binary point position of mantissa  𝑴 = 1.  𝐁 ⋯ (1≤𝑴< 2) 

(a) Non-divided Mantissa Region Case  

Table 6.1 shows the exponents of the tails calculated using Taylor-series 

expansions; the minimum number of terms n of the Taylor-series expansion 

required to meet the specified accuracy is obtained by simulation. 

(1) Taylor-series expansion of 𝑓(𝑥) = 𝑒𝑥𝑝 (𝑥) at 𝑎 = 1.5 (1 ≤ 𝑥 <

2) 

We see from Table I that the minimum number of terms for Taylor-series 

expansion is 8 for the accuracy of 1/220 by Eq. (6-6). 

Table 6.1 Precision and number of Taylor-series terms in one region of 1 ≤ 𝑥 <

2. 

Accuracy 
1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

(1) Terms (n) 4 7 8 9 11 

(b) Mantissa Region Divided by 2 

Table 6.2 shows that 1 ≤ 𝑥 < 2  is divided into two regions, the 

appropriate region is chosen according to the size of the tail and a Taylor-

series expansion is then performed based on the chosen region. Table 6.3 

shows the calculation results. 
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Table 6.2 Dividing 1 ≤ 𝑥 < 2 into 2 regions 

Region Center value a Mantissa value 

(1) 1.25 1 ≤ 𝑥 < 1.5 

(2) 1.75 1.5 ≤ 𝑥 < 2 

Table 6.3 Precision and number of Taylor-series terms in 2-region division of 

1 ≤ 𝑥 < 2. 

Accuracy 
1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

(1) 
Terms (n) 

3 5 6 7 9 

(2) 3 5 6 7 9 

(c) Mantissa Region Divided by 4 

The same approach divides 1< x <2 into 4 regions, Table 6.4 shows the 

region format and Table 6.5 shows the calculation results. 

Table 6.4 Dividing 1 ≤ 𝑥 < 2 into 4 regions. 

Region Center value a Mantissa value 

(1) 1.125 1 ≤ 𝑥 < 1.25 

(2) 1.375 1.25 ≤ 𝑥 < 1.5 

(3) 1.625 1.5 ≤ 𝑥 < 1.75 

(4) 1.875 1.75 ≤ 𝑥 < 2 
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Table 6.5 Precision and number of Taylor-series terms in 4-region division of 

1 ≤ 𝑥 < 2. 

Accuracy 
1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

(1) 

Terms (n) 

3 4 5 6 7 

(2) 3 4 5 6 7 

(3) 3 4 5 6 7 

(4) 3 4 5 6 7 

Similarly, it is possible to divide 1< x <2 into higher multiples of regions, 

such as 8, 16, 32, and so on. 

6.4.2 Verification with Some Examples 

In the following, the exponential calculations are compared by Taylor-

series expansions and direct calculations. 

As the first example, we calculate the binary number 1011001, where 

the floating-point representation type is 𝑥 = 1.011001 × 26  (binary) 

=  1.390625 × 64  (decimal). The exponential for calculation x can be 

obtained as follows: 

𝑒𝑥𝑝(𝑥) = 𝑒𝑥𝑝(1.390625 × 64) 

     = (𝑒𝑥𝑝(1.390625))64 

Here, we calculate the mantissa of 𝑒𝑥𝑝(1.390625)  and verify the 

proposed method; MATLAB simulation is the direct method used to obtain 
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double precision results: 

𝑒𝑥𝑝(1.390625) = 4.017360118591115 

We compute the exponent 𝑒𝑥𝑝(𝑀)  of the floating-point mantissa 

(M=1.139062) by the proposed method. For example, consider the case that 

the computation accuracy of 1/216 needs to be achieved. It is possible to 

divide 1 ≤ 𝑥 < 2 into four regions combining Tables 6.4 and 6.5, which 

gives the central value a = 1.375 and the number of Taylor-series expansion 

terms n = 5; expanding the expressions yields: 

𝑓(𝑥) = 𝑒𝑥𝑝(1.375) × {1 + (𝑥 − 1.375) +
(𝑥 − 1.375)2

2

+
(𝑥 − 1.375)3

6
+
(𝑥 − 1.375)4

24
} 

(6-7) 

For 𝑥 = 1.390625 , we can obtain the approximate value of 

4.017360108737799 using Eq. (6-7) and the error from the ideal value of  

𝑒𝑥𝑝 (1.390625) is 2.452684 × 10−9 (which is less than 1/216) using Eq. 

(6-6). 

6.5 Exponential calculation for negative number 

Now let us consider the calculation of 𝑓(𝑥)  = 𝑒𝑥𝑝(𝑥)  for 𝑥 < 0 , 

where the sign bit indicates “minus” and 1 ≤ 𝑀 < 2  in Fig. 6.1. The 

accurate calculation of 𝑓(𝑥)  = 𝑒𝑥𝑝(𝑥)  for 𝑥 < 0  is often required in 

assessing transient phenomena of electric circuits; 𝑒𝑥𝑝(−𝑡/𝑇)  has to be 

calculated with a time constant of T.  
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In this case, we also performed simulations and calculations, and the 

results obtained are exactly the same as for the positive mantissa (1 ≤ 𝑥 <

2), except for the case shown in Table 6.6 (accuracy: 1/232 ). See Table 

6.1. The results obtained in Tables 6.3 and 6.5 can be used for −2 < 𝑥 ≤

−1 in the cases of region division by 2 and 4, respectively.    

Similarly, we found that the calculation complexity of 𝑓(𝑥) = 𝑒𝑥𝑝(𝑥) 

for 0 ≤ 𝑥 < 1 is the same as for 1 ≤ 𝑥 < 2. 

Table 6.6 Precision and number of Taylor-series terms in one region of −2 <

𝑥 ≤ −1. 

Accuracy 
1

28
 

1

216
 

1

220
 

1

224
 

1

232
 

One region Terms (n) 4 7 8 9 10 

6.6 Hardware Implementation Consideration 

The hardware complexity can be derived from the calculations below. 

Taylor-series expansion term n=5 is used as an example to calculate the LUT 

size and the numbers of additions, subtractions and multiplications: 

𝑓5 = 𝑒𝑥𝑝(𝑎) {1 + (𝑥 − 𝑎) +
(𝑥−𝑎)2

2
+  

(𝑥−𝑎)3

6
+

(𝑥−𝑎)4

24
}  (6-8) 

Where a and x denote a constant and a variable, respectively. 𝑒𝑥𝑝(𝑎) 

values are first stored in the LUT. Let 𝑦 = 𝑥-a, 𝑧 = 𝑦2. Eq. (6-8) can be 

turned into the following equation: 
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𝑓5
 = 𝑒𝑥𝑝 (𝑎) × (1 + 𝑦 +

𝑦2

2
+
𝑦3

6
+
𝑦4

24
) 

              = 𝑒𝑥𝑝(𝑎) × {1 + 𝑦 +
𝑧

2
× (1 +

𝑦

3
+

𝑧

12
)}  

(6-9) 

The expansion of the 5-term number can be calculated to be composed 

of 6 multiplications and 5 additions and subtractions. We know from Table 

6.5 that the expansion of the 5-term number can reach an accuracy of 1 220⁄ . 

Table 6.7 shows, using the same calculation as above, the relationship 

between the n-term and the number of additions, subtractions and 

multiplications of 𝑓(𝑥) = 𝑒𝑥𝑝(𝑥) when using Taylor-series expansion. 

Table 6.7 Numbers of additions, subtractions and multiplications required for n-

term expansion. 

# of Taylor-series 

expansion terms (n) 
# of multiplications 

# of additions and 

subtractions 

3 3 3 

4 5 4 

5 6 5 

6 8 6 

7 9 7 

8 10 8 

To calculate LUT size, the value of the calculated 𝑒𝑥𝑝(𝑎)  is first 

stored in memory ready to be read. Table 6.8 shows that the mantissa is 

divided into 4 regions requiring 4 words, and so on, and other regions can be 
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used to calculate the LUT size in the same way; the data at address αβ is 

read for M = 1. αβ…. 

Note that as the number of the required terms for Taylor-series 

expansion for a specified accuracy is reduced thanks to our region division 

method, the number of LUT accesses is also decreased. 

Table 6.8 Mantissa divided into 4 regions in LUT memory. 

Address (𝜶𝜷) LUT data 

00 Exp(a) for a = 1.125 

01 Exp(a) for a = 1.357 

10 Exp(a) for a = 1.625 

11 Exp(a) for a = 1.875 

6.7 Summary 

Several papers have already described Taylor-series expansion methods 

for floating-point calculations, but they fail to provide detailed discussions 

of precision and the number of Taylor-series expansion terms required. 

Based on the computation of floating-point exponents using Taylor-series 

expansions proposed in [7], this paper has discussed the required 

convergence range and precision, focusing on the number of terms and the 

center value for Taylor-series expansion. This paper elucidated the trade-offs 

between LUT size, and accuracy, and the basic arithmetic that engineers can 

use to build optimal digital algorithms based on the design concepts 
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presented in this paper. 

We conclude this chapter by emphasizing that previous works such as 

[7] used the Taylor-series expansion for the exponential calculation without 

region division. We described a region division method specifically intended 

to reduce the number of calculations as the number of the region division 

increases: equivalently, with the same number of the terms. compared with 

the original method in [7], our method can greatly improve the accuracy. 
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Chapter 7 

FLOATING-POINT LOGARITHMIC 

ALGORITHMS BASED ON TAYLOR-SERIES 

EXPANSION WITH MANTISSA REGION 

DIVISION AND CONVERSION 

7.1 Abstract 

This paper investigates floating-point calculation algorithms for 

logarithm with base 2, 𝑓(𝑥) = log2𝑥 , based on Taylor-series expansion. 

Three techniques are investigated; (i) The first one is uniform division of the 

mantissa region (1 ≤ 𝑥 < 2). The number of the required terms of Taylor-

series expansion for a specified accuracy is reduced as the number of the 

division increases, and the addressing to the look-up table (LUT) is simple. 

(ii) The second is non-uniform division (exploration of all spaces and 

optimal) of the mantissa region. The region is optimally divided and the 

number of the required terms can be reduced, though the LUT addressing 

becomes complicated. (iii) The third is the mantissa region conversion. The 

mantissa is multiplied by 2, 4 or 8 and the region of (2 ≤ x < 4), (4 ≤ x <

8) or (8 ≤ x < 16)  is considered and there Taylor-series expansion is 

applied. There the slope of f(x) = log2x  with respect to x is gentle 

compared to in the region of (1 ≤ x < 2), so that the required number of 

the terms can be reduced. Their hardware implementation is considered; 
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numbers of multiplications/additions/subtractions and the LUT contents, 

size and addressing. We show their design trade-off among accuracy and 

numbers of multiplications/additions /subtractions and LUT sizes. Also, an 

extreme case of the uniform division that the required number of the terms 

is 2 is shown; there the numbers of multiplications/additions/subtraction are 

small, whereas the LUT size is large. The designer can choose the optimal 

algorithm for his digital logarithmic calculation, and build its conceptual 

dedicated hardware architecture design with the contents described here. 

Keywords: Floating-point, Logarithm, Digital arithmetic, Taylor-series 

expansion, Mantissa region division, Mantissa region conversion 

7.2 Introduction 

The data types of processors are divided into two families: floating-

point and integer. In some cases, the floating-point number is preferred 

thanks to its wide dynamic range, though it requires complicated hardware 

or takes long calculation time. For instance, one floating-point addition 

involves exponent processing, shift and leading-zero count; it typically 

requires 3 to 6 cycles [1]. Even so, the floating-point arithmetic is widely 

used in many applications such as digital signal processing, image 

processing, biomedical applications and scientific computing [2-8]. It can be 

implemented in software and hardware, e. g., general purpose DSP, FPGA 

and CMOS full custom VLSI [9-14]. There, the basic arithmetic operations, 

such as addition, subtraction, multiplication, division, square root, and 

exponential are key operations, and also the logarithmic arithmetic plays an 
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important role for simpler exponentiation, division and multiplication 

computation [15-17].  

Logarithmic simplicity indicates that multiplication and division can be 

performed using base-2 binary logarithmic as introduced in [18]; its authors 

presented a method for finding the approximate value of the  log2  of a 

binary number based for intervals between the powers of two. However, the 

straight-line-approximation method limits the accuracy. Usage of the 

redundant logarithmic arithmetic relies on the table lookup to make the 

arithmetic unit simpler than the equivalent floating-point unit, and its 

disadvantages are typical ones for the redundant number systems introduced 

in [19]. Reference [20] describes the designs of both non-iterative and 

iterative approximate logarithmic multipliers (ALMs), which are studied to 

further reduce power consumption and improve performance. Their 

implementation is still restricted by complexity of performing addition and 

subtraction functions as a result of using lookup tables. The authors of the 

reference [20] showed that a method is revealed to substantially reduce the 

sizes of these tables using second-order co-transformation procedure in [21]. 

The potential of the power consumption reduction in digital system using the 

logarithmic number system (LNS) is investigated in [22]. The comparison of 

experiments showed that LNS reduces the assertion probability by more than 

50 %. Finally, the authors of the reference [21] presented a method called 

Floor Shift for fast calculation of log2, and then this algorithm is combined 

with Taylor-series to improve the accuracy of the output with two examples 

[23]. Reference [24] describes a generalized hyperbolic COordinate Rotation 
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Digital Computer (GH CORDIC) to directly compute logarithms and 

exponentials with an arbitrarily fixed base, optimized the shortcomings of 

only using CORDIC. The uniform domain division of this method is well 

applied in [25,26], but there is no description of the unequal division. For 

calculating floating-point methods, there are also Monte Carlo, Look-up 

tables, CORDIC [27-30], and so on. 

Here, we use the convergence of Taylor-series expansion with the 

mantissa region division and conversion for the floating-point logarithmic 

calculation. Three techniques are proposed; (i) The first one is uniform 

division of the mantissa region (1 ≤ 𝑥 < 2). The number of the required 

terms of Taylor-series expansion for a specified accuracy is reduced as the 

number of the division increases, and the addressing to the look-up table 

(LUT) is simple. (ii) The second is non-uniform division of the mantissa 

region. The region is optimally divided and the number of the required terms 

can be reduced, though the LUT addressing becomes complicated. (iii) The 

third is the mantissa region conversion. The mantissa is multiplied by 2, 4 or 

8 and the region of  (2 ≤ 𝑥 < 4), (4 ≤ x < 8)  or (8 ≤ x < 16)  is 

considered and there Taylor-series expansion is applied. There the slope of 

𝑓(𝑥) = log2𝑥  with respect to x is gentle compared to in the region 

of (1 ≤  𝑥 < 2) so that the required number of the terms can be reduced. 

Their hardware implementation is considered; the numbers of 

multiplications/additions/subtractions and the LUT contents, size and 

addressing. We show their design trade-off among accuracy and numbers of 

multiplications/ additions /subtractions and LUT sizes.  
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Also, an extreme case of the uniform division that the required number 

of the terms is 2 is shown; there the numbers of multiplications/additions/ 

subtraction are small, hence the logarithm calculation can be done fast, 

though the LUT size is large. This can be interpreted as an LUT based 

logarithmic calculation method with the interpolation calculation.  

The suitable implementation would depend on the available hardware 

environment. The designer can choose the optimal algorithm for his digital 

logarithmic calculation, and build its conceptual dedicated hardware 

architecture design with the contents described here, which cover wide range 

of the logarithmic arithmetic algorithms and can compete other methods. 

This chapter is organized as follows: Section 7.3 explains Taylor-series 

expansion, and Section 7.4 shows floating-point logarithmic arithmetic. 

Section 7.5 explains Taylor-series expansion method for floating-point 

logarithmic arithmetic. Sections 7.6 and 7.7 describe our uniform and non-

uniform division methods for mantissa region division respectively. In 

Section 7.8, our mantissa region conversion method is investigated. Section 

7.9 explains the mantissa region division for high-speed logarithmic 

calculation, and Section 7.10 shows verification of our methods with some 

examples. In Section 7.11, hardware implementation of our algorithms is 

considered and Section 7.12 provides summary. 

7.3 Taylor-series Expansion 

Consider an infinitely differentiable function 𝑓(𝑥) , and its Taylor-

series expansion at 𝑥 = 𝑎 is given by : 
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𝑓(𝑥) = 𝑓(a) + 𝑓 , (𝑎)(𝑥 − 𝑎) +
(f),,(𝑎)

2!
(𝑥 − 𝑎)2 +⋯

+
(f)𝑛(𝑎)

n!
(𝑥 − 𝑎)n +⋯ 

(7-1) 

Notice that many functions used in engineering design have relatively 

wide convergence radius; as n increases, the Taylor-series expansion reaches 

𝑓(𝑥) for wide range of x. For examples, Taylor-series expansions at a = 0 of 

sine and cosine functions converge to sine and cosine for -∞ < x < ∞, 

respectively, as n increases (Fig. 7.1). 

 

(a) sin(x) 
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(b) cos(x) 

Fig. 7.1 Waveforms of Taylor-series expansion of sin(𝑥) and cos(𝑥) at a = 0 

up-to 25 terms. 

However, as far as we know, there are very few algorithms in the 

engineering field that positively utilize the fact that Taylor-series expansion 

of some 𝑓(𝑥)  converges to 𝑓(𝑥)  over a wide range of x. Then we 

investigate here a digital arithmetic algorithm for the logarithmic function 

𝑓(𝑥) by its approximating with Taylor-series expansion. 

7.4 Floating-point Logarithmic Arithmetic 

7.4.1 Representation of Floating-point Number 

The IEEE-754 format is a floating-point number which consists of three 

parts, namely the sign bit S, the exponent E, and the mantissa M as shown in 

Fig. 7.2. 
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31 30 23                           22 

S E (Exponent) M (Mantissa) 

Fig. 7.2 IEEE-754 floating-point format (single precision case). 

This standard allows the user to work not only with 32-bit single 

precision, but also 16-bit half precision, 64-bit double precision in [31-33]; 

its precision can be selected by the designer. 

Here, we consider only a positive number 𝑋 ; the sign bit always 

indicates “plus”. Let 𝑋,𝑀 and 𝐸 denote the floating-point representation, 

the mantissa field, and the exponent field in binary representation, 

respectively. So, the binary floating number 𝑋 can be expressed as: 

𝑋 = 𝑀 × 2𝐸 (7-2) 

Here, the mantissa is represented by 𝑀 = 1. 𝛼𝛽𝛾⋯  (𝛼, 𝛽, 𝛾⋯ is 0 or 

1). Notice that 1 ≤ 𝑀 < 2 , and for example, 𝑀 = 1.011001  (binary) 

= 1.390625 (decimal). 

The logarithm function is one of the most useful elementary functions. 

It is continuous and monotonically increasing. Now let us consider the 

floating-point algorithm, which calculates the logarithmic of the binary 

floating-point representation, expressed as L: 

𝐿 = log2𝑥 = log2𝑀+ 𝐸 (7-3) 

7.4.2 Mantissa and Exponent Parts for Base-2 Logarithm 
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Let 𝑙𝑜𝑔2𝑀 + 𝐸  be normalized to represent that its floating-point 

expression can be obtained as follows: 

𝑙𝑜𝑔2𝑀 + 𝐸 = 𝑀𝐿 × 2𝐸𝐿 (7-4) 

Here, 𝑀𝐿  and 𝐸𝐿  are the mantissa part and the exponent part, 

respectively. 

7.5 Taylor-series Expansion Method for Floating-point Base-2 

Logarithmic Arithmetic 

7.5.1 Mantissa Part for Logarithm Calculation 

Here, we concentrate on the mantissa field for the accurate base-2 

logarithm calculation to satisfy a specified accuracy, based on the Taylor-

series expansion with the mantissa region division. 

Let us consider the calculation of log2𝑀(1 ≤ 𝑀 < 2) using Taylor-

series expansion of the logarithm, with 𝑥 = 𝑎 (1 ≤ 𝑎 < 2) satisfying the 

specified accuracy. Taylor-series expansion of 𝑓(𝑥) = log2 𝑥 for 𝑥 = 𝑎 is 

given as follows: 

𝑓(𝑥) =
1

ln(2)
{ln(𝑎) +

𝑝

𝑎
−

𝑝2

2 × 𝑎2
+

𝑝3

3 × 𝑎3
−

𝑝4

4 × 𝑎4
+⋯} 

=
1

ln(2)
{ln(𝑎) +

𝑝

𝑎
(1 −

𝑝

𝑎
(
1

2
+
𝑝

𝑎
(
1

3
−
𝑝

𝑎
(
1

4
+⋯))))} 

(7-5) 

Here, 𝑝 = 𝑥 − 𝑎. Eq. (7-5) is to reduce the number of multiplications 

in Taylor-series expansion. 
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Fig. 7.3 (a) shows the graph of 𝑓(𝑥) = log2𝑥  using Taylor-series 

expansion centered at 𝑎 = 1 when taking 3rd, 4th and 5th terms produces 

the approximated value of the logarithm for 1 ≤ 𝑥 < 2; notice that the 

output value accuracy increases as the number of the terms increases.  

The approximate error in this case (𝑎 = 1) is shown in Fig. 7.3(b). Our 

definition of the approximate error is given by the following: 

Approximate Error = |
𝑓(𝑥) − 𝑡𝑛(𝑥)

𝑓(𝑥)
| (7-6) 

Here, 𝑓(𝑥) is the original function value and 𝑡𝑛(𝑥) is Taylor-series 

expansion value with n terms. 

Similarly, for 𝑓(𝑥) = log2(𝑥) using Taylor-series expansion centered 

at 𝑎 = 1.5, we obtain Fig. 7.4(a) and 7.4(b). 

 

(a) Ideal and Taylor-series expansion values for 𝑓(𝑥) = log2(𝑥). 
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(b) Approximate error. 

Fig. 7.3 Taylor-series expansion centered at 𝑎 = 1. 

 

(a) Ideal and Taylor-series expansion values for 𝑓(𝑥) = log2(𝑥) 
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(b) Approximate error 

Fig. 7.4 Taylor-series expansion centered at 𝑎 = 1.5. 

We see by comparison of Figs. 7.3 and 7.4 that accurate results can be 

obtained near the center value of a, so that we use the center point value in 

the specified range, such as the center point of 1.5 in the range of (1 ≤ 𝑥 <

2) as the center value a of the Taylor-series expansion for accuracy. Based 

on this observation, we propose a division technique of the mantissa region 

(1 ≤ 𝑥 < 2) for Taylor-series expansion usage. Notice that there is a special 

case or a kind of singularity at 𝑓(1) = log21 = 0, where the number of 

Taylor-series expansion terms is very large for good accuracy. In Sections 

7.6 and 7.7, we analyze only the region of 1 < 𝑥 < 2, excluding x=1, but 

Section 7.8 shows its countermeasure. 

7.5.2 Numerical Simulation Results of Logarithmic Function Taylor-

series Expansion 
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In this section, we show our uniform division method for the region of 

1 < 𝑥 < 2 based on Taylor-series expansion to calculate the mantissa of the 

logarithm. 

We have performed simulation to obtain the number of terms 𝑛 

expanded by Taylor-series of  𝑓(𝑥) = log2(𝑥)  for specified accuracy  𝑝 

and given region, which satisfies the following: 

𝑚𝑎𝑥 |
𝑓(𝑥) − 𝑡𝑛(𝑥)

𝑓(𝑥)
| ≤ 𝑝 (7-7) 

Fig. 7.5 shows the convergence range in several cases using Taylor-

series expansion 𝑓(𝑥) = log2(𝑥). We see through comparative analysis that 

as the center point becomes larger, the convergence range becomes larger. 

 

Fig. 7.5 Taylor-series expansion numerical calculations with different center 

values of a (=1, 1.5, 2, 3) at 𝑓(𝑥) = log2 𝑥. Number of terms is 200. 
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7.6 Uniform Division of Mantissa Region  

7.6.1 One Region of 𝟏 < 𝒙 < 𝟐 

Table 7.1 shows the required number of the terms n for Taylor-series 

expansion to meet the specified accuracy, obtained by numerical simulation. 

A-1-a) Taylor-series expansion of 𝑓(𝑥) = 𝑙𝑜𝑔2𝑥 at a = 1.5 (1<x<2) 

When the given accuracy of p in Eq. (7-7) is 1 216⁄ , we obtain n = 18 

for all x (1< x <2) from numerical simulations. 

Table 7.1 Number of Taylor-series expansion terms to meet specified accuracy 

for one region of 1 < 𝑥 < 2. 

Accuracy 

Taylor-series expansion 

𝟏

𝟐𝟖
 

𝟏

𝟐𝟏 
 

𝟏

𝟐𝟏𝟔
 

𝟏

𝟐𝟐𝟐
 

𝟏

𝟐𝟐𝟒
 

A-1-a) 13 15 18 22 23 

7.6.2 Two Uniform Regions of 𝟏 < 𝒙 < 𝟐. 

Fig. 7.6 explains the uniform division of mantissa region by 2.  

We divide the region of 1 < 𝑥 < 2 by 2 evenly and choose the region, 

based on M. Then we perform the Taylor-series expansion at the point a of 

the center for each region. 

A-2-a) For 𝑀 = 1.0∗∗∗∗ ⋯  (1 < 𝑀 < 1.5), 𝑎=1.25. 

A-2-b) For M = 1.1∗∗∗∗ ⋯   (1.5 ≤ 𝑀 < 2), 𝑎=1.75. 
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Fig. 7.6 Explanation of uniform division of mantissa region by 2. 

Table 7.2 shows the numerical simulation results. 

Table 7.2 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 1 < 𝑥 < 2 is divided by 2. 

Accuracy 

Taylor-series expansion 

𝟏

𝟐𝟖
 

𝟏

𝟐𝟏 
 

𝟏

𝟐𝟏𝟔
 

𝟏

𝟐𝟐𝟐
 

𝟏

𝟐𝟐𝟒
 

A-2-a) 10 11 13 16 16 

A-2-b) 4 5 7 9 10 

7.6.3 Four Uniform Regions of 𝟏 < 𝒙 < 𝟐. 

We divide the region of 1 < 𝑥 < 2 by 4 uniformly and choose the 

region, based on M. Then we perform the Taylor-series expansion at the point 

a of the center of each divided region. 

A-3-a) For M  = 1.00∗∗∗∗ ⋯   (1 < 𝑀 < 1.25), a=1.125. 

Mantissa region (x = 1 ~ 2) 

𝒍 𝒈𝟐𝒙 

Uniform division by 2 

  x =1.5 

x 
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A-3-b) For M = 1.01∗∗∗∗ ⋯    (1.25 ≤ 𝑀 < 1.5), a=1.375. 

A-3-c) For M = 1.10∗∗∗∗ ⋯    (1.5 ≤ 𝑀 < 1.75), a=1.625. 

A-3-d) For M = 1.11∗∗∗∗ ⋯    (1.75 ≤ 𝑀 < 2), a=1.875. 

Table 7.3 shows the numerical simulation results. 

Table 7.3 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 1 < 𝑥 < 2 is divided by 4. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

A-3-a) 8 8 10 12 12 

A-3-b) 4 5 6 8 8 

A-3-c) 4 4 6 7 8 

A-3-d) 4 4 5 7 7 

7.7 Non-uniform Division for Mantissa Region  

7.7.1 Basic Idea 

In this section, we show our optimal domain division method for the 

region of 1 < 𝑥 < 2  based on Taylor-series expansion to calculate the 

mantissa of the logarithm. For example, Fig. 7.7 explains the optimal 

division of mantissa region by 2. 
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Fig. 7.7 Explanation of the optimal division of mantissa region by 2. 

We see in Fig. 7.4(b) that when the region 1 < 𝑥 < 2 and 𝑎 = 1.5, 

the error on the left is larger than that on the right. Based on this finding, we 

move the mantissa region division boundaries and their center points for the 

Taylor-series expansion to the left, so that errors in divided regions are 

balanced. 

We start the two non-uniform region division using a bisection method 

for optimal partitioning, and we consider the region I: 1 < 𝑥 < 𝑥1 and the 

region II: 𝑥1 ≤ 𝑥 < 2. Fig. 7.8 shows the algorithm to obtain the boundary 

value of 𝑥1 for the minimum number of the Taylor-series expansion terms 

for a specific accuracy. Also we obtain the minimum terms N1 and N2 so 

that N1 = N2 or |𝑁1 − 𝑁2| = 1. This is similar in four and eight region 

division cases. 

Mantissa region (x = 1 ~ 2) 

𝒍 𝒈𝟐𝒙 
𝑥 ≠ 1.5 

x  

Optimal division 

by 2 
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Fig. 7.8 Exploration of all mantissa spaces and optimal flowchart 

7.7.2 One Region of 𝟏 < 𝒙 < 𝟐. 

Table 7.4 shows the required number of the terms n for Taylor-series 

expansion to meet the specified accuracy, obtained by numerical simulation. 

B-1-a) Taylor-series expansion of 𝑓(𝑥) = log2𝑥 at a =1.25 (1 < 𝑥 <

2). 

Table 7.4 Number of Taylor-series expansion terms to meet specified accuracy 

for one region of 1 < 𝑥 < 2. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

B-1 7 9 15 20 22 
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7.7.3 Two Non-uniform Regions of 𝟏 < 𝒙 < 𝟐. 

We divide the region of 1 < 𝑥 < 2 by 2 optimally and choose the 

region, based on M, and perform the Taylor-series expansion at the point a 

of the center for each region. 

B-2-a) For 𝑀 = 1.∗∗∗∗ ⋯  (1 < 𝑀 < 1.25), 𝑎=1.125. 

B-2-b) For M = 1.∗∗∗∗ ⋯   (1.25 ≤ 𝑀 < 2), 𝑎=1.625. 

Table 7.5 shows the numerical simulation results. Compared to the 

uniform division A-2-a) case in Table 2, the required number of terms is 

reduced substantially; for example, in 24-bit accuracy case, it is reduced 

from 16 to 12. 

Table 7.5 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 1 < 𝑥 < 2 is divided by 2. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

B-2 7 7 9 11 12 

7.7.4 Four Non-uniform Regions of 𝟏 < 𝒙 < 𝟐. 

Divide the region of 1 < 𝑥 < 2 by 4 optimally and choose the region, 

based on M. Then perform the Taylor-series expansion at the point a of the 

center of each divided region. 

B-3-a) For M = 1.∗∗∗∗ ⋯   (1 < 𝑀 < 1.03125), a=1.015625. 
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B-3-b) For M=1.∗∗∗∗ ⋯     (1.03125 ≤ 𝑀 < 1.25), a=1.140625. 

B-3-c) For M = 1.∗∗∗∗ ⋯    (1.25 ≤ 𝑀 < 1.5625), a=1.40625. 

B-3-d) For M = 1.∗∗∗∗ ⋯    (1.5625 ≤ 𝑀 < 2), a=1.78125. 

Table 7.6 shows the numerical simulation results. Compared to the 

uniform division A-3-a) case in Table 7.3, the required number of terms is 

reduced substantially; for example, in 24-bit accuracy case, it is reduced 

from 12 to 8. 

Table 7.6 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 1 < 𝑥 < 2 is divided by 4. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

B-3 4 4 5 7 8 

Fig. 7.9 shows the required number of the Taylor-series expansion 

obtained by several region divisions with uniform and non-uniform methods 

under the specified accuracy. It is the maximum number of expansion terms 

among the divided regions for the accuracy. For example, Table 7.4 shows 

that the maximum number of expansion terms for 22-bit accuracy is 12. We 

see from Fig. 7.9 that the non-uniform division method is effective for the 

reduction of the number. 
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(a) One region. 

 

(b) Region division by 2 

0

3

6

9

12

15

18

21

24
⋕

o
f 

re
q
u
ir

ed
 t

er
m

s

specified accuracy

One region

Uniform Nonuniform

1

28
1

216
1

210
1

222
1

224

0

3

6

9

12

15

18

21

24

⋕
o
f 

re
q
u
ir

ed
 t

er
m

s

specified accuracy

Two region division

Uniform Nonuniform

1

28
1

216
1

210
1

222
1

224



205 

 

 

(c) Region division by 4. 

Fig. 7.9 Taylor-series expansion obtained by several region divisions with 

uniform and non-uniform methods under the specified accuracy. 

7.8 Mantissa Region Conversion 

7.8.1 Basic Idea 

We consider here that the mantissa is multiplied by 2, 4 or 8 and the 

region of (2 ≤ 𝑥 < 4), (4 ≤ x < 8) or (8 ≤ x < 16) is considered and 

there Taylor-series expansion is applied. There the slope of 𝑓(𝑥) =

log2𝑥 with respect to x is gentle compared to in the region of (1 ≤ 𝑥 <

2), so that the required number of the terms can be reduced. 

Also we see in Fig. 7.4 that the Taylor-series expansion requires many 

terms, to obtain 𝑓(1) = log21 = 0 with the Taylor-series expansion with 

the center point of a=1.5 for 1 ≤ 𝑥 < 2. If we consider the Taylor-series 
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expansion region of (2 ≤ 𝑥 < 4), (4 ≤ 𝑥 < 8)  or (8 ≤ 𝑥 < 16), this 

problem can be avoided. 

Our proposed region conversion method is to move the mantissa region 

from 1 ≤ 𝑥 < 2  to 𝑏 ≤ 𝑥𝑚 < 2𝑏 ( 𝑏 = 2𝑚 and 𝑚 = 1, 2, 3⋯ ), and 

another expression of 𝑓(𝑥) = log2𝑥 is obtained as follows: 

𝑓(𝑥) = log2𝑥 = log2 (
𝑏𝑥

𝑏
) 

= log2(𝑏𝑥) − log2𝑏 

= log2𝑥𝑚 −𝑚 

(7-8) 

Here, 𝑥𝑚 = 𝑏𝑥. 

We consider the Taylor-series expansion of 𝑓𝑚(𝑥𝑚) = log2𝑥𝑚 at the 

center value 𝑎 (𝑏 ≤ 𝑎 < 2𝑏)  to solve 𝑓(𝑥) = log2𝑥 . We obtain the 

following: 

𝑓𝑚(𝑥𝑚) =
1

ln(2)
{ln(a) +

𝑝𝑚
a
−

𝑝𝑚
2

2 × a2
+

𝑝𝑚
3

3 × a3
−

𝑝𝑚
4

4 × a4
+⋯} 

=
1

ln(2)
{ln(a) +

𝑝𝑚
𝑎
(1 −

𝑝𝑚
𝑎
(
1

2
+
𝑝𝑚
𝑎
(
1

3
−
𝑝𝑚
𝑎
(
1

4
+⋯))))} 

𝑓(𝑥) = log2𝑥𝑚 −𝑚 

= 𝑓𝑚(𝑥𝑚) − 𝑚 

(7-9) 

Here, 𝑝𝑚 = 𝑥𝑚 − 𝑎. Let m = 1, and we obtain 𝑓(𝑥) = 𝑓𝑚(𝑥𝑚) − 1. 

Now we analyzer Taylor-series expansion from 𝑓𝑚(𝑥𝑚)  in the range of 

2 ≤ 𝑥𝑚 < 4. 
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Fig. 7.10(a) shows the graph of 𝑓m(𝑥𝑚) using Taylor-series expansion 

centered at 𝑎 = 3  when taking 3rd, 4th and 5th terms produces the 

approximated value of the logarithm for 2 ≤ 𝑥𝑚 < 4  and its expansion 

approximate error is shown in Fig. 7.10(b). We see from comparison with 

Fig. 7.4 that the accuracy of the mantissa region conversion method is better. 

Then Fig. 7.11 explains the region conversions (𝑚 = 1, 2).  

 

(a) Ideal and Taylor-series expansion values for 𝑓(𝑥𝑚) = log2(𝑥𝑚). 
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(b)  Approximate error. 

Fig. 7.10 Taylor-series expansion centered at 𝑎 = 3. 

 

Fig. 7.11 Explanation of the region conversions (𝑚 = 1, 2). 

7.8.2 Mantissa Region Conversion to 𝟐 ≤ 𝒙 < 𝟒 (m=1) 

(1) One Region of 2 ≤ 𝑥𝑚 < 4. 

m = 2 

𝒍 𝒈𝟐𝒙 

m = 1 
x  
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Table 7.7 shows the required number of the terms n for Taylor-series 

expansion to meet the specified accuracy, obtained by numerical simulation. 

C-1-a) Taylor-series expansion of 𝑓𝑚(𝑥𝑚) = log2𝑥𝑚  at a = 3 (2 ≤

𝑥𝑚 < 4). 

Table 7.7 Number of Taylor-series expansion terms to meet specified accuracy 

for one region of 2 ≤ 𝑥𝑚 < 4. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

C-1-a 5 6 9 13 13 

(2) Two Regions of 2 ≤ 𝑥𝑚 < 4. 

We divide the region of 2 ≤ 𝑥𝑚 < 4 by 2 uniformly and choose the 

region, based on 𝑀1(= 2 ×𝑀) and perform the Taylor-series expansion at 

the point a of the center for each region. 

C-2-a) For 𝑀1 = 2.∗∗∗∗ ⋯  (2 ≤ 𝑀1 < 3), 𝑎=2.5. 

C-2-b) For 𝑀1= 3.∗∗∗∗ ⋯   (3 ≤ 𝑀1 < 4), 𝑎=3.5. 

Table 7.8 shows the numerical simulation results. 

 (3) Four Regions of 2 ≤ 𝑥𝑚 < 4. 

Divide the region of 2 ≤ 𝑥𝑚 < 4  by 4 uniformly and choose the 

region, based on 𝑀1. Then perform the Taylor-series expansion at the point 

a of the center of each divided region. 

C-3-a) For 𝑀1 = 2.∗∗∗∗ ⋯   (2 < 𝑀1 < 2.5), a=2.25. 
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C-3-b) For 𝑀1 = 2.∗∗∗∗ ⋯   (2.5 ≤ 𝑀1 < 3), a=2.75. 

C-3-c) For 𝑀1 = 3.∗∗∗∗ ⋯   (3 ≤ 𝑀1 < 3.5), a=3.25. 

C-3-d) For 𝑀1 = 3.∗∗∗∗ ⋯   (3.5 ≤ 𝑀1 < 4), a=3.75. 

Table 7.9 shows the numerical simulation results. 

Table 7.8 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 2 ≤ 𝑥𝑚 < 4 is divided by 2. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

C-2-a) 4 4 7 9 10 

C-2-b) 3 4 5 7 8 

Table 7.9 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 2 ≤ 𝑥𝑚 < 4 is divided by 4. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

C-3-a) 3 3 5 7 7 

C-3-b) 3 3 5 6 7 

C-3-c) 2 3 4 6 6 

C-3-d) 2 3 4 5 6 

7.8.3 Mantissa Region Conversion to 𝟒 ≤ 𝒙 < 𝟖 (m = 2) 

Here we analyze Taylor-series expansion of 𝑓𝑚(𝑥𝑚) in the range of 
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4 ≤ 𝑥𝑚 < 8, and we obtain 𝑓(𝑥) = 𝑓𝑚(𝑥𝑚) − 2. 

(1) One Region of 4 ≤ 𝑥𝑚 < 8 (m=2) 

For 4 ≤ 𝑥𝑚 < 8 in one region, the results are shown in Table 7.10. 

D-1-a) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚  at a = 6  (4 ≤

𝑥𝑚 < 8). 

Table 7.10 Number of Taylor-series expansion terms to meet specified accuracy 

for one region of 4 ≤ 𝑥𝑚 < 8. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

D-1-a 4 5 9 12 13 

(2) Two Uniform Regions of 4 ≤ 𝑥𝑚 < 8 

We divide the region of 4 ≤ 𝑥𝑚 < 8 by 2 uniformly and choose the 

region, based on 𝑀2(= 4 ×𝑀), and perform the Taylor-series expansion at 

the point a of the center for each region. 

D-2-a) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚  at a = 5  (4 ≤

𝑥𝑚 < 6). 

D-2-b) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚  at a = 7  (6 ≤

𝑥𝑚 < 8). 

Table 7.11 shows the numerical simulation results. 
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Table 7.11 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 4 ≤ 𝑥𝑚 < 8 is divided by 2. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

D-2-a) 3 4 6 9 9 

D-2-b) 3 3 5 7 8 

(3) Four Uniform Regions of 4 ≤ 𝑥𝑚 < 8. 

Divide the region of 4 ≤ 𝑥𝑚 < 8 by 4 and choose the region, based 

on 𝑚𝑥. Then perform the Taylor-series expansion at the point a of the center 

of each divided region. 

D-3-a) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 4.5  (4 ≤

𝑥𝑚 < 5). 

D-3-b) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 5.5  (5 ≤

𝑥𝑚 < 6). 

D-3-c) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 6.5  (6 ≤

𝑥𝑚 < 7). 

D-3-d) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 7.5  (7 ≤

𝑥𝑚 < 8). 

Table 7.12 shows the numerical simulation results. 
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Table 7.12 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 4 ≤ 𝑥𝑚 < 8 is divided by 4. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

D-3-a) 3 3 5 7 7 

D-3-b) 2 3 4 6 7 

D-3-c) 2 3 4 6 6 

D-3-d) 2 3 4 5 6 

7.8.4 Mantissa Region Conversion to 𝟖 ≤ 𝒙 < 𝟏𝟔 ( = 𝟑) 

Here we analyze Taylor-series expansion of 𝑓𝑚(𝑥𝑚) in the range of 

8 ≤ 𝑥𝑚 < 16, and we obtain 𝑓(𝑥) = 𝑓𝑚(𝑥𝑚) − 3. 

(1) One Region of 8 ≤ 𝑥𝑚 < 16 

For 8 ≤ 𝑥𝑚 < 16 in one region, the results are shown in Table 7.13. 

F-1-a) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 12  (8 ≤

𝑥𝑚 < 16). 

Table 7.13 Number of Taylor-series expansion terms to meet specified accuracy 

for one region of 8 ≤ 𝑥𝑚 < 16. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

F-1-a 4 5 9 12 13 
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(2) Two Uniform Regions of 8 ≤ 𝑥𝑚 < 16 

We divide the region of 8 ≤ 𝑥𝑚 < 16 by 2 uniformly and choose the 

region, based on 𝑀3(= 8 ×𝑀), and perform the Taylor-series expansion at 

the point a of the center for each region. 

F-2-a) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 10  (8 ≤

𝑥𝑚 < 12). 

F-2-b) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 14  (12 ≤

𝑥𝑚 < 16). 

Table 7.14 shows the numerical simulation results. 

Table 7.14 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 8 ≤ 𝑥𝑚 < 16 is divided by 2. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

F-2-a) 3 4 6 9 9 

F-2-b) 3 3 5 7 8 

(3) Four Uniform Regions of 8 ≤ 𝑥𝑚 < 16. 

Divide the region of 8 ≤ 𝑥𝑚 < 16 by 4 and choose the region, based 

on 𝑚𝑥. Then perform the Taylor-series expansion at the point a of the center 

of each divided region. 

F-3-a) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 9   (8 ≤

𝑥𝑚 < 10). 
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F-3-b) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 11  (10 ≤

𝑥𝑚 < 12). 

F-3-c) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 13  (12 ≤

𝑥𝑚 < 14). 

F-3-d) Taylor-series expansion of 𝑓𝑚(𝑥) = log2𝑥𝑚 at a = 15  (14 ≤

𝑥𝑚 < 16). 

Table 7.15 shows the numerical simulation results. 

Table 7.15 Number of Taylor-series expansion terms to meet specified accuracy 

when the region of 8 ≤ 𝑥𝑚 < 16 is divided by 4. 

Accuracy 

Taylor-series expansion 

1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

F-3-a) 2 3 5 6 7 

F-3-b) 2 3 4 6 6 

F-3-c) 2 3 4 5 6 

F-3-d) 2 2 4 5 6 

7.8.5 Comparison of Mantissa Region Conversions (m=1, 2, 3) 

Fig. 7.12 shows the required number of the Taylor-series expansion 

obtained by several region divisions with mantissa conversions (m = 1, 2, 3) 

using the uniform division, and non-mantissa conversion using the uniform 

and non-uniform divisions under the specified accuracy. We see that the 

mantissa conversion is effective for the required number of terms. Also, we 



216 

 

see that there is not substantial difference in m = 1, 2, 3 cases. 

 

(a) One Region. 

 

(b) Region division by 2. 
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(c) Region division by 4. 

Fig. 7.12 Taylor-series expansion obtained by the uniform region division with 

the mantissa conversions (m=1, 2, 3) and the uniform and non-uniform region 

divisions without mantissa region conversion. 

7.9 Mantissa Region Division for High-Speed Logarithmic Calculation 

In this section, we investigate the logarithmic calculation to meet the 

specified accuracy with 2 terms of its Taylor-series expansion as follows: 

𝑓2(𝑥) =
1

ln (2)
× {ln (𝑎) +

𝑥 − 𝑎

𝑎
}

=
1

ln (2)
× {ln(𝑎) +

𝑥

𝑎
− 1} 

(7-10) 

Here, 1 ⁄ (ln (2))and ln(𝑎) for each divided region are stored in LUT 

as discussed in Section 7.11. Take region conversion 𝑚 = 1 as an example, 

and Table 7.16 shows the required number of mantissa region division for 

the specified accuracy. The calculation of 2-term Taylor-series expansion 
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requires only 2 multiplications and 2 additions/subtractions; hence its 

calculation can be done at high speed, though the LUT size becomes 

relatively large. 

Table 7.16 Number of mantissa region division to meet specified accuracy with 2 

terms of Taylor-series expansion. 

Accuracy 
1

28
 

1

210
 

1

216
 

1

222
 

1

224
 

Number of Mantissa Region 

Division 
8 16 126 1024 2048 

7.10 Verification with Some Examples 

In this section, we compare the direct calculation result and the Taylor-

series expansion simulation result of the logarithmic calculation with some 

examples.  

For example, for decimal number 𝐿 = log21.71875 + 8 , through 

calculation we can obtain the normal floating-point representation as follows: 

𝐿 = 1.000011001000000001110011(2) × 23  

Here, we obtain the floating-point mantissa part of  

1.000011001000000001110011(2) and the exponent part of 3. 

We use the Taylor-series expansion method with the mantissa region 

division to calculate log2𝑀. For example, in the case of 8-bit accuracy and 

𝑀 = 1.71875  using 4 divided regions, the corresponding case of M is 
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shown in A-3-c, and the Taylor-series with 4 terms at a =1.625 is expanded 

as follows: 

𝑡(𝑥) =
1

ln(2)
{ln (

13

8
) +

(𝑥 −
13
8 )

13
8

−
(𝑥 −

13
8 )

2

2 × (
13
8 )

2

+ 
(𝑥 −

13
8 )

3

3 × (
13
8 )

3} 

3 (

(7-11) 

For x=1.71875, the following is obtained from Eq. (11): 

𝑡(1.71875) = 1.000011001000000001110𝟏11(2) × 23 

We see by their comparison that their mantissa parts 

1.000011001000000001110𝟏11(2), and exponent parts 23 of the direct 

and Taylor-series expansion calculation are the same. The error from the 

ideal value of log21.71875 + 8  is 4.888495⋯× 10−6  (which is less 

than 1 28⁄ ) using Eq. (7.7). 

Therefore, we see that the mantissa part and the exponent part of 𝐿 are 

1.000011001000000001110𝟏11(2) and 3, respectively. 

7.11 Hardware Implementation Consideration 

Let us consider the hardware implementation complexity using our 

algorithm to perform 𝑓(𝑥) = log2 𝑥 calculation in different cases. 

Now let us consider the required numbers of multiplications 
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/additions/subtractions for Taylor-series expansion to calculate 𝐿 =

log2𝑥 = log2𝑀+ 𝐸. For example, in case of 5-term Taylor-series expansion 

𝑓5(x) for 𝑓(𝑥) = log2𝑥 at 𝑥 = 𝑎, we have the following:  

𝑓5(𝑥) =
1

ln(2)
{𝑙n(𝑎) +

𝑝

𝑎
−

𝑝2

2 × 𝑎2
+

𝑝3

3 × 𝑎3
−

𝑝4

4 × 𝑎4
} 

= 𝛼0 + 𝛼1 × 𝑝 − 𝛼2 × 𝑝2 + 𝛼3 × 𝑝3 − 𝛼4 × 𝑝4 

(7-12) 

Here, 𝛼0 = 
ln (𝑎)

ln (2)
, 𝛼1 = 

1

𝑎×l n(2)
,  𝛼2 = 

1

2×𝑎2×ln(2)
, 𝛼3 =

1

3×𝑎3×ln(2)
, 

𝛼4 =
1

4×𝑎4×l n(2)
. 

Also 𝑎 is a constant and 𝑥 is a variable. 𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4, … are 

calculated in advance and stored in LUT memory; they are read at calculation 

time. Then we calculate 𝑝 = 𝑦 = 𝑥 − 𝑎, z=𝑦2, and we have the following: 

𝑓5(𝑥) = 𝑎0 + 𝑎1𝑦 − 𝑧(𝑎2 + 𝑎3𝑦 − 𝑎4𝑧) (7-13) 

We see that 𝑓5 can be obtained with 5 multiplications and 5 additions/ 

subtractions. Table 7.17 shows the required numbers of multiplications and 

additions/subtractions for the number of Taylor-series terms for 𝑓(𝑥) =

log2 𝑥. 

We see from Tables 7.6 and 7.17 that by dividing the region by 4, the 

logarithm of the mantissa can be calculated with 22-bit accuracy by 7 

multiplications and 7 additions/subtractions. 

The required LUT size for n-term Taylor-series expansion and N regions 

is (𝑛 + 1) × 𝑁  words, and its MSB and 2nd MSB addresses αβ  for 
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M=1. αβ… are used for the corresponding data read. Table 7.18 shows the 

case for n = 4 and N = 4, and the LUT size is 20 words. Similarly, the optimal 

domain division can also be expressed in the format of Table 7.18. 

Notice that as the number of the required terms for Taylor-series 

expansion for a specified accuracy is decreased thanks to our region division 

method, and then the number of LUT accesses also decreases. 

 

 

Table 7.17 Required numbers of multiplications and additions/subtractions for n-

term Taylor-series expansion. 

# of Taylor-series 

expansion terms(n) 
# of multiplications 

# of additions/ 

subtractions 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 8 
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Table 7.18 LUT memory for 4 regions 

Address (𝛼𝛽 ∗∗∗) LUT data 

00∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4 

for a = 1.125 

01∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4 

for a = 1.357 

10∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4 

for a = 1.625 

11∗∗∗ 
𝛼0, 𝛼1, 𝛼2, 𝛼3 , 𝛼4 

for a = 1.875 

7.12 Summary 

We have studied floating-point logarithmic algorithms with Taylor-

series expansion with the mantissa region division uniformly and non-

uniformly, and also with and without the mantissa region conversion. Further, 

we have investigated the logarithmic calculation to meet the specified 

accuracy with 2 terms of its Taylor-series expansion, for high-speed 

calculation. We have shown their hardware implementation trade-offs among 

simulation accuracy, numbers of multiplications/additions/subtractions and 

LUT sizes to meet various digital division specifications flexibly. The 

designer can build his/her conceptual dedicated hardware architecture design 

for logarithmic calculation with the contents described in this paper. The 

mantissa conversion with the uniform region division would be a reasonable 

choice in many cases. 
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We conclude this chapter by emphasizing that the previous works such 

as [23] have used the Taylor-series expansion for the logarithm calculation 

without region division. Notice that the region division methods are 

described in [34], but they are not for Taylor-series expansion. We here 

describe the mantissa region division method for Taylor-series expansion 

specifically which can reduce the number of calculations as the number of 

the division increases. Also this region division algorithm is applicable to the 

minimax polynomial approximation method described in [35]. 
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Chapter 8  

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusion 

The floating-point arithmetic units are widely used in today's DSPs, 

CPUs and GPUs, and some graphics chips have thousands of floating-point 

arithmetic units integrated into them, as they can represent a larger range of 

numbers with greater precision than integers. At the same time, with 

advances in semiconductor technology, various floating-point arithmetic 

units with complex arithmetic functions are gradually appearing in some 

special application chips. Therefore, VLSI implementation of high-

performance floating-point arithmetic units has been a hot research topic in 

both academia and industry.  

In this part, the computation of arithmetic algorithms using Taylor-

series expansions is investigated. The innovative result of the dissertation is 

the use of the “divide and conquer” technique in the floating-point range 

using Taylor-series expansion. Three methods are proposed for fast 

calculation with high efficiency: (i) mantissa region uniform division, (ii) 

mantissa region non-uniform division, (iii) mantissa region conversion. In 

this part, the computation of arithmetic algorithms using Taylor-series 

expansions is investigated. In the part, the algorithms for floating-point 

division, square root, inverse square root, exponential and Logarithmic 

arithmetic units are analyzed in depth. We also elucidate trade-offs between 
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LUT size, arithmetic precision and usage of basic arithmetic operations: 

addition, subtraction and multiplication. A designer can build efficient 

hardware devices by the method proposed in this paper. Hardware design as 

implemented depends on the design criteria and available hardware elements. 

8.2 Future Work 

In subsequent work, the proposed algorithms are implemented in 

FPGAs and the power consumption, delay, and chip area of the circuit using 

the proposed algorithms applied in hardware are discussed. 

As IC process technology advances, future work should also discuss 

how to improve computational accuracy, reduce delay, power consumption 

and reduce VLSI area using algorithms such as the Newton-Raphson 

algorithm, the Goldschmidt algorithm and the digital iterative algorithm. 
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