ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 50 工学研究科
  2. 学位論文

Evolutionary algorithms for solving multi-objective shortest path problem -Case study of vehicle navigation problems

http://hdl.handle.net/10087/7662
http://hdl.handle.net/10087/7662
582b30c9-321d-471f-9dd2-6ef6739659d5
名前 / ファイル ライセンス アクション
PhdThesis.pdf PhdThesis.pdf (5.5 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2013-07-30
著者 Umair, Farooq Siddiqi

× Umair, Farooq Siddiqi

WEKO 9046

Umair, Farooq Siddiqi

Search repository
タイトル
タイトル Evolutionary algorithms for solving multi-objective shortest path problem -Case study of vehicle navigation problems
言語
言語 eng
その他のタイトル
その他のタイトル 多目的最短経路問題を解くための進化アルゴリズム事例: 自動車のナビゲーション問題
キーワード
主題Scheme Other
主題 optimization
キーワード
主題Scheme Other
主題 algorithm
キーワード
主題Scheme Other
主題 network
キーワード
主題Scheme Other
主題 path
キーワード
主題Scheme Other
主題 multi-objective
キーワード
主題Scheme Other
主題 navigation
キーワード
主題Scheme Other
主題 vehicle
キーワード
主題Scheme Other
主題 embedded system
キーワード
主題Scheme Other
主題 evolutionary
キーワード
主題Scheme Other
主題 stochastic
キーワード
主題Scheme Other
主題 genetic
キーワード
主題Scheme Other
主題 software
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者(ヨミ)
姓名 ウメイール ファルーク, シッディキ
抄録
内容記述タイプ Abstract
内容記述 Finding Multi-objective shortest paths (MOSP) is an important problem in\ncomputer and transportation networks. MOSP is an NP-hard problem when\nit contains more than two objectives. MOSP problem can be e ciently solved\nusing the evolutionary algorithms (EAs). The existing EAs are of two types:\nPopulation-based and single-solution-based. Population-based EAs are memory-\nintensive and single-solution-based EAs cannot yield good quality solutions\nwithin a small amount of time. We proposed two new EAs to solve the MOSP\nproblem and overcome the shortcomings of the existing EAs. The proposed EAs\nrequire lesser memory and at the same time can also yield good quality solutions.\nThe rst algorithm is based on Stochastic Evolution (StocE) and works on a\nsingle solution. It considers di erent sub-paths in the solution as its character-\nistics and eliminates bad sub-paths from generation to generation. The second\nproposed algorithm is an o -spring non-storing GA which is memory-e cient\nthan the existing GAs and its variants. Unlike existing GA-based algorithms\nit does not store children chromosomes in the memory. In the proposed GA-\nbased algorithm, the children chromosomes conditionally replace their parent\nchromosomes and thus do not need to be stored at new memory locations. The\nquality of the pareto-optimal sets of the proposed algorithms is determined by\nusing the Hypervolume metric. This works considers two applications in which\nthe MOSP problem occurs. The rst problem is the selection of optimal paths\nin the conventional vehicles and the second problem is the selection of optimal\npaths in the electric vehicles. The proposed algorithm outperforms the exist-\ning single-solution-based EAs in solution quality and requires lesser memory\nthan the population-based algorithms. The proposed algorithms can also be\ngeneralized to solve any multi-objective optimization problems. The proposed\nalgorithm can solve complicated test problems of multi-objective optimization\nwith a quality which is competitive to the existing popular EAs. The e ect of\nmemory size on the solution quality is also studied. It is found that excessive\nincrease in the memory size does not improve the solution quality. The exper-\nimental results show that the proposed StocE and GA based algorithms are\nhighly suitable to solve the MOSP problem in embedded systems
内容記述
内容記述タイプ Other
内容記述 学位記番号:工博甲462
書誌情報 p. 1-86, 発行日 2013-03
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
出版者
出版者 群馬大学工学研究科
資源タイプ
内容記述タイプ Other
内容記述 Thesis or Dissertation
学位名
学位名 博士(工学)
学位授与機関
学位授与機関名 群馬大学
学位授与年月日
学位授与年月日 2013-03-22
学位授与番号
学位授与番号 12301甲第462号
更新日
値 2019-12-16
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 12:55:29.613696
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3